Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 1 | //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the ScheduleDAG class, which is a base class used by |
| 11 | // scheduling implementation classes. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "pre-RA-sched" |
| 16 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 17 | #include "llvm/Target/TargetMachine.h" |
| 18 | #include "llvm/Target/TargetInstrInfo.h" |
| 19 | #include "llvm/Target/TargetRegisterInfo.h" |
| 20 | #include "llvm/Support/Debug.h" |
Dan Gohman | 4036206 | 2008-11-20 01:41:34 +0000 | [diff] [blame] | 21 | #include <climits> |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 22 | using namespace llvm; |
| 23 | |
| 24 | ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb, |
| 25 | const TargetMachine &tm) |
| 26 | : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) { |
| 27 | TII = TM.getInstrInfo(); |
| 28 | MF = BB->getParent(); |
| 29 | TRI = TM.getRegisterInfo(); |
| 30 | TLI = TM.getTargetLowering(); |
| 31 | ConstPool = MF->getConstantPool(); |
| 32 | } |
| 33 | |
| 34 | ScheduleDAG::~ScheduleDAG() {} |
| 35 | |
| 36 | /// CalculateDepths - compute depths using algorithms for the longest |
| 37 | /// paths in the DAG |
| 38 | void ScheduleDAG::CalculateDepths() { |
| 39 | unsigned DAGSize = SUnits.size(); |
| 40 | std::vector<SUnit*> WorkList; |
| 41 | WorkList.reserve(DAGSize); |
| 42 | |
| 43 | // Initialize the data structures |
| 44 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 45 | SUnit *SU = &SUnits[i]; |
| 46 | unsigned Degree = SU->Preds.size(); |
| 47 | // Temporarily use the Depth field as scratch space for the degree count. |
| 48 | SU->Depth = Degree; |
| 49 | |
| 50 | // Is it a node without dependencies? |
| 51 | if (Degree == 0) { |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 52 | assert(SU->Preds.empty() && "SUnit should have no predecessors"); |
| 53 | // Collect leaf nodes |
| 54 | WorkList.push_back(SU); |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 55 | } |
| 56 | } |
| 57 | |
| 58 | // Process nodes in the topological order |
| 59 | while (!WorkList.empty()) { |
| 60 | SUnit *SU = WorkList.back(); |
| 61 | WorkList.pop_back(); |
| 62 | unsigned SUDepth = 0; |
| 63 | |
| 64 | // Use dynamic programming: |
| 65 | // When current node is being processed, all of its dependencies |
| 66 | // are already processed. |
| 67 | // So, just iterate over all predecessors and take the longest path |
| 68 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 69 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 70 | unsigned PredDepth = I->getSUnit()->Depth; |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 71 | if (PredDepth+1 > SUDepth) { |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 72 | SUDepth = PredDepth + 1; |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 73 | } |
| 74 | } |
| 75 | |
| 76 | SU->Depth = SUDepth; |
| 77 | |
| 78 | // Update degrees of all nodes depending on current SUnit |
| 79 | for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| 80 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 81 | SUnit *SU = I->getSUnit(); |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 82 | if (!--SU->Depth) |
| 83 | // If all dependencies of the node are processed already, |
| 84 | // then the longest path for the node can be computed now |
| 85 | WorkList.push_back(SU); |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | /// CalculateHeights - compute heights using algorithms for the longest |
| 91 | /// paths in the DAG |
| 92 | void ScheduleDAG::CalculateHeights() { |
| 93 | unsigned DAGSize = SUnits.size(); |
| 94 | std::vector<SUnit*> WorkList; |
| 95 | WorkList.reserve(DAGSize); |
| 96 | |
| 97 | // Initialize the data structures |
| 98 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 99 | SUnit *SU = &SUnits[i]; |
| 100 | unsigned Degree = SU->Succs.size(); |
| 101 | // Temporarily use the Height field as scratch space for the degree count. |
| 102 | SU->Height = Degree; |
| 103 | |
| 104 | // Is it a node without dependencies? |
| 105 | if (Degree == 0) { |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 106 | assert(SU->Succs.empty() && "Something wrong"); |
| 107 | assert(WorkList.empty() && "Should be empty"); |
| 108 | // Collect leaf nodes |
