blob: 6a35bafaf4a4fe6c76977f75154a83f4086d0af1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38 cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43 setPow2DivIsCheap();
44
45 // Use _setjmp/_longjmp instead of setjmp/longjmp.
46 setUseUnderscoreSetJmp(true);
47 setUseUnderscoreLongJmp(true);
48
49 // Set up the register classes.
50 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
Chris Lattner3bc08502008-01-17 19:59:44 +000057
58 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
59
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060 // PowerPC has pre-inc load and store's.
61 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
66 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
71
72 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
73 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
74
Dale Johannesen472d15d2007-10-06 01:24:11 +000075 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
76 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
77 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000078 // This is used in the ppcf128->int sequence. Note it has different semantics
79 // from FP_ROUND: that rounds to nearest, this rounds to zero.
80 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000081
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082 // PowerPC has no intrinsics for these particular operations
83 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
84 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
85 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
86
87 // PowerPC has no SREM/UREM instructions
88 setOperationAction(ISD::SREM, MVT::i32, Expand);
89 setOperationAction(ISD::UREM, MVT::i32, Expand);
90 setOperationAction(ISD::SREM, MVT::i64, Expand);
91 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000092
93 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
94 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
95 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
96 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
97 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
98 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
99 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
100 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
101 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102
Dan Gohman2f7b1982007-10-11 23:21:31 +0000103 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 setOperationAction(ISD::FSIN , MVT::f64, Expand);
105 setOperationAction(ISD::FCOS , MVT::f64, Expand);
106 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000107 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::FSIN , MVT::f32, Expand);
109 setOperationAction(ISD::FCOS , MVT::f32, Expand);
110 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000111 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112
113 // If we're enabling GP optimizations, use hardware square root
114 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
115 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
116 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
117 }
118
119 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
120 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
121
122 // PowerPC does not have BSWAP, CTPOP or CTTZ
123 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
124 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
125 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
126 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
127 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
128 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
129
130 // PowerPC does not have ROTR
131 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
132
133 // PowerPC does not have Select
134 setOperationAction(ISD::SELECT, MVT::i32, Expand);
135 setOperationAction(ISD::SELECT, MVT::i64, Expand);
136 setOperationAction(ISD::SELECT, MVT::f32, Expand);
137 setOperationAction(ISD::SELECT, MVT::f64, Expand);
138
139 // PowerPC wants to turn select_cc of FP into fsel when possible.
140 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
142
143 // PowerPC wants to optimize integer setcc a bit
144 setOperationAction(ISD::SETCC, MVT::i32, Custom);
145
146 // PowerPC does not have BRCOND which requires SetCC
147 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
148
149 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
150
151 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
152 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
153
154 // PowerPC does not have [U|S]INT_TO_FP
155 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
156 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
157
158 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
159 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
162
163 // We cannot sextinreg(i1). Expand to shifts.
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
165
166 // Support label based line numbers.
167 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
168 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Nicolas Geoffray61864762007-12-21 12:19:44 +0000169
170 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
171 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
172 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
173 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
174
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175
176 // We want to legalize GlobalAddress and ConstantPool nodes into the
177 // appropriate instructions to materialize the address.
178 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
179 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
180 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
181 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
182 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
183 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
184 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
185 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
186
187 // RET must be custom lowered, to meet ABI requirements
188 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000189
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
191 setOperationAction(ISD::VASTART , MVT::Other, Custom);
192
193 // VAARG is custom lowered with ELF 32 ABI
194 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
195 setOperationAction(ISD::VAARG, MVT::Other, Custom);
196 else
197 setOperationAction(ISD::VAARG, MVT::Other, Expand);
198
199 // Use the default implementation.
200 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
201 setOperationAction(ISD::VAEND , MVT::Other, Expand);
202 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
203 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
204 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
206
207 // We want to custom lower some of our intrinsics.
208 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
209
210 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
211 // They also have instructions for converting between i64 and fp.
212 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
213 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
214 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
215 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
216 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
217
218 // FIXME: disable this lowered code. This generates 64-bit register values,
219 // and we don't model the fact that the top part is clobbered by calls. We
220 // need to flag these together so that the value isn't live across a call.
221 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
222
223 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
224 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
225 } else {
226 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
227 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
228 }
229
230 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000231 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000232 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
233 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
234 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
235 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000236 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
238 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
239 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
240 }
241
242 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
243 // First set operation action for all vector types to expand. Then we
244 // will selectively turn on ones that can be effectively codegen'd.
245 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
246 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
247 // add/sub are legal for all supported vector VT's.
248 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
249 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
250
251 // We promote all shuffles to v16i8.
252 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
253 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
254
255 // We promote all non-typed operations to v4i32.
256 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
257 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
258 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
259 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
260 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
261 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
262 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
263 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
264 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
265 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
266 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
267 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
268
269 // No other operations are legal.
270 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
271 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
272 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
273 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
274 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
275 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000276 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000280 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
281 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
282 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
283 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000285 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
286 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 }
290
291 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
292 // with merges, splats, etc.
293 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
294
295 setOperationAction(ISD::AND , MVT::v4i32, Legal);
296 setOperationAction(ISD::OR , MVT::v4i32, Legal);
297 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
298 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
299 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
300 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
301
302 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
303 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
304 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
305 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
306
307 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
308 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
309 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
310 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
311
312 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
313 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
314
315 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
316 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
317 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
318 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
319 }
320
321 setSetCCResultType(MVT::i32);
322 setShiftAmountType(MVT::i32);
323 setSetCCResultContents(ZeroOrOneSetCCResult);
324
325 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
326 setStackPointerRegisterToSaveRestore(PPC::X1);
327 setExceptionPointerRegister(PPC::X3);
328 setExceptionSelectorRegister(PPC::X4);
329 } else {
330 setStackPointerRegisterToSaveRestore(PPC::R1);
331 setExceptionPointerRegister(PPC::R3);
332 setExceptionSelectorRegister(PPC::R4);
333 }
334
335 // We have target-specific dag combine patterns for the following nodes:
336 setTargetDAGCombine(ISD::SINT_TO_FP);
337 setTargetDAGCombine(ISD::STORE);
338 setTargetDAGCombine(ISD::BR_CC);
339 setTargetDAGCombine(ISD::BSWAP);
340
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000341 // Darwin long double math library functions have $LDBL128 appended.
342 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
Duncan Sands37a3f472008-01-10 10:28:30 +0000343 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000344 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
345 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
Duncan Sands37a3f472008-01-10 10:28:30 +0000346 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
347 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000348 }
349
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 computeRegisterProperties();
351}
352
353const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
354 switch (Opcode) {
355 default: return 0;
356 case PPCISD::FSEL: return "PPCISD::FSEL";
357 case PPCISD::FCFID: return "PPCISD::FCFID";
358 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
359 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
360 case PPCISD::STFIWX: return "PPCISD::STFIWX";
361 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
362 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
363 case PPCISD::VPERM: return "PPCISD::VPERM";
364 case PPCISD::Hi: return "PPCISD::Hi";
365 case PPCISD::Lo: return "PPCISD::Lo";
366 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
367 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
368 case PPCISD::SRL: return "PPCISD::SRL";
369 case PPCISD::SRA: return "PPCISD::SRA";
370 case PPCISD::SHL: return "PPCISD::SHL";
371 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
372 case PPCISD::STD_32: return "PPCISD::STD_32";
373 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
374 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
375 case PPCISD::MTCTR: return "PPCISD::MTCTR";
376 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
377 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
378 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
379 case PPCISD::MFCR: return "PPCISD::MFCR";
380 case PPCISD::VCMP: return "PPCISD::VCMP";
381 case PPCISD::VCMPo: return "PPCISD::VCMPo";
382 case PPCISD::LBRX: return "PPCISD::LBRX";
383 case PPCISD::STBRX: return "PPCISD::STBRX";
384 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
385 }
386}
387
388//===----------------------------------------------------------------------===//
389// Node matching predicates, for use by the tblgen matching code.
390//===----------------------------------------------------------------------===//
391
392/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
393static bool isFloatingPointZero(SDOperand Op) {
394 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000395 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000396 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
397 // Maybe this has already been legalized into the constant pool?
398 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
399 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000400 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401 }
402 return false;
403}
404
405/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
406/// true if Op is undef or if it matches the specified value.
407static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
408 return Op.getOpcode() == ISD::UNDEF ||
409 cast<ConstantSDNode>(Op)->getValue() == Val;
410}
411
412/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
413/// VPKUHUM instruction.
414bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
415 if (!isUnary) {
416 for (unsigned i = 0; i != 16; ++i)
417 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
418 return false;
419 } else {
420 for (unsigned i = 0; i != 8; ++i)
421 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
422 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
423 return false;
424 }
425 return true;
426}
427
428/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
429/// VPKUWUM instruction.
430bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
431 if (!isUnary) {
432 for (unsigned i = 0; i != 16; i += 2)
433 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
434 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
435 return false;
436 } else {
437 for (unsigned i = 0; i != 8; i += 2)
438 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
439 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
440 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
441 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
442 return false;
443 }
444 return true;
445}
446
447/// isVMerge - Common function, used to match vmrg* shuffles.
448///
449static bool isVMerge(SDNode *N, unsigned UnitSize,
450 unsigned LHSStart, unsigned RHSStart) {
451 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
452 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
453 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
454 "Unsupported merge size!");
455
456 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
457 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
458 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
459 LHSStart+j+i*UnitSize) ||
460 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
461 RHSStart+j+i*UnitSize))
462 return false;
463 }
464 return true;
465}
466
467/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
468/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
469bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
470 if (!isUnary)
471 return isVMerge(N, UnitSize, 8, 24);
472 return isVMerge(N, UnitSize, 8, 8);
473}
474
475/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
476/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
477bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
478 if (!isUnary)
479 return isVMerge(N, UnitSize, 0, 16);
480 return isVMerge(N, UnitSize, 0, 0);
481}
482
483
484/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
485/// amount, otherwise return -1.
486int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
487 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
488 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
489 // Find the first non-undef value in the shuffle mask.
490 unsigned i;
491 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
492 /*search*/;
493
494 if (i == 16) return -1; // all undef.
