blob: 7ceab3a87bc319346c3bd52074575074d7285acc [file] [log] [blame]
Dan Gohman343f0c02008-11-19 23:18:57 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
Dan Gohman40362062008-11-20 01:41:34 +000021#include <climits>
Dan Gohman343f0c02008-11-19 23:18:57 +000022using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25 const TargetMachine &tm)
26 : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27 TII = TM.getInstrInfo();
28 MF = BB->getParent();
29 TRI = TM.getRegisterInfo();
30 TLI = TM.getTargetLowering();
31 ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// CalculateDepths - compute depths using algorithms for the longest
37/// paths in the DAG
38void ScheduleDAG::CalculateDepths() {
39 unsigned DAGSize = SUnits.size();
40 std::vector<SUnit*> WorkList;
41 WorkList.reserve(DAGSize);
42
43 // Initialize the data structures
44 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
45 SUnit *SU = &SUnits[i];
46 unsigned Degree = SU->Preds.size();
47 // Temporarily use the Depth field as scratch space for the degree count.
48 SU->Depth = Degree;
49
50 // Is it a node without dependencies?
51 if (Degree == 0) {
Dan Gohmane3a49cd2008-12-09 16:37:48 +000052 assert(SU->Preds.empty() && "SUnit should have no predecessors");
53 // Collect leaf nodes
54 WorkList.push_back(SU);
Dan Gohman343f0c02008-11-19 23:18:57 +000055 }
56 }
57
58 // Process nodes in the topological order
59 while (!WorkList.empty()) {
60 SUnit *SU = WorkList.back();
61 WorkList.pop_back();
62 unsigned SUDepth = 0;
63
64 // Use dynamic programming:
65 // When current node is being processed, all of its dependencies
66 // are already processed.
67 // So, just iterate over all predecessors and take the longest path
68 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
69 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +000070 unsigned PredDepth = I->getSUnit()->Depth;
Dan Gohman343f0c02008-11-19 23:18:57 +000071 if (PredDepth+1 > SUDepth) {
Dan Gohmane3a49cd2008-12-09 16:37:48 +000072 SUDepth = PredDepth + 1;
Dan Gohman343f0c02008-11-19 23:18:57 +000073 }
74 }
75
76 SU->Depth = SUDepth;
77
78 // Update degrees of all nodes depending on current SUnit
79 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
80 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +000081 SUnit *SU = I->getSUnit();
Dan Gohman343f0c02008-11-19 23:18:57 +000082 if (!--SU->Depth)
83 // If all dependencies of the node are processed already,
84 // then the longest path for the node can be computed now
85 WorkList.push_back(SU);
86 }
87 }
88}
89
90/// CalculateHeights - compute heights using algorithms for the longest
91/// paths in the DAG
92void ScheduleDAG::CalculateHeights() {
93 unsigned DAGSize = SUnits.size();
94 std::vector<SUnit*> WorkList;
95 WorkList.reserve(DAGSize);
96
97 // Initialize the data structures
98 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
99 SUnit *SU = &SUnits[i];
100 unsigned Degree = SU->Succs.size();
101 // Temporarily use the Height field as scratch space for the degree count.
102 SU->Height = Degree;
103
104 // Is it a node without dependencies?
105 if (Degree == 0) {
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000106 assert(SU->Succs.empty() && "Something wrong");
107 assert(WorkList.empty() && "Should be empty");
108 // Collect leaf nodes
109 WorkList.push_back(SU);
Dan Gohman343f0c02008-11-19 23:18:57 +0000110 }
111 }
112
113 // Process nodes in the topological order
114 while (!WorkList.empty()) {
115 SUnit *SU = WorkList.back();
116 WorkList.pop_back();
117 unsigned SUHeight = 0;
118
119 // Use dynamic programming:
120 // When current node is being processed, all of its dependencies
121 // are already processed.
122 // So, just iterate over all successors and take the longest path
123 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
124 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000125 unsigned SuccHeight = I->getSUnit()->Height;
Dan Gohman343f0c02008-11-19 23:18:57 +0000126 if (SuccHeight+1 > SUHeight) {
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000127 SUHeight = SuccHeight + 1;
Dan Gohman343f0c02008-11-19 23:18:57 +0000128 }
129 }
130
131 SU->Height = SUHeight;
132
133 // Update degrees of all nodes depending on current SUnit
134 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
135 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000136 SUnit *SU = I->getSUnit();
Dan Gohman343f0c02008-11-19 23:18:57 +0000137 if (!--SU->Height)
138 // If all dependencies of the node are processed already,
139 // then the longest path for the node can be computed now
140 WorkList.push_back(SU);
141 }
142 }
143}
144
145/// dump - dump the schedule.