| 109 | WorkList.push_back(SU); |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 110 | } |
| 111 | } |
| 112 | |
| 113 | // Process nodes in the topological order |
| 114 | while (!WorkList.empty()) { |
| 115 | SUnit *SU = WorkList.back(); |
| 116 | WorkList.pop_back(); |
| 117 | unsigned SUHeight = 0; |
| 118 | |
| 119 | // Use dynamic programming: |
| 120 | // When current node is being processed, all of its dependencies |
| 121 | // are already processed. |
| 122 | // So, just iterate over all successors and take the longest path |
| 123 | for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| 124 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 125 | unsigned SuccHeight = I->getSUnit()->Height; |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 126 | if (SuccHeight+1 > SUHeight) { |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 127 | SUHeight = SuccHeight + 1; |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 128 | } |
| 129 | } |
| 130 | |
| 131 | SU->Height = SUHeight; |
| 132 | |
| 133 | // Update degrees of all nodes depending on current SUnit |
| 134 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 135 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 136 | SUnit *SU = I->getSUnit(); |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 137 | if (!--SU->Height) |
| 138 | // If all dependencies of the node are processed already, |
| 139 | // then the longest path for the node can be computed now |
| 140 | WorkList.push_back(SU); |
| 141 | } |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | /// dump - dump the schedule. |
| 146 | void ScheduleDAG::dumpSchedule() const { |
| 147 | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| 148 | if (SUnit *SU = Sequence[i]) |
| 149 | SU->dump(this); |
| 150 | else |
| 151 | cerr << "**** NOOP ****\n"; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | |
| 156 | /// Run - perform scheduling. |
| 157 | /// |
| 158 | void ScheduleDAG::Run() { |
| 159 | Schedule(); |
| 160 | |
| 161 | DOUT << "*** Final schedule ***\n"; |
| 162 | DEBUG(dumpSchedule()); |
| 163 | DOUT << "\n"; |
| 164 | } |
| 165 | |
Dan Gohman | c6b680e | 2008-12-16 01:05:52 +0000 | [diff] [blame^] | 166 | /// addPred - This adds the specified edge as a pred of the current node if |
| 167 | /// not already. It also adds the current node as a successor of the |
| 168 | /// specified node. |
| 169 | void SUnit::addPred(const SDep &D) { |
| 170 | // If this node already has this depenence, don't add a redundant one. |
| 171 | for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i) |
| 172 | if (Preds[i] == D) |
| 173 | return; |
| 174 | // Add a pred to this SUnit. |
| 175 | Preds.push_back(D); |
| 176 | // Now add a corresponding succ to N. |
| 177 | SDep P = D; |
| 178 | P.setSUnit(this); |
| 179 | SUnit *N = D.getSUnit(); |
| 180 | N->Succs.push_back(P); |
| 181 | // Update the bookkeeping. |
| 182 | if (D.getKind() == SDep::Data) { |
| 183 | ++NumPreds; |
| 184 | ++N->NumSuccs; |
| 185 | } |
| 186 | if (!N->isScheduled) |
| 187 | ++NumPredsLeft; |
| 188 | if (!isScheduled) |
| 189 | ++N->NumSuccsLeft; |
| 190 | } |
| 191 | |
| 192 | /// removePred - This removes the specified edge as a pred of the current |
| 193 | /// node if it exists. It also removes the current node as a successor of |
| 194 | /// the specified node. |
| 195 | void SUnit::removePred(const SDep &D) { |
| 196 | // Find the matching predecessor. |
| 197 | for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end(); |
| 198 | I != E; ++I) |
| 199 | if (*I == D) { |
| 200 | bool FoundSucc = false; |
| 201 | // Find the corresponding successor in N. |
| 202 | SDep P = D; |
| 203 | P.setSUnit(this); |
| 204 | SUnit *N = D.getSUnit(); |
| 205 | for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(), |
| 206 | EE = N->Succs.end(); II != EE; ++II) |
| 207 | if (*II == P) { |
| 208 | FoundSucc = true; |
| 209 | N->Succs.erase(II); |
| 210 | break; |
| 211 | } |
| 212 | assert(FoundSucc && "Mismatching preds / succs lists!"); |
| 213 | Preds.erase(I); |
| 214 | // Update the bookkeeping; |
| 215 | if (D.getKind() == SDep::Data) { |
| 216 | --NumPreds; |
| 217 | --N->NumSuccs; |
| 218 | } |
| 219 | if (!N->isScheduled) |
| 220 | --NumPredsLeft; |
| 221 | if (!isScheduled) |
| 222 | --N->NumSuccsLeft; |
| 223 | return; |
