blob: accabb024ddd4536f9eb51d222002b500c29e19e [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000034#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000035#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000036#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000037#include "llvm/ADT/PostOrderIterator.h"
38#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000039#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000040#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000041using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000042
Chris Lattner0e5f4992006-12-19 21:40:18 +000043STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000047
Chris Lattner0e5f4992006-12-19 21:40:18 +000048namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000049 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000057}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000058
Devang Patel50cacb22008-11-21 21:00:20 +000059#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner9f7b7082009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000063 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000064 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000067 dbgs() << "[ ";
68 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
69 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000070 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000071}
Devang Patel59500c82008-11-21 20:00:59 +000072#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000073
Dan Gohman844731a2008-05-13 00:00:25 +000074namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +000076 DenseMap<BasicBlock*, unsigned> RankMap;
77 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000078 SmallVector<WeakVH, 8> DeadInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000079 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000080 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000081 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +000082 Reassociate() : FunctionPass(ID) {
83 initializeReassociatePass(*PassRegistry::getPassRegistry());
84 }
Devang Patel794fd752007-05-01 21:15:47 +000085
Chris Lattner7e708292002-06-25 16:13:24 +000086 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000087
88 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000089 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000090 }
91 private:
Chris Lattner7e708292002-06-25 16:13:24 +000092 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000093 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000094 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000095 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000096 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000097 Value *OptimizeExpression(BinaryOperator *I,
98 SmallVectorImpl<ValueEntry> &Ops);
99 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
100 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000101 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000102 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000103 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000104
105 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000106 };
107}
108
Dan Gohman844731a2008-05-13 00:00:25 +0000109char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000110INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000111 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000112
Brian Gaeked0fde302003-11-11 22:41:34 +0000113// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000114FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000115
Chris Lattnere5022fe2006-03-04 09:31:13 +0000116void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000117 Instruction *Op = dyn_cast<Instruction>(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000118 if (!Op || !isa<BinaryOperator>(Op))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000119 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000120
Reid Spencere4d87aa2006-12-23 06:05:41 +0000121 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000122
123 ValueRankMap.erase(Op);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000124 DeadInsts.push_back(Op);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000125 RemoveDeadBinaryOp(LHS);
126 RemoveDeadBinaryOp(RHS);
127}
128
Chris Lattner9c723192005-05-08 20:57:04 +0000129
130static bool isUnmovableInstruction(Instruction *I) {
131 if (I->getOpcode() == Instruction::PHI ||
132 I->getOpcode() == Instruction::Alloca ||
133 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000134 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000135 (I->getOpcode() == Instruction::Call &&
136 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000137 I->getOpcode() == Instruction::UDiv ||
138 I->getOpcode() == Instruction::SDiv ||
139 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000140 I->getOpcode() == Instruction::URem ||
141 I->getOpcode() == Instruction::SRem ||
142 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000143 return true;
144 return false;
145}
146
Chris Lattner7e708292002-06-25 16:13:24 +0000147void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000148 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000149
150 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000151 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000152 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000153
Chris Lattner7e708292002-06-25 16:13:24 +0000154 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000155 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000156 E = RPOT.end(); I != E; ++I) {
157 BasicBlock *BB = *I;
158 unsigned BBRank = RankMap[BB] = ++i << 16;
159
160 // Walk the basic block, adding precomputed ranks for any instructions that
161 // we cannot move. This ensures that the ranks for these instructions are
162 // all different in the block.
163 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
164 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000165 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000166 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000167}
168
169unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000170 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000171 if (I == 0) {
172 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
173 return 0; // Otherwise it's a global or constant, rank 0.
174 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000175
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000176 if (unsigned Rank = ValueRankMap[I])
177 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000178
Chris Lattner08b43922005-05-07 04:08:02 +0000179 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
180 // we can reassociate expressions for code motion! Since we do not recurse
181 // for PHI nodes, we cannot have infinite recursion here, because there
182 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000183 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
184 for (unsigned i = 0, e = I->getNumOperands();
185 i != e && Rank != MaxRank; ++i)
186 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000187
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000188 // If this is a not or neg instruction, do not count it for rank. This
189 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000190 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000191 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000192 ++Rank;
193
David Greenea1fa76c2010-01-05 01:27:24 +0000194 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000195 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000196
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000197 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000198}
199
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000200/// isReassociableOp - Return true if V is an instruction of the specified
201/// opcode and if it only has one use.