146void ScheduleDAG::dumpSchedule() const {
147 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
148 if (SUnit *SU = Sequence[i])
149 SU->dump(this);
150 else
151 cerr << "**** NOOP ****\n";
152 }
153}
154
155
156/// Run - perform scheduling.
157///
158void ScheduleDAG::Run() {
159 Schedule();
160
161 DOUT << "*** Final schedule ***\n";
162 DEBUG(dumpSchedule());
163 DOUT << "\n";
164}
165
Dan Gohmanc6b680e2008-12-16 01:05:52 +0000166/// addPred - This adds the specified edge as a pred of the current node if
167/// not already. It also adds the current node as a successor of the
168/// specified node.
169void SUnit::addPred(const SDep &D) {
170 // If this node already has this depenence, don't add a redundant one.
171 for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
172 if (Preds[i] == D)
173 return;
174 // Add a pred to this SUnit.
175 Preds.push_back(D);
176 // Now add a corresponding succ to N.
177 SDep P = D;
178 P.setSUnit(this);
179 SUnit *N = D.getSUnit();
180 N->Succs.push_back(P);
181 // Update the bookkeeping.
182 if (D.getKind() == SDep::Data) {
183 ++NumPreds;
184 ++N->NumSuccs;
185 }
186 if (!N->isScheduled)
187 ++NumPredsLeft;
188 if (!isScheduled)
189 ++N->NumSuccsLeft;
190}
191
192/// removePred - This removes the specified edge as a pred of the current
193/// node if it exists. It also removes the current node as a successor of
194/// the specified node.
195void SUnit::removePred(const SDep &D) {
196 // Find the matching predecessor.
197 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
198 I != E; ++I)
199 if (*I == D) {
200 bool FoundSucc = false;
201 // Find the corresponding successor in N.
202 SDep P = D;
203 P.setSUnit(this);
204 SUnit *N = D.getSUnit();
205 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
206 EE = N->Succs.end(); II != EE; ++II)
207 if (*II == P) {
208 FoundSucc = true;
209 N->Succs.erase(II);
210 break;
211 }
212 assert(FoundSucc && "Mismatching preds / succs lists!");
213 Preds.erase(I);
214 // Update the bookkeeping;
215 if (D.getKind() == SDep::Data) {
216 --NumPreds;
217 --N->NumSuccs;
218 }
219 if (!N->isScheduled)
220 --NumPredsLeft;
221 if (!isScheduled)
222 --N->NumSuccsLeft;
223 return;
224 }
225}
226
Dan Gohman343f0c02008-11-19 23:18:57 +0000227/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
228/// a group of nodes flagged together.
229void SUnit::dump(const ScheduleDAG *G) const {
230 cerr << "SU(" << NodeNum << "): ";
231 G->dumpNode(this);
232}
233
234void SUnit::dumpAll(const ScheduleDAG *G) const {
235 dump(G);
236
237 cerr << " # preds left : " << NumPredsLeft << "\n";
238 cerr << " # succs left : " << NumSuccsLeft << "\n";
239 cerr << " Latency : " << Latency << "\n";
240 cerr << " Depth : " << Depth << "\n";
241 cerr << " Height : " << Height << "\n";
242
243 if (Preds.size() != 0) {
244 cerr << " Predecessors:\n";
245 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
246 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000247 cerr << " ";
248 switch (I->getKind()) {
249 case SDep::Data: cerr << "val "; break;
250 case SDep::Anti: cerr << "anti"; break;
251 case SDep::Output: cerr << "out "; break;
252 case SDep::Order: cerr << "ch "; break;
253 }
254 cerr << "#";
255 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
256 if (I->isArtificial())
Dan Gohman343f0c02008-11-19 23:18:57 +0000257 cerr << " *";
258 cerr << "\n";
259 }
260 }
261 if (Succs.size() != 0) {
262 cerr << " Successors:\n";
263 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
264 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000265 cerr << " ";
266 switch (I->getKind()) {
267 case SDep::Data: cerr << "val "; break;
268 case SDep::Anti: cerr << "anti"; break;
269 case SDep::Output: cerr << "out "; break;
270 case SDep::Order: cerr << "ch "; break;
271 }
272 cerr << "#";
273 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
274 if (I->isArtificial())
Dan Gohman343f0c02008-11-19 23:18:57 +0000275 cerr << " *";
276 cerr << "\n";
277 }
278 }
279 cerr << "\n";
280}
Dan Gohmana1e6d362008-11-20 01:26:25 +0000281
282#ifndef NDEBUG
283/// VerifySchedule - Verify that all SUnits were scheduled and that
284/// their state is consistent.