| 224 | } |
| 225 | } |
| 226 | |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 227 | /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or |
| 228 | /// a group of nodes flagged together. |
| 229 | void SUnit::dump(const ScheduleDAG *G) const { |
| 230 | cerr << "SU(" << NodeNum << "): "; |
| 231 | G->dumpNode(this); |
| 232 | } |
| 233 | |
| 234 | void SUnit::dumpAll(const ScheduleDAG *G) const { |
| 235 | dump(G); |
| 236 | |
| 237 | cerr << " # preds left : " << NumPredsLeft << "\n"; |
| 238 | cerr << " # succs left : " << NumSuccsLeft << "\n"; |
| 239 | cerr << " Latency : " << Latency << "\n"; |
| 240 | cerr << " Depth : " << Depth << "\n"; |
| 241 | cerr << " Height : " << Height << "\n"; |
| 242 | |
| 243 | if (Preds.size() != 0) { |
| 244 | cerr << " Predecessors:\n"; |
| 245 | for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); |
| 246 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 247 | cerr << " "; |
| 248 | switch (I->getKind()) { |
| 249 | case SDep::Data: cerr << "val "; break; |
| 250 | case SDep::Anti: cerr << "anti"; break; |
| 251 | case SDep::Output: cerr << "out "; break; |
| 252 | case SDep::Order: cerr << "ch "; break; |
| 253 | } |
| 254 | cerr << "#"; |
| 255 | cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; |
| 256 | if (I->isArtificial()) |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 257 | cerr << " *"; |
| 258 | cerr << "\n"; |
| 259 | } |
| 260 | } |
| 261 | if (Succs.size() != 0) { |
| 262 | cerr << " Successors:\n"; |
| 263 | for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); |
| 264 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 265 | cerr << " "; |
| 266 | switch (I->getKind()) { |
| 267 | case SDep::Data: cerr << "val "; break; |
| 268 | case SDep::Anti: cerr << "anti"; break; |
| 269 | case SDep::Output: cerr << "out "; break; |
| 270 | case SDep::Order: cerr << "ch "; break; |
| 271 | } |
| 272 | cerr << "#"; |
| 273 | cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; |
| 274 | if (I->isArtificial()) |
Dan Gohman | 343f0c0 | 2008-11-19 23:18:57 +0000 | [diff] [blame] | 275 | cerr << " *"; |
| 276 | cerr << "\n"; |
| 277 | } |
| 278 | } |
| 279 | cerr << "\n"; |
| 280 | } |
Dan Gohman | a1e6d36 | 2008-11-20 01:26:25 +0000 | [diff] [blame] | 281 | |
| 282 | #ifndef NDEBUG |
| 283 | /// VerifySchedule - Verify that all SUnits were scheduled and that |
| 284 | /// their state is consistent. |
| 285 | /// |
| 286 | void ScheduleDAG::VerifySchedule(bool isBottomUp) { |
| 287 | bool AnyNotSched = false; |
| 288 | unsigned DeadNodes = 0; |
| 289 | unsigned Noops = 0; |
| 290 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 291 | if (!SUnits[i].isScheduled) { |
| 292 | if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { |
| 293 | ++DeadNodes; |
| 294 | continue; |
| 295 | } |
| 296 | if (!AnyNotSched) |
| 297 | cerr << "*** Scheduling failed! ***\n"; |
| 298 | SUnits[i].dump(this); |
| 299 | cerr << "has not been scheduled!\n"; |
| 300 | AnyNotSched = true; |
| 301 | } |
| 302 | if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) { |
| 303 | if (!AnyNotSched) |
| 304 | cerr << "*** Scheduling failed! ***\n"; |
| 305 | SUnits[i].dump(this); |
| 306 | cerr << "has an unexpected Cycle value!\n"; |
| 307 | AnyNotSched = true; |
| 308 | } |
| 309 | if (isBottomUp) { |
| 310 | if (SUnits[i].NumSuccsLeft != 0) { |
| 311 | if (!AnyNotSched) |
| 312 | cerr << "*** Scheduling failed! ***\n"; |
| 313 | SUnits[i].dump(this); |
| 314 | cerr << "has successors left!\n"; |
| 315 | AnyNotSched = true; |
| 316 | } |
| 317 | } else { |
| 318 | if (SUnits[i].NumPredsLeft != 0) { |
| 319 | if (!AnyNotSched) |
| 320 | cerr << "*** Scheduling failed! ***\n"; |
| 321 | SUnits[i].dump(this); |
| 322 | cerr << "has predecessors left!\n"; |
| 323 | AnyNotSched = true; |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | for (unsigned i = 0, e = Sequence.size(); i != e; ++i) |
| 328 | if (!Sequence[i]) |
| 329 | ++Noops; |
| 330 | assert(!AnyNotSched); |
| 331 | assert(Sequence.size() + DeadNodes - Noops == SUnits.size() && |
| 332 | "The number of nodes scheduled doesn't match the expected number!"); |
| 333 | } |
| 334 | #endif |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 335 | |
| 336 | /// InitDAGTopologicalSorting - create the initial topological |