495
496 // Otherwise, check to see if the rest of the elements are consequtively
497 // numbered from this value.
498 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
499 if (ShiftAmt < i) return -1;
500 ShiftAmt -= i;
501
502 if (!isUnary) {
503 // Check the rest of the elements to see if they are consequtive.
504 for (++i; i != 16; ++i)
505 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
506 return -1;
507 } else {
508 // Check the rest of the elements to see if they are consequtive.
509 for (++i; i != 16; ++i)
510 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
511 return -1;
512 }
513
514 return ShiftAmt;
515}
516
517/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
518/// specifies a splat of a single element that is suitable for input to
519/// VSPLTB/VSPLTH/VSPLTW.
520bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
521 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
522 N->getNumOperands() == 16 &&
523 (EltSize == 1 || EltSize == 2 || EltSize == 4));
524
525 // This is a splat operation if each element of the permute is the same, and
526 // if the value doesn't reference the second vector.
527 unsigned ElementBase = 0;
528 SDOperand Elt = N->getOperand(0);
529 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
530 ElementBase = EltV->getValue();
531 else
532 return false; // FIXME: Handle UNDEF elements too!
533
534 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
535 return false;
536
537 // Check that they are consequtive.
538 for (unsigned i = 1; i != EltSize; ++i) {
539 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
540 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
541 return false;
542 }
543
544 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
545 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
546 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
547 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
548 "Invalid VECTOR_SHUFFLE mask!");
549 for (unsigned j = 0; j != EltSize; ++j)
550 if (N->getOperand(i+j) != N->getOperand(j))
551 return false;
552 }
553
554 return true;
555}
556
Evan Chengc5912e32007-07-30 07:51:22 +0000557/// isAllNegativeZeroVector - Returns true if all elements of build_vector
558/// are -0.0.
559bool PPC::isAllNegativeZeroVector(SDNode *N) {
560 assert(N->getOpcode() == ISD::BUILD_VECTOR);
561 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
562 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000563 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000564 return false;
565}
566
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
568/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
569unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
570 assert(isSplatShuffleMask(N, EltSize));
571 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
572}
573
574/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
575/// by using a vspltis[bhw] instruction of the specified element size, return
576/// the constant being splatted. The ByteSize field indicates the number of
577/// bytes of each element [124] -> [bhw].
578SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
579 SDOperand OpVal(0, 0);
580
581 // If ByteSize of the splat is bigger than the element size of the
582 // build_vector, then we have a case where we are checking for a splat where
583 // multiple elements of the buildvector are folded together into a single
584 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
585 unsigned EltSize = 16/N->getNumOperands();
586 if (EltSize < ByteSize) {
587 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
588 SDOperand UniquedVals[4];
589 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
590
591 // See if all of the elements in the buildvector agree across.
592 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
593 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
594 // If the element isn't a constant, bail fully out.
595 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
596
597
598 if (UniquedVals[i&(Multiple-1)].Val == 0)
599 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
600 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
601 return SDOperand(); // no match.
602 }
603
604 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
605 // either constant or undef values that are identical for each chunk. See
606 // if these chunks can form into a larger vspltis*.
607
608 // Check to see if all of the leading entries are either 0 or -1. If
609 // neither, then this won't fit into the immediate field.
610 bool LeadingZero = true;
611 bool LeadingOnes = true;
612 for (unsigned i = 0; i != Multiple-1; ++i) {
613 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
614
615 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
616 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
617 }
618 // Finally, check the least significant entry.
619 if (LeadingZero) {
620 if (UniquedVals[Multiple-1].Val == 0)
621 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
622 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
623 if (Val < 16)
624 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
625 }
626 if (LeadingOnes) {
627 if (UniquedVals[Multiple-1].Val == 0)
628 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
629 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
630 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
631 return DAG.getTargetConstant(Val, MVT::i32);
632 }
633
634 return SDOperand();
635 }
636
637 // Check to see if this buildvec has a single non-undef value in its elements.
638 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
639 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
640 if (OpVal.Val == 0)
641 OpVal = N->getOperand(i);
642 else if (OpVal != N->getOperand(i))
643 return SDOperand();
644 }
645
646 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
647
648 unsigned ValSizeInBytes = 0;
649 uint64_t Value = 0;
650 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
651 Value = CN->getValue();
652 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
653 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
654 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000655 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000656 ValSizeInBytes = 4;
657 }
658
659 // If the splat value is larger than the element value, then we can never do
660 // this splat. The only case that we could fit the replicated bits into our
661 // immediate field for would be zero, and we prefer to use vxor for it.
662 if (ValSizeInBytes < ByteSize) return SDOperand();
663
664 // If the element value is larger than the splat value, cut it in half and
665 // check to see if the two halves are equal. Continue doing this until we
666 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
667 while (ValSizeInBytes > ByteSize) {
668 ValSizeInBytes >>= 1;
669
670 // If the top half equals the bottom half, we're still ok.
671 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
672 (Value & ((1 << (8*ValSizeInBytes))-1)))
673 return SDOperand();
674 }
675
676 // Properly sign extend the value.
677 int ShAmt = (4-ByteSize)*8;
678 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
679
680 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
681 if (MaskVal == 0) return SDOperand();
682
683 // Finally, if this value fits in a 5 bit sext field, return it
684 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
685 return DAG.getTargetConstant(MaskVal, MVT::i32);
686 return SDOperand();
687}
688
689//===----------------------------------------------------------------------===//
690// Addressing Mode Selection
691//===----------------------------------------------------------------------===//
692
693/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
694/// or 64-bit immediate, and if the value can be accurately represented as a
695/// sign extension from a 16-bit value. If so, this returns true and the
696/// immediate.
697static bool isIntS16Immediate(SDNode *N, short &Imm) {
698 if (N->getOpcode() != ISD::Constant)
699 return false;
700
701 Imm = (short)cast<ConstantSDNode>(N)->getValue();
702 if (N->getValueType(0) == MVT::i32)
703 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
704 else
705 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
706}
707static bool isIntS16Immediate(SDOperand Op, short &Imm) {
708 return isIntS16Immediate(Op.Val, Imm);
709}
710
711
712/// SelectAddressRegReg - Given the specified addressed, check to see if it
713/// can be represented as an indexed [r+r] operation. Returns false if it
714/// can be more efficiently represented with [r+imm].
715bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
716 SDOperand &Index,
717 SelectionDAG &DAG) {
718 short imm = 0;
719 if (N.getOpcode() == ISD::ADD) {
720 if (isIntS16Immediate(N.getOperand(1), imm))
721 return false; // r+i
722 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
723 return false; // r+i
724
725 Base = N.getOperand(0);
726 Index = N.getOperand(1);
727 return true;
728 } else if (N.getOpcode() == ISD::OR) {
729 if (isIntS16Immediate(N.getOperand(1), imm))
730 return false; // r+i can fold it if we can.
731
732 // If this is an or of disjoint bitfields, we can codegen this as an add
733 // (for better address arithmetic) if the LHS and RHS of the OR are provably
734 // disjoint.
735 uint64_t LHSKnownZero, LHSKnownOne;
736 uint64_t RHSKnownZero, RHSKnownOne;
737 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
738
739 if (LHSKnownZero) {
740 DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
741 // If all of the bits are known zero on the LHS or RHS, the add won't
742 // carry.
743 if ((LHSKnownZero | RHSKnownZero) == ~0U) {
744 Base = N.getOperand(0);
745 Index = N.getOperand(1);
746 return true;
747 }
748 }
749 }
750
751 return false;
752}
753
754/// Returns true if the address N can be represented by a base register plus
755/// a signed 16-bit displacement [r+imm], and if it is not better
756/// represented as reg+reg.
757bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
758 SDOperand &Base, SelectionDAG &DAG){
759 // If this can be more profitably realized as r+r, fail.
760 if (SelectAddressRegReg(N, Disp, Base, DAG))
761 return false;
762
763 if (N.getOpcode() == ISD::ADD) {
764 short imm = 0;
765 if (isIntS16Immediate(N.getOperand(1), imm)) {
766 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
767 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
768 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
769 } else {
770 Base = N.getOperand(0);
771 }
772 return true; // [r+i]
773 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
774 // Match LOAD (ADD (X, Lo(G))).
775 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
776 && "Cannot handle constant offsets yet!");
777 Disp = N.getOperand(1).getOperand(0); // The global address.
778 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
779 Disp.getOpcode() == ISD::TargetConstantPool ||
780 Disp.getOpcode() == ISD::TargetJumpTable);
781 Base = N.getOperand(0);
782 return true; // [&g+r]
783 }
784 } else if (N.getOpcode() == ISD::OR) {
785 short imm = 0;
786 if (isIntS16Immediate(N.getOperand(1), imm)) {
787 // If this is an or of disjoint bitfields, we can codegen this as an add
788 // (for better address arithmetic) if the LHS and RHS of the OR are
789 // provably disjoint.
790 uint64_t LHSKnownZero, LHSKnownOne;
791 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
792 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
793 // If all of the bits are known zero on the LHS or RHS, the add won't
794 // carry.
795 Base = N.getOperand(0);
796 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
797 return true;
798 }
799 }
800 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
801 // Loading from a constant address.
802
803 // If this address fits entirely in a 16-bit sext immediate field, codegen
804 // this as "d, 0"
805 short Imm;
806 if (isIntS16Immediate(CN, Imm)) {
807 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
808 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
809 return true;
810 }
811
812 // Handle 32-bit sext immediates with LIS + addr mode.
813 if (CN->getValueType(0) == MVT::i32 ||
814 (int64_t)CN->getValue() == (int)CN->getValue()) {
815 int Addr = (int)CN->getValue();
816
817 // Otherwise, break this down into an LIS + disp.
818 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
819
820 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
821 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
822 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
823 return true;
824 }
825 }
826
827 Disp = DAG.getTargetConstant(0, getPointerTy());
828 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
829 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
830 else
831 Base = N;
832 return true; // [r+0]
833}
834
835/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
836/// represented as an indexed [r+r] operation.
837bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
838 SDOperand &Index,
839 SelectionDAG &DAG) {
840 // Check to see if we can easily represent this as an [r+r] address. This
841 // will fail if it thinks that the address is more profitably represented as
842 // reg+imm, e.g. where imm = 0.