202static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000203 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000204 cast<Instruction>(V)->getOpcode() == Opcode)
205 return cast<BinaryOperator>(V);
206 return 0;
207}
Chris Lattner4fd56002002-05-08 22:19:27 +0000208
Chris Lattnerf33151a2005-05-08 21:28:52 +0000209/// LowerNegateToMultiply - Replace 0-X with X*-1.
210///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000211static Instruction *LowerNegateToMultiply(Instruction *Neg,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000212 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000213 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000214
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000215 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000216 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000217 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000218 Neg->replaceAllUsesWith(Res);
219 Neg->eraseFromParent();
220 return Res;
221}
222
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000223// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
224// Note that if D is also part of the expression tree that we recurse to
225// linearize it as well. Besides that case, this does not recurse into A,B, or
226// C.
227void Reassociate::LinearizeExpr(BinaryOperator *I) {
228 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
229 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000230 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000231 isReassociableOp(RHS, I->getOpcode()) &&
232 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000233
David Greenea1fa76c2010-01-05 01:27:24 +0000234 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000235
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000236 // Move the RHS instruction to live immediately before I, avoiding breaking
237 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000238 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000239
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000240 // Move operands around to do the linearization.
241 I->setOperand(1, RHS->getOperand(0));
242 RHS->setOperand(0, LHS);
243 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000244
Dan Gohman46985a12011-02-02 02:02:34 +0000245 // Conservatively clear all the optional flags, which may not hold
246 // after the reassociation.
247 I->clearSubclassOptionalData();
248 LHS->clearSubclassOptionalData();
249 RHS->clearSubclassOptionalData();
250
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000251 ++NumLinear;
252 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000253 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000254
255 // If D is part of this expression tree, tail recurse.
256 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
257 LinearizeExpr(I);
258}
259
260
261/// LinearizeExprTree - Given an associative binary expression tree, traverse
262/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000263/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000264/// rank of the non-tree operands.
265///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000266/// NOTE: These intentionally destroys the expression tree operands (turning
267/// them into undef values) to reduce #uses of the values. This means that the
268/// caller MUST use something like RewriteExprTree to put the values back in.
269///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000270void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000271 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000272 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
273 unsigned Opcode = I->getOpcode();
274
275 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
276 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
277 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
278
Chris Lattnerf33151a2005-05-08 21:28:52 +0000279 // If this is a multiply expression tree and it contains internal negations,
280 // transform them into multiplies by -1 so they can be reassociated.
281 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000282 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000283 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000284 LHSBO = isReassociableOp(LHS, Opcode);
285 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000286 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000287 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000288 RHSBO = isReassociableOp(RHS, Opcode);
289 }
290 }
291
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000292 if (!LHSBO) {
293 if (!RHSBO) {
294 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
295 // such, just remember these operands and their rank.
296 Ops.push_back(ValueEntry(getRank(LHS), LHS));
297 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000298
299 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000300 I->setOperand(0, UndefValue::get(I->getType()));
301 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000302 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000303 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000304
305 // Turn X+(Y+Z) -> (Y+Z)+X
306 std::swap(LHSBO, RHSBO);
307 std::swap(LHS, RHS);
308 bool Success = !I->swapOperands();
309 assert(Success && "swapOperands failed");
310 Success = false;
311 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000312 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000313 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000314 // part of the expression tree.
315 LinearizeExpr(I);
316 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
317 RHS = I->getOperand(1);
318 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000319 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000320
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000321 // Okay, now we know that the LHS is a nested expression and that the RHS is
322 // not. Perform reassociation.
323 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000324
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000325 // Move LHS right before I to make sure that the tree expression dominates all
326 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000327 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000328
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000329 // Linearize the expression tree on the LHS.
330 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000331
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000332 // Remember the RHS operand and its rank.
333 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000334
335 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000336 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000337}
338
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000339// RewriteExprTree - Now that the operands for this expression tree are
340// linearized and optimized, emit them in-order. This function is written to be
341// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000342void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000343 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000344 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000345 if (i+2 == Ops.size()) {
346 if (I->getOperand(0) != Ops[i].Op ||
347 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000348 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000349 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000350 I->setOperand(0, Ops[i].Op);
351 I->setOperand(1, Ops[i+1].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000352
Chris Lattnerde1d8a52011-02-17 01:29:24 +0000353 // Clear all the optional flags, which may not hold after the
354 // reassociation if the expression involved more than just this operation.