| 337 | /// ordering from the DAG to be scheduled. |
| 338 | /// |
| 339 | /// The idea of the algorithm is taken from |
| 340 | /// "Online algorithms for managing the topological order of |
| 341 | /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly |
| 342 | /// This is the MNR algorithm, which was first introduced by |
| 343 | /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in |
| 344 | /// "Maintaining a topological order under edge insertions". |
| 345 | /// |
| 346 | /// Short description of the algorithm: |
| 347 | /// |
| 348 | /// Topological ordering, ord, of a DAG maps each node to a topological |
| 349 | /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). |
| 350 | /// |
| 351 | /// This means that if there is a path from the node X to the node Z, |
| 352 | /// then ord(X) < ord(Z). |
| 353 | /// |
| 354 | /// This property can be used to check for reachability of nodes: |
| 355 | /// if Z is reachable from X, then an insertion of the edge Z->X would |
| 356 | /// create a cycle. |
| 357 | /// |
| 358 | /// The algorithm first computes a topological ordering for the DAG by |
| 359 | /// initializing the Index2Node and Node2Index arrays and then tries to keep |
| 360 | /// the ordering up-to-date after edge insertions by reordering the DAG. |
| 361 | /// |
| 362 | /// On insertion of the edge X->Y, the algorithm first marks by calling DFS |
| 363 | /// the nodes reachable from Y, and then shifts them using Shift to lie |
| 364 | /// immediately after X in Index2Node. |
| 365 | void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { |
| 366 | unsigned DAGSize = SUnits.size(); |
| 367 | std::vector<SUnit*> WorkList; |
| 368 | WorkList.reserve(DAGSize); |
| 369 | |
| 370 | Index2Node.resize(DAGSize); |
| 371 | Node2Index.resize(DAGSize); |
| 372 | |
| 373 | // Initialize the data structures. |
| 374 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 375 | SUnit *SU = &SUnits[i]; |
| 376 | int NodeNum = SU->NodeNum; |
| 377 | unsigned Degree = SU->Succs.size(); |
| 378 | // Temporarily use the Node2Index array as scratch space for degree counts. |
| 379 | Node2Index[NodeNum] = Degree; |
| 380 | |
| 381 | // Is it a node without dependencies? |
| 382 | if (Degree == 0) { |
| 383 | assert(SU->Succs.empty() && "SUnit should have no successors"); |
| 384 | // Collect leaf nodes. |
| 385 | WorkList.push_back(SU); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | int Id = DAGSize; |
| 390 | while (!WorkList.empty()) { |
| 391 | SUnit *SU = WorkList.back(); |
| 392 | WorkList.pop_back(); |
| 393 | Allocate(SU->NodeNum, --Id); |
| 394 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 395 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 396 | SUnit *SU = I->getSUnit(); |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 397 | if (!--Node2Index[SU->NodeNum]) |
| 398 | // If all dependencies of the node are processed already, |
| 399 | // then the node can be computed now. |
| 400 | WorkList.push_back(SU); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | Visited.resize(DAGSize); |
| 405 | |
| 406 | #ifndef NDEBUG |
| 407 | // Check correctness of the ordering |
| 408 | for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| 409 | SUnit *SU = &SUnits[i]; |
| 410 | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 411 | I != E; ++I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 412 | assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 413 | "Wrong topological sorting"); |
| 414 | } |
| 415 | } |
| 416 | #endif |
| 417 | } |
| 418 | |
| 419 | /// AddPred - Updates the topological ordering to accomodate an edge |
| 420 | /// to be added from SUnit X to SUnit Y. |
| 421 | void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { |
| 422 | int UpperBound, LowerBound; |
| 423 | LowerBound = Node2Index[Y->NodeNum]; |
| 424 | UpperBound = Node2Index[X->NodeNum]; |
| 425 | bool HasLoop = false; |
| 426 | // Is Ord(X) < Ord(Y) ? |
| 427 | if (LowerBound < UpperBound) { |
| 428 | // Update the topological order. |
| 429 | Visited.reset(); |
| 430 | DFS(Y, UpperBound, HasLoop); |
| 431 | assert(!HasLoop && "Inserted edge creates a loop!"); |
| 432 | // Recompute topological indexes. |
| 433 | Shift(Visited, LowerBound, UpperBound); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | /// RemovePred - Updates the topological ordering to accomodate an |