843 if (SelectAddressRegReg(N, Base, Index, DAG))
844 return true;
845
846 // If the operand is an addition, always emit this as [r+r], since this is
847 // better (for code size, and execution, as the memop does the add for free)
848 // than emitting an explicit add.
849 if (N.getOpcode() == ISD::ADD) {
850 Base = N.getOperand(0);
851 Index = N.getOperand(1);
852 return true;
853 }
854
855 // Otherwise, do it the hard way, using R0 as the base register.
856 Base = DAG.getRegister(PPC::R0, N.getValueType());
857 Index = N;
858 return true;
859}
860
861/// SelectAddressRegImmShift - Returns true if the address N can be
862/// represented by a base register plus a signed 14-bit displacement
863/// [r+imm*4]. Suitable for use by STD and friends.
864bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
865 SDOperand &Base,
866 SelectionDAG &DAG) {
867 // If this can be more profitably realized as r+r, fail.
868 if (SelectAddressRegReg(N, Disp, Base, DAG))
869 return false;
870
871 if (N.getOpcode() == ISD::ADD) {
872 short imm = 0;
873 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
874 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
875 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
876 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
877 } else {
878 Base = N.getOperand(0);
879 }
880 return true; // [r+i]
881 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
882 // Match LOAD (ADD (X, Lo(G))).
883 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
884 && "Cannot handle constant offsets yet!");
885 Disp = N.getOperand(1).getOperand(0); // The global address.
886 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
887 Disp.getOpcode() == ISD::TargetConstantPool ||
888 Disp.getOpcode() == ISD::TargetJumpTable);
889 Base = N.getOperand(0);
890 return true; // [&g+r]
891 }
892 } else if (N.getOpcode() == ISD::OR) {
893 short imm = 0;
894 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
895 // If this is an or of disjoint bitfields, we can codegen this as an add
896 // (for better address arithmetic) if the LHS and RHS of the OR are
897 // provably disjoint.
898 uint64_t LHSKnownZero, LHSKnownOne;
899 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
900 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
901 // If all of the bits are known zero on the LHS or RHS, the add won't
902 // carry.
903 Base = N.getOperand(0);
904 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
905 return true;
906 }
907 }
908 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
909 // Loading from a constant address. Verify low two bits are clear.
910 if ((CN->getValue() & 3) == 0) {
911 // If this address fits entirely in a 14-bit sext immediate field, codegen
912 // this as "d, 0"
913 short Imm;
914 if (isIntS16Immediate(CN, Imm)) {
915 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
916 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
917 return true;
918 }
919
920 // Fold the low-part of 32-bit absolute addresses into addr mode.
921 if (CN->getValueType(0) == MVT::i32 ||
922 (int64_t)CN->getValue() == (int)CN->getValue()) {
923 int Addr = (int)CN->getValue();
924
925 // Otherwise, break this down into an LIS + disp.
926 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
927
928 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
929 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
930 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
931 return true;
932 }
933 }
934 }
935
936 Disp = DAG.getTargetConstant(0, getPointerTy());
937 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
938 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
939 else
940 Base = N;
941 return true; // [r+0]
942}
943
944
945/// getPreIndexedAddressParts - returns true by value, base pointer and
946/// offset pointer and addressing mode by reference if the node's address
947/// can be legally represented as pre-indexed load / store address.
948bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
949 SDOperand &Offset,
950 ISD::MemIndexedMode &AM,
951 SelectionDAG &DAG) {
952 // Disabled by default for now.
953 if (!EnablePPCPreinc) return false;
954
955 SDOperand Ptr;
956 MVT::ValueType VT;
957 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
958 Ptr = LD->getBasePtr();
959 VT = LD->getLoadedVT();
960
961 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
962 ST = ST;
963 Ptr = ST->getBasePtr();
964 VT = ST->getStoredVT();
965 } else
966 return false;
967
968 // PowerPC doesn't have preinc load/store instructions for vectors.
969 if (MVT::isVector(VT))
970 return false;
971
972 // TODO: Check reg+reg first.
973
974 // LDU/STU use reg+imm*4, others use reg+imm.
975 if (VT != MVT::i64) {
976 // reg + imm
977 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
978 return false;
979 } else {
980 // reg + imm * 4.
981 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
982 return false;
983 }
984
985 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
986 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
987 // sext i32 to i64 when addr mode is r+i.
988 if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
989 LD->getExtensionType() == ISD::SEXTLOAD &&
990 isa<ConstantSDNode>(Offset))
991 return false;
992 }
993
994 AM = ISD::PRE_INC;
995 return true;
996}
997
998//===----------------------------------------------------------------------===//
999// LowerOperation implementation
1000//===----------------------------------------------------------------------===//
1001
1002static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1003 MVT::ValueType PtrVT = Op.getValueType();
1004 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1005 Constant *C = CP->getConstVal();
1006 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1007 SDOperand Zero = DAG.getConstant(0, PtrVT);
1008
1009 const TargetMachine &TM = DAG.getTarget();
1010
1011 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1012 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1013
1014 // If this is a non-darwin platform, we don't support non-static relo models
1015 // yet.
1016 if (TM.getRelocationModel() == Reloc::Static ||
1017 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1018 // Generate non-pic code that has direct accesses to the constant pool.
1019 // The address of the global is just (hi(&g)+lo(&g)).
1020 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1021 }
1022
1023 if (TM.getRelocationModel() == Reloc::PIC_) {
1024 // With PIC, the first instruction is actually "GR+hi(&G)".
1025 Hi = DAG.getNode(ISD::ADD, PtrVT,
1026 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1027 }
1028
1029 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1030 return Lo;
1031}
1032
1033static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1034 MVT::ValueType PtrVT = Op.getValueType();
1035 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1036 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1037 SDOperand Zero = DAG.getConstant(0, PtrVT);
1038
1039 const TargetMachine &TM = DAG.getTarget();
1040
1041 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1042 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1043
1044 // If this is a non-darwin platform, we don't support non-static relo models
1045 // yet.
1046 if (TM.getRelocationModel() == Reloc::Static ||
1047 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1048 // Generate non-pic code that has direct accesses to the constant pool.
1049 // The address of the global is just (hi(&g)+lo(&g)).
1050 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1051 }
1052
1053 if (TM.getRelocationModel() == Reloc::PIC_) {
1054 // With PIC, the first instruction is actually "GR+hi(&G)".
1055 Hi = DAG.getNode(ISD::ADD, PtrVT,
1056 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1057 }
1058
1059 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1060 return Lo;
1061}
1062
1063static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1064 assert(0 && "TLS not implemented for PPC.");
1065}
1066
1067static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1068 MVT::ValueType PtrVT = Op.getValueType();
1069 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1070 GlobalValue *GV = GSDN->getGlobal();
1071 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1072 SDOperand Zero = DAG.getConstant(0, PtrVT);
1073
1074 const TargetMachine &TM = DAG.getTarget();
1075
1076 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1077 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1078
1079 // If this is a non-darwin platform, we don't support non-static relo models
1080 // yet.
1081 if (TM.getRelocationModel() == Reloc::Static ||
1082 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1083 // Generate non-pic code that has direct accesses to globals.
1084 // The address of the global is just (hi(&g)+lo(&g)).
1085 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1086 }
1087
1088 if (TM.getRelocationModel() == Reloc::PIC_) {
1089 // With PIC, the first instruction is actually "GR+hi(&G)".
1090 Hi = DAG.getNode(ISD::ADD, PtrVT,
1091 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1092 }
1093
1094 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1095
1096 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1097 return Lo;
1098
1099 // If the global is weak or external, we have to go through the lazy
1100 // resolution stub.
1101 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1102}
1103
1104static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1105 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1106
1107 // If we're comparing for equality to zero, expose the fact that this is
1108 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1109 // fold the new nodes.
1110 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1111 if (C->isNullValue() && CC == ISD::SETEQ) {
1112 MVT::ValueType VT = Op.getOperand(0).getValueType();
1113 SDOperand Zext = Op.getOperand(0);
1114 if (VT < MVT::i32) {
1115 VT = MVT::i32;
1116 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1117 }
1118 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1119 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1120 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1121 DAG.getConstant(Log2b, MVT::i32));
1122 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1123 }
1124 // Leave comparisons against 0 and -1 alone for now, since they're usually
1125 // optimized. FIXME: revisit this when we can custom lower all setcc
1126 // optimizations.
1127 if (C->isAllOnesValue() || C->isNullValue())
1128 return SDOperand();
1129 }
1130
1131 // If we have an integer seteq/setne, turn it into a compare against zero
1132 // by xor'ing the rhs with the lhs, which is faster than setting a
1133 // condition register, reading it back out, and masking the correct bit. The
1134 // normal approach here uses sub to do this instead of xor. Using xor exposes
1135 // the result to other bit-twiddling opportunities.
1136 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1137 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1138 MVT::ValueType VT = Op.getValueType();
1139 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1140 Op.getOperand(1));
1141 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1142 }
1143 return SDOperand();
1144}
1145
1146static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1147 int VarArgsFrameIndex,
1148 int VarArgsStackOffset,
1149 unsigned VarArgsNumGPR,
1150 unsigned VarArgsNumFPR,
1151 const PPCSubtarget &Subtarget) {
1152
1153 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1154}
1155
1156static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1157 int VarArgsFrameIndex,
1158 int VarArgsStackOffset,
1159 unsigned VarArgsNumGPR,
1160 unsigned VarArgsNumFPR,
1161 const PPCSubtarget &Subtarget) {
1162
1163 if (Subtarget.isMachoABI()) {
1164 // vastart just stores the address of the VarArgsFrameIndex slot into the
1165 // memory location argument.
1166 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1167 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1168 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1169 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1170 SV->getOffset());
1171 }
1172
1173 // For ELF 32 ABI we follow the layout of the va_list struct.
1174 // We suppose the given va_list is already allocated.
1175 //
1176 // typedef struct {
1177 // char gpr; /* index into the array of 8 GPRs
1178 // * stored in the register save area
1179 // * gpr=0 corresponds to r3,
1180 // * gpr=1 to r4, etc.