285///
286void ScheduleDAG::VerifySchedule(bool isBottomUp) {
287 bool AnyNotSched = false;
288 unsigned DeadNodes = 0;
289 unsigned Noops = 0;
290 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
291 if (!SUnits[i].isScheduled) {
292 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
293 ++DeadNodes;
294 continue;
295 }
296 if (!AnyNotSched)
297 cerr << "*** Scheduling failed! ***\n";
298 SUnits[i].dump(this);
299 cerr << "has not been scheduled!\n";
300 AnyNotSched = true;
301 }
302 if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) {
303 if (!AnyNotSched)
304 cerr << "*** Scheduling failed! ***\n";
305 SUnits[i].dump(this);
306 cerr << "has an unexpected Cycle value!\n";
307 AnyNotSched = true;
308 }
309 if (isBottomUp) {
310 if (SUnits[i].NumSuccsLeft != 0) {
311 if (!AnyNotSched)
312 cerr << "*** Scheduling failed! ***\n";
313 SUnits[i].dump(this);
314 cerr << "has successors left!\n";
315 AnyNotSched = true;
316 }
317 } else {
318 if (SUnits[i].NumPredsLeft != 0) {
319 if (!AnyNotSched)
320 cerr << "*** Scheduling failed! ***\n";
321 SUnits[i].dump(this);
322 cerr << "has predecessors left!\n";
323 AnyNotSched = true;
324 }
325 }
326 }
327 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
328 if (!Sequence[i])
329 ++Noops;
330 assert(!AnyNotSched);
331 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
332 "The number of nodes scheduled doesn't match the expected number!");
333}
334#endif
Dan Gohman21d90032008-11-25 00:52:40 +0000335
336/// InitDAGTopologicalSorting - create the initial topological
337/// ordering from the DAG to be scheduled.
338///
339/// The idea of the algorithm is taken from
340/// "Online algorithms for managing the topological order of
341/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
342/// This is the MNR algorithm, which was first introduced by
343/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
344/// "Maintaining a topological order under edge insertions".
345///
346/// Short description of the algorithm:
347///
348/// Topological ordering, ord, of a DAG maps each node to a topological
349/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
350///
351/// This means that if there is a path from the node X to the node Z,
352/// then ord(X) < ord(Z).
353///
354/// This property can be used to check for reachability of nodes:
355/// if Z is reachable from X, then an insertion of the edge Z->X would
356/// create a cycle.
357///
358/// The algorithm first computes a topological ordering for the DAG by
359/// initializing the Index2Node and Node2Index arrays and then tries to keep
360/// the ordering up-to-date after edge insertions by reordering the DAG.
361///
362/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
363/// the nodes reachable from Y, and then shifts them using Shift to lie
364/// immediately after X in Index2Node.
365void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
366 unsigned DAGSize = SUnits.size();
367 std::vector<SUnit*> WorkList;
368 WorkList.reserve(DAGSize);
369
370 Index2Node.resize(DAGSize);
371 Node2Index.resize(DAGSize);
372
373 // Initialize the data structures.
374 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
375 SUnit *SU = &SUnits[i];
376 int NodeNum = SU->NodeNum;
377 unsigned Degree = SU->Succs.size();
378 // Temporarily use the Node2Index array as scratch space for degree counts.
379 Node2Index[NodeNum] = Degree;
380
381 // Is it a node without dependencies?
382 if (Degree == 0) {
383 assert(SU->Succs.empty() && "SUnit should have no successors");
384 // Collect leaf nodes.
385 WorkList.push_back(SU);
386 }
387 }
388
389 int Id = DAGSize;
390 while (!WorkList.empty()) {
391 SUnit *SU = WorkList.back();
392 WorkList.pop_back();
393 Allocate(SU->NodeNum, --Id);
394 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
395 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000396 SUnit *SU = I->getSUnit();
Dan Gohman21d90032008-11-25 00:52:40 +0000397 if (!--Node2Index[SU->NodeNum])
398 // If all dependencies of the node are processed already,
399 // then the node can be computed now.