| 438 | /// an edge to be removed from the specified node N from the predecessors |
| 439 | /// of the current node M. |
| 440 | void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { |
| 441 | // InitDAGTopologicalSorting(); |
| 442 | } |
| 443 | |
| 444 | /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark |
| 445 | /// all nodes affected by the edge insertion. These nodes will later get new |
| 446 | /// topological indexes by means of the Shift method. |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 447 | void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, |
| 448 | bool& HasLoop) { |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 449 | std::vector<const SUnit*> WorkList; |
| 450 | WorkList.reserve(SUnits.size()); |
| 451 | |
| 452 | WorkList.push_back(SU); |
| 453 | while (!WorkList.empty()) { |
| 454 | SU = WorkList.back(); |
| 455 | WorkList.pop_back(); |
| 456 | Visited.set(SU->NodeNum); |
| 457 | for (int I = SU->Succs.size()-1; I >= 0; --I) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 458 | int s = SU->Succs[I].getSUnit()->NodeNum; |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 459 | if (Node2Index[s] == UpperBound) { |
| 460 | HasLoop = true; |
| 461 | return; |
| 462 | } |
| 463 | // Visit successors if not already and in affected region. |
| 464 | if (!Visited.test(s) && Node2Index[s] < UpperBound) { |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 465 | WorkList.push_back(SU->Succs[I].getSUnit()); |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 466 | } |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | /// Shift - Renumber the nodes so that the topological ordering is |
| 472 | /// preserved. |
| 473 | void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 474 | int UpperBound) { |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 475 | std::vector<int> L; |
| 476 | int shift = 0; |
| 477 | int i; |
| 478 | |
| 479 | for (i = LowerBound; i <= UpperBound; ++i) { |
| 480 | // w is node at topological index i. |
| 481 | int w = Index2Node[i]; |
| 482 | if (Visited.test(w)) { |
| 483 | // Unmark. |
| 484 | Visited.reset(w); |
| 485 | L.push_back(w); |
| 486 | shift = shift + 1; |
| 487 | } else { |
| 488 | Allocate(w, i - shift); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | for (unsigned j = 0; j < L.size(); ++j) { |
| 493 | Allocate(L[j], i - shift); |
| 494 | i = i + 1; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | |
| 499 | /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will |
| 500 | /// create a cycle. |
| 501 | bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { |
| 502 | if (IsReachable(TargetSU, SU)) |
| 503 | return true; |
| 504 | for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 505 | I != E; ++I) |
Dan Gohman | 54e4c36 | 2008-12-09 22:54:47 +0000 | [diff] [blame] | 506 | if (I->isAssignedRegDep() && |
| 507 | IsReachable(TargetSU, I->getSUnit())) |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 508 | return true; |
| 509 | return false; |
| 510 | } |
| 511 | |
| 512 | /// IsReachable - Checks if SU is reachable from TargetSU. |
Dan Gohman | e3a49cd | 2008-12-09 16:37:48 +0000 | [diff] [blame] | 513 | bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, |
| 514 | const SUnit *TargetSU) { |
Dan Gohman | 21d9003 | 2008-11-25 00:52:40 +0000 | [diff] [blame] | 515 | // If insertion of the edge SU->TargetSU would create a cycle |
| 516 | // then there is a path from TargetSU to SU. |
| 517 | int UpperBound, LowerBound; |
| 518 | LowerBound = Node2Index[TargetSU->NodeNum]; |
| 519 | UpperBound = Node2Index[SU->NodeNum]; |
| 520 | bool HasLoop = false; |
| 521 | // Is Ord(TargetSU) < Ord(SU) ? |
| 522 | if (LowerBound < UpperBound) { |
| 523 | Visited.reset(); |
| 524 | // There may be a path from TargetSU to SU. Check for it. |
| 525 | DFS(TargetSU, UpperBound, HasLoop); |
| 526 | } |
| 527 | return HasLoop; |
| 528 | } |
| 529 | |
| 530 | /// Allocate - assign the topological index to the node n. |
| 531 | void ScheduleDAGTopologicalSort::Allocate(int n, int index) { |
| 532 | Node2Index[n] = index; |
| 533 | Index2Node[index] = n; |
| 534 | } |
| 535 | |
| 536 | ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort( |
| 537 | std::vector<SUnit> &sunits) |
| 538 | : SUnits(sunits) {} |