355 if (Ops.size() != 2)
356 I->clearSubclassOptionalData();
Dan Gohman46985a12011-02-02 02:02:34 +0000357
David Greenea1fa76c2010-01-05 01:27:24 +0000358 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000359 MadeChange = true;
360 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000361
362 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
363 // delete the extra, now dead, nodes.
364 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000365 }
366 return;
367 }
368 assert(i+2 < Ops.size() && "Ops index out of range!");
369
370 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000371 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000372 I->setOperand(1, Ops[i].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000373
374 // Conservatively clear all the optional flags, which may not hold
375 // after the reassociation.
376 I->clearSubclassOptionalData();
377
David Greenea1fa76c2010-01-05 01:27:24 +0000378 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000379 MadeChange = true;
380 ++NumChanged;
381 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000382
383 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
384 assert(LHS->getOpcode() == I->getOpcode() &&
385 "Improper expression tree!");
386
387 // Compactify the tree instructions together with each other to guarantee
388 // that the expression tree is dominated by all of Ops.
389 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000390 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000391}
392
393
Chris Lattner4fd56002002-05-08 22:19:27 +0000394
Chris Lattnera36e6c82002-05-16 04:37:07 +0000395// NegateValue - Insert instructions before the instruction pointed to by BI,
396// that computes the negative version of the value specified. The negative
397// version of the value is returned, and BI is left pointing at the instruction
398// that should be processed next by the reassociation pass.
399//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000400static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000401 if (Constant *C = dyn_cast<Constant>(V))
402 return ConstantExpr::getNeg(C);
403
Chris Lattnera36e6c82002-05-16 04:37:07 +0000404 // We are trying to expose opportunity for reassociation. One of the things
405 // that we want to do to achieve this is to push a negation as deep into an
406 // expression chain as possible, to expose the add instructions. In practice,
407 // this means that we turn this:
408 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
409 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
410 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000411 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000412 //
413 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000414 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000415 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000416 I->setOperand(0, NegateValue(I->getOperand(0), BI));
417 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000418
Chris Lattner2cd85da2005-09-02 06:38:04 +0000419 // We must move the add instruction here, because the neg instructions do
420 // not dominate the old add instruction in general. By moving it, we are
421 // assured that the neg instructions we just inserted dominate the
422 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000423 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000424 I->moveBefore(BI);
425 I->setName(I->getName()+".neg");
426 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000427 }
Chris Lattner35239932009-12-31 20:34:32 +0000428
429 // Okay, we need to materialize a negated version of V with an instruction.
430 // Scan the use lists of V to see if we have one already.
431 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000432 User *U = *UI;
433 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000434
435 // We found one! Now we have to make sure that the definition dominates
436 // this use. We do this by moving it to the entry block (if it is a
437 // non-instruction value) or right after the definition. These negates will
438 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000439 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000440
441 // Verify that the negate is in this function, V might be a constant expr.
442 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
443 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000444
445 BasicBlock::iterator InsertPt;
446 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
447 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
448 InsertPt = II->getNormalDest()->begin();
449 } else {
450 InsertPt = InstInput;
451 ++InsertPt;
452 }
453 while (isa<PHINode>(InsertPt)) ++InsertPt;
454 } else {
455 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
456 }
457 TheNeg->moveBefore(InsertPt);
458 return TheNeg;
459 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000460
461 // Insert a 'neg' instruction that subtracts the value from zero to get the
462 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000463 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000464}
465
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000466/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
467/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000468static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000469 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000470 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000471 return false;
472
473 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000474 // subtract or if this is only used by one.
475 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
476 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000477 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000478 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000479 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000480 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000481 if (Sub->hasOneUse() &&
482 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
483 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000484 return true;
485
486 return false;
487}
488
Chris Lattner08b43922005-05-07 04:08:02 +0000489/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
490/// only used by an add, transform this into (X+(0-Y)) to promote better
491/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000492static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000493 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000494 // Convert a subtract into an add and a neg instruction. This allows sub
495 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000496 //
Chris Lattner90461932010-01-01 00:04:26 +0000497 // Calculate the negative value of Operand 1 of the sub instruction,
498 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000499 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000500 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000501 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000502 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000503 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000504
505 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000506 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000507 Sub->replaceAllUsesWith(New);
508 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000509
David Greenea1fa76c2010-01-05 01:27:24 +0000510 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000511 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000512}
513
Chris Lattner0975ed52005-05-07 04:24:13 +0000514/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
515/// by one, change this into a multiply by a constant to assist with further
516/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000517static Instruction *ConvertShiftToMul(Instruction *Shl,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000518 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000519 // If an operand of this shift is a reassociable multiply, or if the shift
520 // is used by a reassociable multiply or add, turn into a multiply.