1181 // */
1182 // char fpr; /* index into the array of 8 FPRs
1183 // * stored in the register save area
1184 // * fpr=0 corresponds to f1,
1185 // * fpr=1 to f2, etc.
1186 // */
1187 // char *overflow_arg_area;
1188 // /* location on stack that holds
1189 // * the next overflow argument
1190 // */
1191 // char *reg_save_area;
1192 // /* where r3:r10 and f1:f8 (if saved)
1193 // * are stored
1194 // */
1195 // } va_list[1];
1196
1197
1198 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1199 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1200
1201
1202 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1203
1204 SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1205 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1206
1207 SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1208 PtrVT);
1209 SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1210 PtrVT);
1211 SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
1212
1213 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1214
1215 // Store first byte : number of int regs
1216 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1217 Op.getOperand(1), SV->getValue(),
1218 SV->getOffset());
1219 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1220 ConstFPROffset);
1221
1222 // Store second byte : number of float regs
1223 SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1224 SV->getValue(), SV->getOffset());
1225 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1226
1227 // Store second word : arguments given on stack
1228 SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1229 SV->getValue(), SV->getOffset());
1230 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1231
1232 // Store third word : arguments given in registers
1233 return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1234 SV->getOffset());
1235
1236}
1237
1238#include "PPCGenCallingConv.inc"
1239
1240/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1241/// depending on which subtarget is selected.
1242static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1243 if (Subtarget.isMachoABI()) {
1244 static const unsigned FPR[] = {
1245 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1246 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1247 };
1248 return FPR;
1249 }
1250
1251
1252 static const unsigned FPR[] = {
1253 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1254 PPC::F8
1255 };
1256 return FPR;
1257}
1258
1259static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1260 int &VarArgsFrameIndex,
1261 int &VarArgsStackOffset,
1262 unsigned &VarArgsNumGPR,
1263 unsigned &VarArgsNumFPR,
1264 const PPCSubtarget &Subtarget) {
1265 // TODO: add description of PPC stack frame format, or at least some docs.
1266 //
1267 MachineFunction &MF = DAG.getMachineFunction();
1268 MachineFrameInfo *MFI = MF.getFrameInfo();
Chris Lattner1b989192007-12-31 04:13:23 +00001269 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001270 SmallVector<SDOperand, 8> ArgValues;
1271 SDOperand Root = Op.getOperand(0);
1272
1273 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1274 bool isPPC64 = PtrVT == MVT::i64;
1275 bool isMachoABI = Subtarget.isMachoABI();
1276 bool isELF32_ABI = Subtarget.isELF32_ABI();
1277 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1278
1279 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1280
1281 static const unsigned GPR_32[] = { // 32-bit registers.
1282 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1283 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1284 };
1285 static const unsigned GPR_64[] = { // 64-bit registers.
1286 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1287 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1288 };
1289
1290 static const unsigned *FPR = GetFPR(Subtarget);
1291
1292 static const unsigned VR[] = {
1293 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1294 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1295 };
1296
Owen Anderson1636de92007-09-07 04:06:50 +00001297 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001299 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300
1301 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1302
1303 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1304
1305 // Add DAG nodes to load the arguments or copy them out of registers. On
1306 // entry to a function on PPC, the arguments start after the linkage area,
1307 // although the first ones are often in registers.
1308 //
1309 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1310 // represented with two words (long long or double) must be copied to an
1311 // even GPR_idx value or to an even ArgOffset value.
1312
1313 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1314 SDOperand ArgVal;
1315 bool needsLoad = false;
1316 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1317 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1318 unsigned ArgSize = ObjSize;
1319 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1320 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1321 // See if next argument requires stack alignment in ELF
1322 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1323 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1324 (!(Flags & AlignFlag)));
1325
1326 unsigned CurArgOffset = ArgOffset;
1327 switch (ObjectVT) {
1328 default: assert(0 && "Unhandled argument type!");
1329 case MVT::i32:
1330 // Double word align in ELF
1331 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1332 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001333 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1334 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1336 ++GPR_idx;
1337 } else {
1338 needsLoad = true;
1339 ArgSize = PtrByteSize;
1340 }
1341 // Stack align in ELF
1342 if (needsLoad && Expand && isELF32_ABI)
1343 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1344 // All int arguments reserve stack space in Macho ABI.
1345 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1346 break;
1347
1348 case MVT::i64: // PPC64
1349 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001350 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1351 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1353 ++GPR_idx;
1354 } else {
1355 needsLoad = true;
1356 }
1357 // All int arguments reserve stack space in Macho ABI.
1358 if (isMachoABI || needsLoad) ArgOffset += 8;
1359 break;
1360
1361 case MVT::f32:
1362 case MVT::f64:
1363 // Every 4 bytes of argument space consumes one of the GPRs available for
1364 // argument passing.
1365 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1366 ++GPR_idx;
1367 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1368 ++GPR_idx;
1369 }
1370 if (FPR_idx != Num_FPR_Regs) {
1371 unsigned VReg;
1372 if (ObjectVT == MVT::f32)
Chris Lattner1b989192007-12-31 04:13:23 +00001373 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 else
Chris Lattner1b989192007-12-31 04:13:23 +00001375 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1376 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001377 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1378 ++FPR_idx;
1379 } else {
1380 needsLoad = true;
1381 }
1382
1383 // Stack align in ELF
1384 if (needsLoad && Expand && isELF32_ABI)
1385 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1386 // All FP arguments reserve stack space in Macho ABI.
1387 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1388 break;
1389 case MVT::v4f32:
1390 case MVT::v4i32:
1391 case MVT::v8i16:
1392 case MVT::v16i8:
1393 // Note that vector arguments in registers don't reserve stack space.
1394 if (VR_idx != Num_VR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001395 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1396 RegInfo.addLiveIn(VR[VR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001397 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1398 ++VR_idx;
1399 } else {
1400 // This should be simple, but requires getting 16-byte aligned stack
1401 // values.
1402 assert(0 && "Loading VR argument not implemented yet!");
1403 needsLoad = true;
1404 }
1405 break;
1406 }
1407
1408 // We need to load the argument to a virtual register if we determined above
1409 // that we ran out of physical registers of the appropriate type
1410 if (needsLoad) {
1411 // If the argument is actually used, emit a load from the right stack
1412 // slot.
1413 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1414 int FI = MFI->CreateFixedObject(ObjSize,
1415 CurArgOffset + (ArgSize - ObjSize));
1416 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1417 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1418 } else {
1419 // Don't emit a dead load.
1420 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1421 }
1422 }
1423
1424 ArgValues.push_back(ArgVal);
1425 }
1426
1427 // If the function takes variable number of arguments, make a frame index for
1428 // the start of the first vararg value... for expansion of llvm.va_start.
1429 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1430 if (isVarArg) {
1431
1432 int depth;
1433 if (isELF32_ABI) {
1434 VarArgsNumGPR = GPR_idx;
1435 VarArgsNumFPR = FPR_idx;
1436
1437 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1438 // pointer.
1439 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1440 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1441 MVT::getSizeInBits(PtrVT)/8);
1442
1443 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1444 ArgOffset);
1445
1446 }
1447 else
1448 depth = ArgOffset;
1449
1450 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1451 depth);
1452 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1453
1454 SmallVector<SDOperand, 8> MemOps;
1455
1456 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1457 // stored to the VarArgsFrameIndex on the stack.
1458 if (isELF32_ABI) {
1459 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1460 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1461 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1462 MemOps.push_back(Store);
1463 // Increment the address by four for the next argument to store
1464 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1465 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1466 }
1467 }
1468
1469 // If this function is vararg, store any remaining integer argument regs
1470 // to their spots on the stack so that they may be loaded by deferencing the
1471 // result of va_next.
1472 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1473 unsigned VReg;
1474 if (isPPC64)
Chris Lattner1b989192007-12-31 04:13:23 +00001475 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476 else
Chris Lattner1b989192007-12-31 04:13:23 +00001477 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001478
Chris Lattner1b989192007-12-31 04:13:23 +00001479 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001480 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1481 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1482 MemOps.push_back(Store);
1483 // Increment the address by four for the next argument to store
1484 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1485 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1486 }
1487
1488 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1489 // on the stack.
1490 if (isELF32_ABI) {
1491 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1492 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1493 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1494 MemOps.push_back(Store);
1495 // Increment the address by eight for the next argument to store
1496 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1497 PtrVT);
1498 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1499 }
1500
1501 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1502 unsigned VReg;
Chris Lattner1b989192007-12-31 04:13:23 +00001503 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504
Chris Lattner1b989192007-12-31 04:13:23 +00001505 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1507 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1508 MemOps.push_back(Store);
1509 // Increment the address by eight for the next argument to store
1510 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1511 PtrVT);
1512 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1513 }
1514 }
1515
1516 if (!MemOps.empty())
1517 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1518 }
1519
1520 ArgValues.push_back(Root);
1521
1522 // Return the new list of results.
1523 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1524 Op.Val->value_end());
1525 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1526}
1527
1528/// isCallCompatibleAddress - Return the immediate to use if the specified
1529/// 32-bit value is representable in the immediate field of a BxA instruction.
1530static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1531 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1532 if (!C) return 0;
1533
1534 int Addr = C->getValue();
1535 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1536 (Addr << 6 >> 6) != Addr)
1537 return 0; // Top 6 bits have to be sext of immediate.
1538
Evan Cheng282c6462007-10-22 19:46:19 +00001539 return DAG.getConstant((int)C->getValue() >> 2,
1540 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001541}
1542
1543
1544static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1545 const PPCSubtarget &Subtarget) {
1546 SDOperand Chain = Op.getOperand(0);
1547 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1548 SDOperand Callee = Op.getOperand(4);
1549 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1550
1551 bool isMachoABI = Subtarget.isMachoABI();
1552 bool isELF32_ABI = Subtarget.isELF32_ABI();
1553
1554 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1555 bool isPPC64 = PtrVT == MVT::i64;
1556 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1557
1558 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1559 // SelectExpr to use to put the arguments in the appropriate registers.