400 WorkList.push_back(SU);
401 }
402 }
403
404 Visited.resize(DAGSize);
405
406#ifndef NDEBUG
407 // Check correctness of the ordering
408 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
409 SUnit *SU = &SUnits[i];
410 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
411 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000412 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
Dan Gohman21d90032008-11-25 00:52:40 +0000413 "Wrong topological sorting");
414 }
415 }
416#endif
417}
418
419/// AddPred - Updates the topological ordering to accomodate an edge
420/// to be added from SUnit X to SUnit Y.
421void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
422 int UpperBound, LowerBound;
423 LowerBound = Node2Index[Y->NodeNum];
424 UpperBound = Node2Index[X->NodeNum];
425 bool HasLoop = false;
426 // Is Ord(X) < Ord(Y) ?
427 if (LowerBound < UpperBound) {
428 // Update the topological order.
429 Visited.reset();
430 DFS(Y, UpperBound, HasLoop);
431 assert(!HasLoop && "Inserted edge creates a loop!");
432 // Recompute topological indexes.
433 Shift(Visited, LowerBound, UpperBound);
434 }
435}
436
437/// RemovePred - Updates the topological ordering to accomodate an
438/// an edge to be removed from the specified node N from the predecessors
439/// of the current node M.
440void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
441 // InitDAGTopologicalSorting();
442}
443
444/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
445/// all nodes affected by the edge insertion. These nodes will later get new
446/// topological indexes by means of the Shift method.
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000447void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
448 bool& HasLoop) {
Dan Gohman21d90032008-11-25 00:52:40 +0000449 std::vector<const SUnit*> WorkList;
450 WorkList.reserve(SUnits.size());
451
452 WorkList.push_back(SU);
453 while (!WorkList.empty()) {
454 SU = WorkList.back();
455 WorkList.pop_back();
456 Visited.set(SU->NodeNum);
457 for (int I = SU->Succs.size()-1; I >= 0; --I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000458 int s = SU->Succs[I].getSUnit()->NodeNum;
Dan Gohman21d90032008-11-25 00:52:40 +0000459 if (Node2Index[s] == UpperBound) {
460 HasLoop = true;
461 return;
462 }
463 // Visit successors if not already and in affected region.
464 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000465 WorkList.push_back(SU->Succs[I].getSUnit());
Dan Gohman21d90032008-11-25 00:52:40 +0000466 }
467 }
468 }
469}
470
471/// Shift - Renumber the nodes so that the topological ordering is
472/// preserved.
473void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000474 int UpperBound) {
Dan Gohman21d90032008-11-25 00:52:40 +0000475 std::vector<int> L;
476 int shift = 0;
477 int i;
478
479 for (i = LowerBound; i <= UpperBound; ++i) {
480 // w is node at topological index i.
481 int w = Index2Node[i];
482 if (Visited.test(w)) {
483 // Unmark.
484 Visited.reset(w);
485 L.push_back(w);
486 shift = shift + 1;
487 } else {
488 Allocate(w, i - shift);
489 }
490 }
491
492 for (unsigned j = 0; j < L.size(); ++j) {
493 Allocate(L[j], i - shift);
494 i = i + 1;
495 }
496}
497
498
499/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
500/// create a cycle.
501bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
502 if (IsReachable(TargetSU, SU))
503 return true;
504 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
505 I != E; ++I)
Dan Gohman54e4c362008-12-09 22:54:47 +0000506 if (I->isAssignedRegDep() &&
507 IsReachable(TargetSU, I->getSUnit()))
Dan Gohman21d90032008-11-25 00:52:40 +0000508 return true;
509 return false;
510}
511
512/// IsReachable - Checks if SU is reachable from TargetSU.
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000513bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
514 const SUnit *TargetSU) {
Dan Gohman21d90032008-11-25 00:52:40 +0000515 // If insertion of the edge SU->TargetSU would create a cycle
516 // then there is a path from TargetSU to SU.
517 int UpperBound, LowerBound;
518 LowerBound = Node2Index[TargetSU->NodeNum];
519 UpperBound = Node2Index[SU->NodeNum];
520 bool HasLoop = false;
521 // Is Ord(TargetSU) < Ord(SU) ?
522 if (LowerBound < UpperBound) {
523 Visited.reset();
524 // There may be a path from TargetSU to SU. Check for it.
525 DFS(TargetSU, UpperBound, HasLoop);
526 }
527 return HasLoop;
528}
529
530/// Allocate - assign the topological index to the node n.
531void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
532 Node2Index[n] = index;
533 Index2Node[index] = n;
534}
535
536ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
537 std::vector<SUnit> &sunits)
538 : SUnits(sunits) {}