521 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
522 (Shl->hasOneUse() &&
523 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
524 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000525 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000526 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000527
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000528 Instruction *Mul =
529 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000530 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000531 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000532 Shl->replaceAllUsesWith(Mul);
533 Shl->eraseFromParent();
534 return Mul;
535 }
536 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000537}
538
Chris Lattner109d34d2005-05-08 18:59:37 +0000539// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000540// see if X exists. If X does not exist, return i. This is useful when
541// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000542static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000543 Value *X) {
544 unsigned XRank = Ops[i].Rank;
545 unsigned e = Ops.size();
546 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
547 if (Ops[j].Op == X)
548 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000549 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000550 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
551 if (Ops[j].Op == X)
552 return j;
553 return i;
554}
555
Chris Lattnere5022fe2006-03-04 09:31:13 +0000556/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
557/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000558static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000559 if (Ops.size() == 1) return Ops.back();
560
561 Value *V1 = Ops.back();
562 Ops.pop_back();
563 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000564 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000565}
566
567/// RemoveFactorFromExpression - If V is an expression tree that is a
568/// multiplication sequence, and if this sequence contains a multiply by Factor,
569/// remove Factor from the tree and return the new tree.
570Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
571 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
572 if (!BO) return 0;
573
Chris Lattner9f7b7082009-12-31 18:40:32 +0000574 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000575 LinearizeExprTree(BO, Factors);
576
577 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000578 bool NeedsNegate = false;
579 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000580 if (Factors[i].Op == Factor) {
581 FoundFactor = true;
582 Factors.erase(Factors.begin()+i);
583 break;
584 }
Chris Lattner9506c932010-01-01 01:13:15 +0000585
586 // If this is a negative version of this factor, remove it.
587 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
588 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
589 if (FC1->getValue() == -FC2->getValue()) {
590 FoundFactor = NeedsNegate = true;
591 Factors.erase(Factors.begin()+i);
592 break;
593 }
594 }
595
Chris Lattnere9efecb2006-03-14 16:04:29 +0000596 if (!FoundFactor) {
597 // Make sure to restore the operands to the expression tree.
598 RewriteExprTree(BO, Factors);
599 return 0;
600 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000601
Chris Lattner9506c932010-01-01 01:13:15 +0000602 BasicBlock::iterator InsertPt = BO; ++InsertPt;
603
Chris Lattner1e7558b2009-12-31 19:34:45 +0000604 // If this was just a single multiply, remove the multiply and return the only
605 // remaining operand.
606 if (Factors.size() == 1) {
607 ValueRankMap.erase(BO);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000608 DeadInsts.push_back(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000609 V = Factors[0].Op;
610 } else {
611 RewriteExprTree(BO, Factors);
612 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000613 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000614
Chris Lattner9506c932010-01-01 01:13:15 +0000615 if (NeedsNegate)
616 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
617
618 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000619}
620
Chris Lattnere9efecb2006-03-14 16:04:29 +0000621/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
622/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000623///
624/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000625static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000626 SmallVectorImpl<Value*> &Factors,
627 const SmallVectorImpl<ValueEntry> &Ops,
628 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000629 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000630 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000631 !(BO = dyn_cast<BinaryOperator>(V)) ||
632 BO->getOpcode() != Instruction::Mul) {
633 Factors.push_back(V);
634 return;
635 }
636
Chris Lattner893075f2010-03-05 07:18:54 +0000637 // If this value has a single use because it is another input to the add
638 // tree we're reassociating and we dropped its use, it actually has two
639 // uses and we can't factor it.
640 if (!IsRoot) {
641 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
642 if (Ops[i].Op == V) {
643 Factors.push_back(V);
644 return;
645 }
646 }
647
648
Chris Lattnere9efecb2006-03-14 16:04:29 +0000649 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000650 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
651 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000652}
653
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000654/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
655/// instruction. This optimizes based on identities. If it can be reduced to
656/// a single Value, it is returned, otherwise the Ops list is mutated as
657/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000658static Value *OptimizeAndOrXor(unsigned Opcode,
659 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000660 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
661 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663 // First, check for X and ~X in the operand list.