1560 std::vector<SDOperand> args_to_use;
1561
1562 // Count how many bytes are to be pushed on the stack, including the linkage
1563 // area, and parameter passing area. We start with 24/48 bytes, which is
1564 // prereserved space for [SP][CR][LR][3 x unused].
1565 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1566
1567 // Add up all the space actually used.
1568 for (unsigned i = 0; i != NumOps; ++i) {
1569 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1570 ArgSize = std::max(ArgSize, PtrByteSize);
1571 NumBytes += ArgSize;
1572 }
1573
1574 // The prolog code of the callee may store up to 8 GPR argument registers to
1575 // the stack, allowing va_start to index over them in memory if its varargs.
1576 // Because we cannot tell if this is needed on the caller side, we have to
1577 // conservatively assume that it is needed. As such, make sure we have at
1578 // least enough stack space for the caller to store the 8 GPRs.
1579 NumBytes = std::max(NumBytes,
1580 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1581
1582 // Adjust the stack pointer for the new arguments...
1583 // These operations are automatically eliminated by the prolog/epilog pass
1584 Chain = DAG.getCALLSEQ_START(Chain,
1585 DAG.getConstant(NumBytes, PtrVT));
1586
1587 // Set up a copy of the stack pointer for use loading and storing any
1588 // arguments that may not fit in the registers available for argument
1589 // passing.
1590 SDOperand StackPtr;
1591 if (isPPC64)
1592 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1593 else
1594 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1595
1596 // Figure out which arguments are going to go in registers, and which in
1597 // memory. Also, if this is a vararg function, floating point operations
1598 // must be stored to our stack, and loaded into integer regs as well, if
1599 // any integer regs are available for argument passing.
1600 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1601 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1602
1603 static const unsigned GPR_32[] = { // 32-bit registers.
1604 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1605 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1606 };
1607 static const unsigned GPR_64[] = { // 64-bit registers.
1608 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1609 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1610 };
1611 static const unsigned *FPR = GetFPR(Subtarget);
1612
1613 static const unsigned VR[] = {
1614 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1615 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1616 };
Owen Anderson1636de92007-09-07 04:06:50 +00001617 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001618 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001619 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620
1621 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1622
1623 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1624 SmallVector<SDOperand, 8> MemOpChains;
1625 for (unsigned i = 0; i != NumOps; ++i) {
1626 bool inMem = false;
1627 SDOperand Arg = Op.getOperand(5+2*i);
1628 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1629 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1630 // See if next argument requires stack alignment in ELF
1631 unsigned next = 5+2*(i+1)+1;
1632 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1633 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1634 (!(Flags & AlignFlag)));
1635
1636 // PtrOff will be used to store the current argument to the stack if a
1637 // register cannot be found for it.
1638 SDOperand PtrOff;
1639
1640 // Stack align in ELF 32
1641 if (isELF32_ABI && Expand)
1642 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1643 StackPtr.getValueType());
1644 else
1645 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1646
1647 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1648
1649 // On PPC64, promote integers to 64-bit values.
1650 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1651 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1652
1653 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1654 }
1655
1656 switch (Arg.getValueType()) {
1657 default: assert(0 && "Unexpected ValueType for argument!");
1658 case MVT::i32:
1659 case MVT::i64:
1660 // Double word align in ELF
1661 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1662 if (GPR_idx != NumGPRs) {
1663 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1664 } else {
1665 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1666 inMem = true;
1667 }
1668 if (inMem || isMachoABI) {
1669 // Stack align in ELF
1670 if (isELF32_ABI && Expand)
1671 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1672
1673 ArgOffset += PtrByteSize;
1674 }
1675 break;
1676 case MVT::f32:
1677 case MVT::f64:
1678 if (isVarArg) {
1679 // Float varargs need to be promoted to double.
1680 if (Arg.getValueType() == MVT::f32)
1681 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1682 }
1683
1684 if (FPR_idx != NumFPRs) {
1685 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1686
1687 if (isVarArg) {
1688 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1689 MemOpChains.push_back(Store);
1690
1691 // Float varargs are always shadowed in available integer registers
1692 if (GPR_idx != NumGPRs) {
1693 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1694 MemOpChains.push_back(Load.getValue(1));
1695 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1696 Load));
1697 }
1698 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1699 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1700 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1701 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1702 MemOpChains.push_back(Load.getValue(1));
1703 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1704 Load));
1705 }
1706 } else {
1707 // If we have any FPRs remaining, we may also have GPRs remaining.
1708 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1709 // GPRs.
1710 if (isMachoABI) {
1711 if (GPR_idx != NumGPRs)
1712 ++GPR_idx;
1713 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1714 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1715 ++GPR_idx;
1716 }
1717 }
1718 } else {
1719 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1720 inMem = true;
1721 }
1722 if (inMem || isMachoABI) {
1723 // Stack align in ELF
1724 if (isELF32_ABI && Expand)
1725 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1726 if (isPPC64)
1727 ArgOffset += 8;
1728 else
1729 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1730 }
1731 break;
1732 case MVT::v4f32:
1733 case MVT::v4i32:
1734 case MVT::v8i16:
1735 case MVT::v16i8:
1736 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1737 assert(VR_idx != NumVRs &&
1738 "Don't support passing more than 12 vector args yet!");
1739 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1740 break;
1741 }
1742 }
1743 if (!MemOpChains.empty())
1744 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1745 &MemOpChains[0], MemOpChains.size());
1746
1747 // Build a sequence of copy-to-reg nodes chained together with token chain
1748 // and flag operands which copy the outgoing args into the appropriate regs.
1749 SDOperand InFlag;
1750 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1751 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1752 InFlag);
1753 InFlag = Chain.getValue(1);
1754 }
1755
1756 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1757 if (isVarArg && isELF32_ABI) {
1758 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1759 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1760 InFlag = Chain.getValue(1);
1761 }
1762
1763 std::vector<MVT::ValueType> NodeTys;
1764 NodeTys.push_back(MVT::Other); // Returns a chain
1765 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1766
1767 SmallVector<SDOperand, 8> Ops;
1768 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1769
1770 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1771 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1772 // node so that legalize doesn't hack it.
Nicolas Geoffray455a2e02007-12-21 12:22:29 +00001773 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1774 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1775 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001776 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1777 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1778 // If this is an absolute destination address, use the munged value.
1779 Callee = SDOperand(Dest, 0);
1780 else {
1781 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1782 // to do the call, we can't use PPCISD::CALL.
1783 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1784 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1785 InFlag = Chain.getValue(1);
1786
1787 // Copy the callee address into R12 on darwin.
1788 if (isMachoABI) {
1789 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1790 InFlag = Chain.getValue(1);
1791 }
1792
1793 NodeTys.clear();
1794 NodeTys.push_back(MVT::Other);
1795 NodeTys.push_back(MVT::Flag);
1796 Ops.push_back(Chain);
1797 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1798 Callee.Val = 0;
1799 }
1800
1801 // If this is a direct call, pass the chain and the callee.
1802 if (Callee.Val) {
1803 Ops.push_back(Chain);
1804 Ops.push_back(Callee);
1805 }
1806
1807 // Add argument registers to the end of the list so that they are known live
1808 // into the call.
1809 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1810 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1811 RegsToPass[i].second.getValueType()));
1812
1813 if (InFlag.Val)
1814 Ops.push_back(InFlag);
1815 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1816 InFlag = Chain.getValue(1);
1817
Bill Wendling22f8deb2007-11-13 00:44:25 +00001818 Chain = DAG.getCALLSEQ_END(Chain,
1819 DAG.getConstant(NumBytes, PtrVT),
1820 DAG.getConstant(0, PtrVT),
1821 InFlag);
1822 if (Op.Val->getValueType(0) != MVT::Other)
1823 InFlag = Chain.getValue(1);
1824
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001825 SDOperand ResultVals[3];
1826 unsigned NumResults = 0;
1827 NodeTys.clear();
1828
1829 // If the call has results, copy the values out of the ret val registers.
1830 switch (Op.Val->getValueType(0)) {
1831 default: assert(0 && "Unexpected ret value!");
1832 case MVT::Other: break;
1833 case MVT::i32:
1834 if (Op.Val->getValueType(1) == MVT::i32) {
1835 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1836 ResultVals[0] = Chain.getValue(0);
1837 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1838 Chain.getValue(2)).getValue(1);
1839 ResultVals[1] = Chain.getValue(0);
1840 NumResults = 2;
1841 NodeTys.push_back(MVT::i32);
1842 } else {
1843 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1844 ResultVals[0] = Chain.getValue(0);
1845 NumResults = 1;
1846 }
1847 NodeTys.push_back(MVT::i32);
1848 break;
1849 case MVT::i64:
1850 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1851 ResultVals[0] = Chain.getValue(0);
1852 NumResults = 1;
1853 NodeTys.push_back(MVT::i64);
1854 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001855 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00001856 if (Op.Val->getValueType(1) == MVT::f64) {
1857 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1858 ResultVals[0] = Chain.getValue(0);
1859 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1860 Chain.getValue(2)).getValue(1);
1861 ResultVals[1] = Chain.getValue(0);
1862 NumResults = 2;
1863 NodeTys.push_back(MVT::f64);
1864 NodeTys.push_back(MVT::f64);
1865 break;
1866 }
1867 // else fall through
1868 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1870 InFlag).getValue(1);
1871 ResultVals[0] = Chain.getValue(0);
1872 NumResults = 1;
1873 NodeTys.push_back(Op.Val->getValueType(0));
1874 break;
1875 case MVT::v4f32:
1876 case MVT::v4i32:
1877 case MVT::v8i16:
1878 case MVT::v16i8:
1879 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1880 InFlag).getValue(1);
1881 ResultVals[0] = Chain.getValue(0);
1882 NumResults = 1;
1883 NodeTys.push_back(Op.Val->getValueType(0));
1884 break;
1885 }
1886
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887 NodeTys.push_back(MVT::Other);
1888
1889 // If the function returns void, just return the chain.
1890 if (NumResults == 0)
1891 return Chain;
1892
1893 // Otherwise, merge everything together with a MERGE_VALUES node.
1894 ResultVals[NumResults++] = Chain;
1895 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1896 ResultVals, NumResults);
1897 return Res.getValue(Op.ResNo);
1898}
1899
1900static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1901 SmallVector<CCValAssign, 16> RVLocs;
1902 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1903 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1904 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1905 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1906
1907 // If this is the first return lowered for this function, add the regs to the
1908 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +00001909 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001910 for (unsigned i = 0; i != RVLocs.size(); ++i)
Chris Lattner1b989192007-12-31 04:13:23 +00001911 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912 }
1913
1914 SDOperand Chain = Op.getOperand(0);
1915 SDOperand Flag;
1916
1917 // Copy the result values into the output registers.
1918 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1919 CCValAssign &VA = RVLocs[i];
1920 assert(VA.isRegLoc() && "Can only return in registers!");
1921 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1922 Flag = Chain.getValue(1);
1923 }
1924
1925 if (Flag.Val)
1926 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1927 else
1928 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1929}
1930
1931static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1932 const PPCSubtarget &Subtarget) {
1933 // When we pop the dynamic allocation we need to restore the SP link.
1934
1935 // Get the corect type for pointers.
1936 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1937
1938 // Construct the stack pointer operand.
1939 bool IsPPC64 = Subtarget.isPPC64();
1940 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1941 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1942
1943 // Get the operands for the STACKRESTORE.
1944 SDOperand Chain = Op.getOperand(0);
1945 SDOperand SaveSP = Op.getOperand(1);
1946
1947 // Load the old link SP.
1948 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1949
1950 // Restore the stack pointer.
1951 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1952
1953 // Store the old link SP.
1954 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1955}
1956
1957static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1958 const PPCSubtarget &Subtarget) {
1959 MachineFunction &MF = DAG.getMachineFunction();
1960 bool IsPPC64 = Subtarget.isPPC64();
1961 bool isMachoABI = Subtarget.isMachoABI();
1962
1963 // Get current frame pointer save index. The users of this index will be
1964 // primarily DYNALLOC instructions.
1965 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1966 int FPSI = FI->getFramePointerSaveIndex();
1967
1968 // If the frame pointer save index hasn't been defined yet.
1969 if (!FPSI) {
1970 // Find out what the fix offset of the frame pointer save area.
1971 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1972
1973 // Allocate the frame index for frame pointer save area.
1974 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1975 // Save the result.
1976 FI->setFramePointerSaveIndex(FPSI);
1977 }
1978
1979 // Get the inputs.
1980 SDOperand Chain = Op.getOperand(0);
1981 SDOperand Size = Op.getOperand(1);
1982
1983 // Get the corect type for pointers.
1984 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1985 // Negate the size.
1986 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1987 DAG.getConstant(0, PtrVT), Size);
1988 // Construct a node for the frame pointer save index.
1989 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1990 // Build a DYNALLOC node.
1991 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1992 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1993 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1994}
1995
1996
1997/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1998/// possible.
1999static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2000 // Not FP? Not a fsel.
2001 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2002 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2003 return SDOperand();
2004
2005 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2006
2007 // Cannot handle SETEQ/SETNE.
2008 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2009
2010 MVT::ValueType ResVT = Op.getValueType();
2011 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2012 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2013 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2014
2015 // If the RHS of the comparison is a 0.0, we don't need to do the
2016 // subtraction at all.
2017 if (isFloatingPointZero(RHS))
2018 switch (CC) {
2019 default: break; // SETUO etc aren't handled by fsel.
2020 case ISD::SETULT:
2021 case ISD::SETOLT:
2022 case ISD::SETLT:
2023 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2024 case ISD::SETUGE:
2025 case ISD::SETOGE:
2026 case ISD::SETGE:
2027 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2028 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2029 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2030 case ISD::SETUGT:
2031 case ISD::SETOGT:
2032 case ISD::SETGT:
2033 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2034 case ISD::SETULE:
2035 case ISD::SETOLE:
2036 case ISD::SETLE:
2037 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2038 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2039 return DAG.getNode(PPCISD::FSEL, ResVT,
2040 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2041 }
2042
Chris Lattnera216bee2007-10-15 20:14:52 +00002043 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002044 switch (CC) {
2045 default: break; // SETUO etc aren't handled by fsel.
2046 case ISD::SETULT:
2047 case ISD::SETOLT:
2048 case ISD::SETLT:
2049 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2050 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2051 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2052 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2053 case ISD::SETUGE:
2054 case ISD::SETOGE:
2055 case ISD::SETGE:
2056 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2057 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2058 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2059 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2060 case ISD::SETUGT:
2061 case ISD::SETOGT:
2062 case ISD::SETGT:
2063 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2064 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2065 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2066 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2067 case ISD::SETULE:
2068 case ISD::SETOLE:
2069 case ISD::SETLE:
2070 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2071 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2072 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2073 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2074 }
2075 return SDOperand();
2076}
2077
Chris Lattner28771092007-11-28 18:44:47 +00002078// FIXME: Split this code up when LegalizeDAGTypes lands.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002079static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2080 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2081 SDOperand Src = Op.getOperand(0);
2082 if (Src.getValueType() == MVT::f32)
2083 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2084
2085 SDOperand Tmp;
2086 switch (Op.getValueType()) {
2087 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2088 case MVT::i32:
2089 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2090 break;
2091 case MVT::i64:
2092 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2093 break;
2094 }
2095
2096 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002097 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2098
2099 // Emit a store to the stack slot.
2100 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2101
2102 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2103 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002105 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2106 DAG.getConstant(4, FIPtr.getValueType()));
2107 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108}
2109
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002110static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2111 assert(Op.getValueType() == MVT::ppcf128);
2112 SDNode *Node = Op.Val;
2113 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002114 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002115 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2116 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2117
2118 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2119 // of the long double, and puts FPSCR back the way it was. We do not
2120 // actually model FPSCR.
2121 std::vector<MVT::ValueType> NodeTys;
2122 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2123
2124 NodeTys.push_back(MVT::f64); // Return register
2125 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2126 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2127 MFFSreg = Result.getValue(0);
2128 InFlag = Result.getValue(1);
2129
2130 NodeTys.clear();
2131 NodeTys.push_back(MVT::Flag); // Returns a flag
2132 Ops[0] = DAG.getConstant(31, MVT::i32);
2133 Ops[1] = InFlag;
2134 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2135 InFlag = Result.getValue(0);
2136
2137 NodeTys.clear();
2138 NodeTys.push_back(MVT::Flag); // Returns a flag
2139 Ops[0] = DAG.getConstant(30, MVT::i32);
2140 Ops[1] = InFlag;
2141 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2142 InFlag = Result.getValue(0);
2143
2144 NodeTys.clear();
2145 NodeTys.push_back(MVT::f64); // result of add
2146 NodeTys.push_back(MVT::Flag); // Returns a flag
2147 Ops[0] = Lo;
2148 Ops[1] = Hi;
2149 Ops[2] = InFlag;
2150 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2151 FPreg = Result.getValue(0);
2152 InFlag = Result.getValue(1);
2153
2154 NodeTys.clear();
2155 NodeTys.push_back(MVT::f64);
2156 Ops[0] = DAG.getConstant(1, MVT::i32);
2157 Ops[1] = MFFSreg;
2158 Ops[2] = FPreg;
2159 Ops[3] = InFlag;
2160 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2161 FPreg = Result.getValue(0);
2162
2163 // We know the low half is about to be thrown away, so just use something
2164 // convenient.
2165 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2166}
2167
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002168static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2169 if (Op.getOperand(0).getValueType() == MVT::i64) {
2170 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2171 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2172 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002173 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002174 return FP;
2175 }
2176
2177 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2178 "Unhandled SINT_TO_FP type in custom expander!");
2179 // Since we only generate this in 64-bit mode, we can take advantage of
2180 // 64-bit registers. In particular, sign extend the input value into the
2181 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2182 // then lfd it and fcfid it.
2183 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2184 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2185 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2186 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2187
2188 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2189 Op.getOperand(0));
2190
2191 // STD the extended value into the stack slot.
2192 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2193 DAG.getEntryNode(), Ext64, FIdx,
2194 DAG.getSrcValue(NULL));
2195 // Load the value as a double.
2196 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2197
2198 // FCFID it and return it.
2199 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2200 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002201 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002202 return FP;
2203}
2204
2205static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2206 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2207 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2208
2209 // Expand into a bunch of logical ops. Note that these ops
2210 // depend on the PPC behavior for oversized shift amounts.
2211 SDOperand Lo = Op.getOperand(0);
2212 SDOperand Hi = Op.getOperand(1);
2213 SDOperand Amt = Op.getOperand(2);
2214
2215 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2216 DAG.getConstant(32, MVT::i32), Amt);
2217 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2218 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2219 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2220 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2221 DAG.getConstant(-32U, MVT::i32));
2222 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2223 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2224 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2225 SDOperand OutOps[] = { OutLo, OutHi };
2226 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2227 OutOps, 2);
2228}
2229
2230static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2231 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2232 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2233
2234 // Otherwise, expand into a bunch of logical ops. Note that these ops
2235 // depend on the PPC behavior for oversized shift amounts.
2236 SDOperand Lo = Op.getOperand(0);
2237 SDOperand Hi = Op.getOperand(1);
2238 SDOperand Amt = Op.getOperand(2);
2239
2240 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2241 DAG.getConstant(32, MVT::i32), Amt);
2242 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2243 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2244 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2245 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2246 DAG.getConstant(-32U, MVT::i32));
2247 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2248 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2249 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2250 SDOperand OutOps[] = { OutLo, OutHi };
2251 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2252 OutOps, 2);
2253}
2254
2255static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2256 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2257 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2258
2259 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2260 SDOperand Lo = Op.getOperand(0);
2261 SDOperand Hi = Op.getOperand(1);
2262 SDOperand Amt = Op.getOperand(2);
2263
2264 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2265 DAG.getConstant(32, MVT::i32), Amt);
2266 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2267 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2268 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2269 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2270 DAG.getConstant(-32U, MVT::i32));
2271 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2272 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2273 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2274 Tmp4, Tmp6, ISD::SETLE);
2275 SDOperand OutOps[] = { OutLo, OutHi };
2276 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2277 OutOps, 2);
2278}
2279
2280//===----------------------------------------------------------------------===//
2281// Vector related lowering.