664 assert(i < Ops.size());
665 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
666 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
667 unsigned FoundX = FindInOperandList(Ops, i, X);
668 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000669 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000670 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000671
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000672 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000673 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000674 }
675 }
676
677 // Next, check for duplicate pairs of values, which we assume are next to
678 // each other, due to our sorting criteria.
679 assert(i < Ops.size());
680 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
681 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000682 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000683 Ops.erase(Ops.begin()+i);
684 --i; --e;
685 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000686 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000687 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000688
689 // Drop pairs of values for Xor.
690 assert(Opcode == Instruction::Xor);
691 if (e == 2)
692 return Constant::getNullValue(Ops[0].Op->getType());
693
Chris Lattner90461932010-01-01 00:04:26 +0000694 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000695 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
696 i -= 1; e -= 2;
697 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000698 }
699 }
700 return 0;
701}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000702
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000703/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
704/// optimizes based on identities. If it can be reduced to a single Value, it
705/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000706Value *Reassociate::OptimizeAdd(Instruction *I,
707 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000708 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000709 // can simplify the expression. X+-X == 0. While we're at it, scan for any
710 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000711 //
712 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
713 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000714 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000715 Value *TheOp = Ops[i].Op;
716 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000717 // instances of the operand together. Due to our sorting criteria, we know
718 // that these need to be next to each other in the vector.
719 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
720 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000721 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000722 do {
723 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000724 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000725 } while (i != Ops.size() && Ops[i].Op == TheOp);
726
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000727 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000728 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000729
730 // Insert a new multiply.
731 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
732 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
733
734 // Now that we have inserted a multiply, optimize it. This allows us to
735 // handle cases that require multiple factoring steps, such as this:
736 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
737 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
738
739 // If every add operand was a duplicate, return the multiply.
740 if (Ops.empty())
741 return Mul;
742
743 // Otherwise, we had some input that didn't have the dupe, such as
744 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
745 // things being added by this operation.
746 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000747
748 --i;
749 e = Ops.size();
750 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000751 }
752
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000753 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000754 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000755 continue;
756
Chris Lattner69e98e22009-12-31 19:24:52 +0000757 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000758 unsigned FoundX = FindInOperandList(Ops, i, X);
759 if (FoundX == i)
760 continue;
761
762 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000763 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000764 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000765
766 Ops.erase(Ops.begin()+i);
767 if (i < FoundX)
768 --FoundX;
769 else
770 --i; // Need to back up an extra one.
771 Ops.erase(Ops.begin()+FoundX);
772 ++NumAnnihil;
773 --i; // Revisit element.
774 e -= 2; // Removed two elements.
775 }
Chris Lattner94285e62009-12-31 18:17:13 +0000776
777 // Scan the operand list, checking to see if there are any common factors
778 // between operands. Consider something like A*A+A*B*C+D. We would like to
779 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
780 // To efficiently find this, we count the number of times a factor occurs
781 // for any ADD operands that are MULs.
782 DenseMap<Value*, unsigned> FactorOccurrences;
783
784 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
785 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000786 unsigned MaxOcc = 0;
787 Value *MaxOccVal = 0;
788 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
789 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
790 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
791 continue;
792
Chris Lattner94285e62009-12-31 18:17:13 +0000793 // Compute all of the factors of this added value.
794 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000795 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000796 assert(Factors.size() > 1 && "Bad linearize!");
797
798 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000799 SmallPtrSet<Value*, 8> Duplicates;
800 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
801 Value *Factor = Factors[i];
802 if (!Duplicates.insert(Factor)) continue;
803
804 unsigned Occ = ++FactorOccurrences[Factor];
805 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
806
807 // If Factor is a negative constant, add the negated value as a factor
808 // because we can percolate the negate out. Watch for minint, which
809 // cannot be positivified.
810 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
811 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
812 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
813 assert(!Duplicates.count(Factor) &&
814 "Shouldn't have two constant factors, missed a canonicalize");
815
816 unsigned Occ = ++FactorOccurrences[Factor];
817 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
818 }
Chris Lattner94285e62009-12-31 18:17:13 +0000819 }
820 }
821
822 // If any factor occurred more than one time, we can pull it out.
823 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000824 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000825 ++NumFactor;
826
827 // Create a new instruction that uses the MaxOccVal twice. If we don't do
828 // this, we could otherwise run into situations where removing a factor
829 // from an expression will drop a use of maxocc, and this can cause
830 // RemoveFactorFromExpression on successive values to behave differently.
831 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
832 SmallVector<Value*, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +0000833 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000834 // Only try to remove factors from expressions we're allowed to.
835 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
836 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
837 continue;
838
Chris Lattner94285e62009-12-31 18:17:13 +0000839 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +0000840 // The factorized operand may occur several times. Convert them all in
841 // one fell swoop.
842 for (unsigned j = Ops.size(); j != i;) {
843 --j;
844 if (Ops[j].Op == Ops[i].Op) {
845 NewMulOps.push_back(V);
846 Ops.erase(Ops.begin()+j);
847 }
848 }
849 --i;
Chris Lattner94285e62009-12-31 18:17:13 +0000850 }
851 }
852
853 // No need for extra uses anymore.
854 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000855
Chris Lattner94285e62009-12-31 18:17:13 +0000856 unsigned NumAddedValues = NewMulOps.size();
857 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000858
Chris Lattner69e98e22009-12-31 19:24:52 +0000859 // Now that we have inserted the add tree, optimize it. This allows us to
860 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000861 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000862 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000863 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000864 V = ReassociateExpression(cast<BinaryOperator>(V));
865
866 // Create the multiply.
867 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
868
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000869 // Rerun associate on the multiply in case the inner expression turned into
870 // a multiply. We want to make sure that we keep things in canonical form.
871 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000872
873 // If every add operand included the factor (e.g. "A*B + A*C"), then the
874 // entire result expression is just the multiply "A*(B+C)".
875 if (Ops.empty())
876 return V2;
877
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000878 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000879 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000880 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000881 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
882 }
883
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000884 return 0;
885}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000886
887Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000888 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000889 // Now that we have the linearized expression tree, try to optimize it.
890 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000891 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000892 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000893
Chris Lattnere5022fe2006-03-04 09:31:13 +0000894 unsigned Opcode = I->getOpcode();
895
Chris Lattner46900102005-05-08 00:19:31 +0000896 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
897 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
898 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000899 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000900 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000901 }
902
903 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000904 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000905 switch (Opcode) {
906 default: break;
907 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +0000908 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000909 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +0000910 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +0000911 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000912 break;
913 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +0000914 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000915 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000916 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000917 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000918
919 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +0000920 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000921 break;
922 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +0000923 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000924 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000925 // FALLTHROUGH!
926 case Instruction::Add:
927 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +0000928 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000929 Ops.pop_back();
930 break;
931 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000932 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000933
Chris Lattnerec531232009-12-31 07:33:14 +0000934 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000935 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000936 switch (Opcode) {
937 default: break;
938 case Instruction::And:
939 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000940 case Instruction::Xor: {
941 unsigned NumOps = Ops.size();
942 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
943 return Result;
944 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000945 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000946 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000947
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000948 case Instruction::Add: {
949 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000950 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000951 return Result;
952 IterateOptimization |= Ops.size() != NumOps;
953 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000954
Chris Lattner109d34d2005-05-08 18:59:37 +0000955 break;
956 //case Instruction::Mul:
957 }
958
Jeff Cohen00b168892005-07-27 06:12:32 +0000959 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000960 return OptimizeExpression(I, Ops);
961 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000962}
963
Chris Lattnera36e6c82002-05-16 04:37:07 +0000964
Chris Lattner08b43922005-05-07 04:08:02 +0000965/// ReassociateBB - Inspect all of the instructions in this basic block,
966/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000967void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000968 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
969 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000970 if (BI->getOpcode() == Instruction::Shl &&
971 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000972 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000973 MadeChange = true;
974 BI = NI;
975 }
976
Chris Lattner6f156852005-05-08 21:33:47 +0000977 // Reject cases where it is pointless to do this.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000978 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +0000979 BI->getType()->isVectorTy())
Chris Lattner6f156852005-05-08 21:33:47 +0000980 continue; // Floating point ops are not associative.