2282//
2283
2284// If this is a vector of constants or undefs, get the bits. A bit in
2285// UndefBits is set if the corresponding element of the vector is an
2286// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2287// zero. Return true if this is not an array of constants, false if it is.
2288//
2289static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2290 uint64_t UndefBits[2]) {
2291 // Start with zero'd results.
2292 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2293
2294 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2295 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2296 SDOperand OpVal = BV->getOperand(i);
2297
2298 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2299 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2300
2301 uint64_t EltBits = 0;
2302 if (OpVal.getOpcode() == ISD::UNDEF) {
2303 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2304 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2305 continue;
2306 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2307 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2308 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2309 assert(CN->getValueType(0) == MVT::f32 &&
2310 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002311 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002312 } else {
2313 // Nonconstant element.
2314 return true;
2315 }
2316
2317 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2318 }
2319
2320 //printf("%llx %llx %llx %llx\n",
2321 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2322 return false;
2323}
2324
2325// If this is a splat (repetition) of a value across the whole vector, return
2326// the smallest size that splats it. For example, "0x01010101010101..." is a
2327// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2328// SplatSize = 1 byte.
2329static bool isConstantSplat(const uint64_t Bits128[2],
2330 const uint64_t Undef128[2],
2331 unsigned &SplatBits, unsigned &SplatUndef,
2332 unsigned &SplatSize) {
2333
2334 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2335 // the same as the lower 64-bits, ignoring undefs.
2336 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2337 return false; // Can't be a splat if two pieces don't match.
2338
2339 uint64_t Bits64 = Bits128[0] | Bits128[1];
2340 uint64_t Undef64 = Undef128[0] & Undef128[1];
2341
2342 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2343 // undefs.
2344 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2345 return false; // Can't be a splat if two pieces don't match.
2346
2347 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2348 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2349
2350 // If the top 16-bits are different than the lower 16-bits, ignoring
2351 // undefs, we have an i32 splat.
2352 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2353 SplatBits = Bits32;
2354 SplatUndef = Undef32;
2355 SplatSize = 4;
2356 return true;
2357 }
2358
2359 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2360 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2361
2362 // If the top 8-bits are different than the lower 8-bits, ignoring
2363 // undefs, we have an i16 splat.
2364 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2365 SplatBits = Bits16;
2366 SplatUndef = Undef16;
2367 SplatSize = 2;
2368 return true;
2369 }
2370
2371 // Otherwise, we have an 8-bit splat.
2372 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2373 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2374 SplatSize = 1;
2375 return true;
2376}
2377
2378/// BuildSplatI - Build a canonical splati of Val with an element size of
2379/// SplatSize. Cast the result to VT.
2380static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2381 SelectionDAG &DAG) {
2382 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2383
2384 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2385 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2386 };
2387
2388 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2389
2390 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2391 if (Val == -1)
2392 SplatSize = 1;
2393
2394 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2395
2396 // Build a canonical splat for this value.
2397 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2398 SmallVector<SDOperand, 8> Ops;
2399 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2400 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2401 &Ops[0], Ops.size());
2402 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2403}
2404
2405/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2406/// specified intrinsic ID.
2407static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2408 SelectionDAG &DAG,
2409 MVT::ValueType DestVT = MVT::Other) {
2410 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2411 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2412 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2413}
2414
2415/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2416/// specified intrinsic ID.
2417static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2418 SDOperand Op2, SelectionDAG &DAG,
2419 MVT::ValueType DestVT = MVT::Other) {
2420 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2421 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2422 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2423}
2424
2425
2426/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2427/// amount. The result has the specified value type.
2428static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2429 MVT::ValueType VT, SelectionDAG &DAG) {
2430 // Force LHS/RHS to be the right type.
2431 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2432 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2433
2434 SDOperand Ops[16];
2435 for (unsigned i = 0; i != 16; ++i)
2436 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2437 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2438 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2439 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2440}
2441
2442// If this is a case we can't handle, return null and let the default
2443// expansion code take care of it. If we CAN select this case, and if it
2444// selects to a single instruction, return Op. Otherwise, if we can codegen
2445// this case more efficiently than a constant pool load, lower it to the
2446// sequence of ops that should be used.
2447static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2448 // If this is a vector of constants or undefs, get the bits. A bit in
2449 // UndefBits is set if the corresponding element of the vector is an
2450 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2451 // zero.
2452 uint64_t VectorBits[2];
2453 uint64_t UndefBits[2];
2454 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2455 return SDOperand(); // Not a constant vector.
2456
2457 // If this is a splat (repetition) of a value across the whole vector, return
2458 // the smallest size that splats it. For example, "0x01010101010101..." is a
2459 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2460 // SplatSize = 1 byte.
2461 unsigned SplatBits, SplatUndef, SplatSize;
2462 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2463 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2464
2465 // First, handle single instruction cases.
2466
2467 // All zeros?
2468 if (SplatBits == 0) {
2469 // Canonicalize all zero vectors to be v4i32.
2470 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2471 SDOperand Z = DAG.getConstant(0, MVT::i32);
2472 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2473 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2474 }
2475 return Op;
2476 }
2477
2478 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2479 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2480 if (SextVal >= -16 && SextVal <= 15)
2481 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2482
2483
2484 // Two instruction sequences.
2485
2486 // If this value is in the range [-32,30] and is even, use:
2487 // tmp = VSPLTI[bhw], result = add tmp, tmp
2488 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2489 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2490 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2491 }
2492
2493 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2494 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2495 // for fneg/fabs.
2496 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2497 // Make -1 and vspltisw -1:
2498 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2499
2500 // Make the VSLW intrinsic, computing 0x8000_0000.
2501 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2502 OnesV, DAG);
2503
2504 // xor by OnesV to invert it.
2505 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2506 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2507 }
2508
2509 // Check to see if this is a wide variety of vsplti*, binop self cases.
2510 unsigned SplatBitSize = SplatSize*8;
2511 static const signed char SplatCsts[] = {
2512 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2513 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2514 };
2515
Owen Anderson1636de92007-09-07 04:06:50 +00002516 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002517 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2518 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2519 int i = SplatCsts[idx];
2520
2521 // Figure out what shift amount will be used by altivec if shifted by i in
2522 // this splat size.
2523 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2524
2525 // vsplti + shl self.
2526 if (SextVal == (i << (int)TypeShiftAmt)) {
2527 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2528 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2529 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2530 Intrinsic::ppc_altivec_vslw
2531 };
2532 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2533 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2534 }
2535
2536 // vsplti + srl self.
2537 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2538 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2539 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2540 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2541 Intrinsic::ppc_altivec_vsrw
2542 };
2543 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2544 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2545 }
2546
2547 // vsplti + sra self.
2548 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2549 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2550 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2551 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2552 Intrinsic::ppc_altivec_vsraw
2553 };
2554 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2555 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2556 }
2557
2558 // vsplti + rol self.
2559 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2560 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2561 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2562 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2563 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2564 Intrinsic::ppc_altivec_vrlw
2565 };
2566 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2567 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2568 }
2569
2570 // t = vsplti c, result = vsldoi t, t, 1
2571 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2572 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2573 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2574 }
2575 // t = vsplti c, result = vsldoi t, t, 2
2576 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2577 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2578 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2579 }
2580 // t = vsplti c, result = vsldoi t, t, 3
2581 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2582 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2583 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2584 }
2585 }
2586
2587 // Three instruction sequences.
2588
2589 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2590 if (SextVal >= 0 && SextVal <= 31) {
2591 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2592 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002593 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2595 }
2596 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2597 if (SextVal >= -31 && SextVal <= 0) {
2598 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2599 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002600 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2602 }
2603 }
2604
2605 return SDOperand();
2606}
2607
2608/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2609/// the specified operations to build the shuffle.
2610static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2611 SDOperand RHS, SelectionDAG &DAG) {
2612 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2613 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2614 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2615
2616 enum {
2617 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2618 OP_VMRGHW,
2619 OP_VMRGLW,
2620 OP_VSPLTISW0,
2621 OP_VSPLTISW1,
2622 OP_VSPLTISW2,
2623 OP_VSPLTISW3,
2624 OP_VSLDOI4,
2625 OP_VSLDOI8,
2626 OP_VSLDOI12
2627 };
2628
2629 if (OpNum == OP_COPY) {
2630 if (LHSID == (1*9+2)*9+3) return LHS;
2631 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2632 return RHS;
2633 }
2634
2635 SDOperand OpLHS, OpRHS;
2636 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2637 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2638
2639 unsigned ShufIdxs[16];
2640 switch (OpNum) {
2641 default: assert(0 && "Unknown i32 permute!");
2642 case OP_VMRGHW:
2643 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2644 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2645 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2646 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2647 break;
2648 case OP_VMRGLW:
2649 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2650 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2651 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2652 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2653 break;
2654 case OP_VSPLTISW0:
2655 for (unsigned i = 0; i != 16; ++i)
2656 ShufIdxs[i] = (i&3)+0;
2657 break;
2658 case OP_VSPLTISW1:
2659 for (unsigned i = 0; i != 16; ++i)
2660 ShufIdxs[i] = (i&3)+4;
2661 break;
2662 case OP_VSPLTISW2:
2663 for (unsigned i = 0; i != 16; ++i)
2664 ShufIdxs[i] = (i&3)+8;
2665 break;
2666 case OP_VSPLTISW3:
2667 for (unsigned i = 0; i != 16; ++i)
2668 ShufIdxs[i] = (i&3)+12;
2669 break;
2670 case OP_VSLDOI4:
2671 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2672 case OP_VSLDOI8:
2673 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2674 case OP_VSLDOI12:
2675 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2676 }
2677 SDOperand Ops[16];
2678 for (unsigned i = 0; i != 16; ++i)
2679 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2680
2681 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2682 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2683}
2684
2685/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2686/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2687/// return the code it can be lowered into. Worst case, it can always be
2688/// lowered into a vperm.
2689static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2690 SDOperand V1 = Op.getOperand(0);
2691 SDOperand V2 = Op.getOperand(1);
2692 SDOperand PermMask = Op.getOperand(2);
2693
2694 // Cases that are handled by instructions that take permute immediates
2695 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2696 // selected by the instruction selector.