981
Bob Wilsonfc375d22010-02-04 23:32:37 +0000982 // Do not reassociate boolean (i1) expressions. We want to preserve the
983 // original order of evaluation for short-circuited comparisons that
984 // SimplifyCFG has folded to AND/OR expressions. If the expression
985 // is not further optimized, it is likely to be transformed back to a
986 // short-circuited form for code gen, and the source order may have been
987 // optimized for the most likely conditions.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000988 if (BI->getType()->isIntegerTy(1))
Bob Wilsonfc375d22010-02-04 23:32:37 +0000989 continue;
990
Chris Lattner08b43922005-05-07 04:08:02 +0000991 // If this is a subtract instruction which is not already in negate form,
992 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000993 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000994 if (ShouldBreakUpSubtract(BI)) {
995 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattner5f94af02010-01-05 04:55:35 +0000996 // Reset the BBI iterator in case BreakUpSubtract changed the
997 // instruction it points to.
998 BBI = BI;
999 ++BBI;
Chris Lattnerd5b8d922008-02-18 02:18:25 +00001000 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +00001001 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +00001002 // Otherwise, this is a negation. See if the operand is a multiply tree
1003 // and if this is not an inner node of a multiply tree.
1004 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1005 (!BI->hasOneUse() ||
1006 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +00001007 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +00001008 MadeChange = true;
1009 }
Chris Lattner08b43922005-05-07 04:08:02 +00001010 }
Chris Lattnerf33151a2005-05-08 21:28:52 +00001011 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001012
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001013 // If this instruction is a commutative binary operator, process it.
1014 if (!BI->isAssociative()) continue;
1015 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +00001016
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001017 // If this is an interior node of a reassociable tree, ignore it until we
1018 // get to the root of the tree, to avoid N^2 analysis.
1019 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1020 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001021
Chris Lattner7b4ad942005-09-02 07:07:58 +00001022 // If this is an add tree that is used by a sub instruction, ignore it
1023 // until we process the subtract.
1024 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1025 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1026 continue;
1027
Chris Lattner895b3922006-03-14 07:11:11 +00001028 ReassociateExpression(I);
1029 }
1030}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001031
Chris Lattner69e98e22009-12-31 19:24:52 +00001032Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +00001033
Chris Lattner69e98e22009-12-31 19:24:52 +00001034 // First, walk the expression tree, linearizing the tree, collecting the
1035 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001036 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001037 LinearizeExprTree(I, Ops);
1038
David Greenea1fa76c2010-01-05 01:27:24 +00001039 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001040
1041 // Now that we have linearized the tree to a list and have gathered all of
1042 // the operands and their ranks, sort the operands by their rank. Use a
1043 // stable_sort so that values with equal ranks will have their relative
1044 // positions maintained (and so the compiler is deterministic). Note that
1045 // this sorts so that the highest ranking values end up at the beginning of
1046 // the vector.
1047 std::stable_sort(Ops.begin(), Ops.end());
1048
1049 // OptimizeExpression - Now that we have the expression tree in a convenient
1050 // sorted form, optimize it globally if possible.
1051 if (Value *V = OptimizeExpression(I, Ops)) {
1052 // This expression tree simplified to something that isn't a tree,
1053 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001054 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001055 I->replaceAllUsesWith(V);
1056 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001057 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001058 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001059 }
1060
1061 // We want to sink immediates as deeply as possible except in the case where
1062 // this is a multiply tree used only by an add, and the immediate is a -1.
1063 // In this case we reassociate to put the negation on the outside so that we
1064 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1065 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1066 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1067 isa<ConstantInt>(Ops.back().Op) &&
1068 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001069 ValueEntry Tmp = Ops.pop_back_val();
1070 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001071 }
1072
David Greenea1fa76c2010-01-05 01:27:24 +00001073 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001074
1075 if (Ops.size() == 1) {
1076 // This expression tree simplified to something that isn't a tree,
1077 // eliminate it.
1078 I->replaceAllUsesWith(Ops[0].Op);
1079 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001080 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001081 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001082
1083 // Now that we ordered and optimized the expressions, splat them back into
1084 // the expression tree, removing any unneeded nodes.
1085 RewriteExprTree(I, Ops);
1086 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001087}
1088
1089
Chris Lattner7e708292002-06-25 16:13:24 +00001090bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001091 // Recalculate the rank map for F
1092 BuildRankMap(F);
1093
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001094 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001095 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001096 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +00001097
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001098 // Now that we're done, delete any instructions which are no longer used.
1099 while (!DeadInsts.empty())
Dan Gohmanc9f2f612011-03-10 20:57:44 +00001100 if (Value *V = DeadInsts.pop_back_val())
1101 RecursivelyDeleteTriviallyDeadInstructions(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001102
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001103 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001104 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001105 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001106 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001107}
Brian Gaeked0fde302003-11-11 22:41:34 +00001108