2697 if (V2.getOpcode() == ISD::UNDEF) {
2698 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2699 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2700 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2701 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2702 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2703 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2704 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2705 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2706 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2707 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2708 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2709 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2710 return Op;
2711 }
2712 }
2713
2714 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2715 // and produce a fixed permutation. If any of these match, do not lower to
2716 // VPERM.
2717 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2718 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2719 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2720 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2721 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2722 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2723 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2724 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2725 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2726 return Op;
2727
2728 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2729 // perfect shuffle table to emit an optimal matching sequence.
2730 unsigned PFIndexes[4];
2731 bool isFourElementShuffle = true;
2732 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2733 unsigned EltNo = 8; // Start out undef.
2734 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2735 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2736 continue; // Undef, ignore it.
2737
2738 unsigned ByteSource =
2739 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2740 if ((ByteSource & 3) != j) {
2741 isFourElementShuffle = false;
2742 break;
2743 }
2744
2745 if (EltNo == 8) {
2746 EltNo = ByteSource/4;
2747 } else if (EltNo != ByteSource/4) {
2748 isFourElementShuffle = false;
2749 break;
2750 }
2751 }
2752 PFIndexes[i] = EltNo;
2753 }
2754
2755 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2756 // perfect shuffle vector to determine if it is cost effective to do this as
2757 // discrete instructions, or whether we should use a vperm.
2758 if (isFourElementShuffle) {
2759 // Compute the index in the perfect shuffle table.
2760 unsigned PFTableIndex =
2761 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2762
2763 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2764 unsigned Cost = (PFEntry >> 30);
2765
2766 // Determining when to avoid vperm is tricky. Many things affect the cost
2767 // of vperm, particularly how many times the perm mask needs to be computed.
2768 // For example, if the perm mask can be hoisted out of a loop or is already
2769 // used (perhaps because there are multiple permutes with the same shuffle
2770 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2771 // the loop requires an extra register.
2772 //
2773 // As a compromise, we only emit discrete instructions if the shuffle can be
2774 // generated in 3 or fewer operations. When we have loop information
2775 // available, if this block is within a loop, we should avoid using vperm
2776 // for 3-operation perms and use a constant pool load instead.
2777 if (Cost < 3)
2778 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2779 }
2780
2781 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2782 // vector that will get spilled to the constant pool.
2783 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2784
2785 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2786 // that it is in input element units, not in bytes. Convert now.
2787 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2788 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2789
2790 SmallVector<SDOperand, 16> ResultMask;
2791 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2792 unsigned SrcElt;
2793 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2794 SrcElt = 0;
2795 else
2796 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2797
2798 for (unsigned j = 0; j != BytesPerElement; ++j)
2799 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2800 MVT::i8));
2801 }
2802
2803 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2804 &ResultMask[0], ResultMask.size());
2805 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2806}
2807
2808/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2809/// altivec comparison. If it is, return true and fill in Opc/isDot with
2810/// information about the intrinsic.
2811static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2812 bool &isDot) {
2813 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2814 CompareOpc = -1;
2815 isDot = false;
2816 switch (IntrinsicID) {
2817 default: return false;
2818 // Comparison predicates.
2819 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2820 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2821 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2822 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2823 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2824 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2825 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2826 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2827 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2828 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2829 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2830 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2831 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2832
2833 // Normal Comparisons.
2834 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2835 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2836 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2837 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2838 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2839 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2840 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2841 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2842 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2843 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2844 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2845 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2846 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2847 }
2848 return true;
2849}
2850
2851/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2852/// lower, do it, otherwise return null.
2853static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2854 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2855 // opcode number of the comparison.
2856 int CompareOpc;
2857 bool isDot;
2858 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2859 return SDOperand(); // Don't custom lower most intrinsics.
2860
2861 // If this is a non-dot comparison, make the VCMP node and we are done.
2862 if (!isDot) {
2863 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2864 Op.getOperand(1), Op.getOperand(2),
2865 DAG.getConstant(CompareOpc, MVT::i32));
2866 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2867 }
2868
2869 // Create the PPCISD altivec 'dot' comparison node.
2870 SDOperand Ops[] = {
2871 Op.getOperand(2), // LHS
2872 Op.getOperand(3), // RHS
2873 DAG.getConstant(CompareOpc, MVT::i32)
2874 };
2875 std::vector<MVT::ValueType> VTs;
2876 VTs.push_back(Op.getOperand(2).getValueType());
2877 VTs.push_back(MVT::Flag);
2878 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2879
2880 // Now that we have the comparison, emit a copy from the CR to a GPR.
2881 // This is flagged to the above dot comparison.
2882 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2883 DAG.getRegister(PPC::CR6, MVT::i32),
2884 CompNode.getValue(1));
2885
2886 // Unpack the result based on how the target uses it.
2887 unsigned BitNo; // Bit # of CR6.
2888 bool InvertBit; // Invert result?
2889 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2890 default: // Can't happen, don't crash on invalid number though.
2891 case 0: // Return the value of the EQ bit of CR6.
2892 BitNo = 0; InvertBit = false;
2893 break;
2894 case 1: // Return the inverted value of the EQ bit of CR6.
2895 BitNo = 0; InvertBit = true;
2896 break;
2897 case 2: // Return the value of the LT bit of CR6.
2898 BitNo = 2; InvertBit = false;
2899 break;
2900 case 3: // Return the inverted value of the LT bit of CR6.
2901 BitNo = 2; InvertBit = true;
2902 break;
2903 }
2904
2905 // Shift the bit into the low position.
2906 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2907 DAG.getConstant(8-(3-BitNo), MVT::i32));
2908 // Isolate the bit.
2909 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2910 DAG.getConstant(1, MVT::i32));
2911
2912 // If we are supposed to, toggle the bit.
2913 if (InvertBit)
2914 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2915 DAG.getConstant(1, MVT::i32));
2916 return Flags;
2917}
2918
2919static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2920 // Create a stack slot that is 16-byte aligned.
2921 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2922 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2923 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2924 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2925
2926 // Store the input value into Value#0 of the stack slot.
2927 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2928 Op.getOperand(0), FIdx, NULL, 0);
2929 // Load it out.
2930 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2931}
2932
2933static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2934 if (Op.getValueType() == MVT::v4i32) {
2935 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2936
2937 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2938 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2939
2940 SDOperand RHSSwap = // = vrlw RHS, 16
2941 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2942
2943 // Shrinkify inputs to v8i16.
2944 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2945 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2946 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2947
2948 // Low parts multiplied together, generating 32-bit results (we ignore the
2949 // top parts).
2950 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2951 LHS, RHS, DAG, MVT::v4i32);
2952
2953 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2954 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2955 // Shift the high parts up 16 bits.
2956 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2957 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2958 } else if (Op.getValueType() == MVT::v8i16) {
2959 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2960
2961 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2962
2963 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2964 LHS, RHS, Zero, DAG);
2965 } else if (Op.getValueType() == MVT::v16i8) {
2966 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2967
2968 // Multiply the even 8-bit parts, producing 16-bit sums.
2969 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2970 LHS, RHS, DAG, MVT::v8i16);
2971 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2972
2973 // Multiply the odd 8-bit parts, producing 16-bit sums.
2974 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2975 LHS, RHS, DAG, MVT::v8i16);
2976 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2977
2978 // Merge the results together.
2979 SDOperand Ops[16];
2980 for (unsigned i = 0; i != 8; ++i) {
2981 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
2982 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2983 }
2984 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2985 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2986 } else {
2987 assert(0 && "Unknown mul to lower!");
2988 abort();
2989 }
2990}
2991
2992/// LowerOperation - Provide custom lowering hooks for some operations.
2993///
2994SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2995 switch (Op.getOpcode()) {
2996 default: assert(0 && "Wasn't expecting to be able to lower this!");
2997 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2998 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
2999 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3000 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3001 case ISD::SETCC: return LowerSETCC(Op, DAG);
3002 case ISD::VASTART:
3003 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3004 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3005
3006 case ISD::VAARG:
3007 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3008 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3009
3010 case ISD::FORMAL_ARGUMENTS:
3011 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3012 VarArgsStackOffset, VarArgsNumGPR,
3013 VarArgsNumFPR, PPCSubTarget);
3014
3015 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
3016 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3017 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3018 case ISD::DYNAMIC_STACKALLOC:
3019 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3020
3021 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3022 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3023 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003024 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003025
3026 // Lower 64-bit shifts.
3027 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3028 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3029 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3030
3031 // Vector-related lowering.
3032 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3033 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3034 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3035 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3036 case ISD::MUL: return LowerMUL(Op, DAG);
3037
Chris Lattnerf8b93372007-12-08 06:59:59 +00003038 // Frame & Return address.
3039 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3041 }
3042 return SDOperand();
3043}
3044
Chris Lattner28771092007-11-28 18:44:47 +00003045SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3046 switch (N->getOpcode()) {
3047 default: assert(0 && "Wasn't expecting to be able to lower this!");
3048 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3049 }
3050}
3051
3052
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003053//===----------------------------------------------------------------------===//
3054// Other Lowering Code
3055//===----------------------------------------------------------------------===//
3056
3057MachineBasicBlock *
3058PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3059 MachineBasicBlock *BB) {
3060 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3061 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3062 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3063 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3064 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3065 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3066 "Unexpected instr type to insert");
3067
3068 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3069 // control-flow pattern. The incoming instruction knows the destination vreg
3070 // to set, the condition code register to branch on, the true/false values to
3071 // select between, and a branch opcode to use.
3072 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3073 ilist<MachineBasicBlock>::iterator It = BB;
3074 ++It;
3075
3076 // thisMBB:
3077 // ...
3078 // TrueVal = ...
3079 // cmpTY ccX, r1, r2
3080 // bCC copy1MBB
3081 // fallthrough --> copy0MBB
3082 MachineBasicBlock *thisMBB = BB;
3083 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3084 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3085 unsigned SelectPred = MI->getOperand(4).getImm();
3086 BuildMI(BB, TII->get(PPC::BCC))
3087 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3088 MachineFunction *F = BB->getParent();
3089 F->getBasicBlockList().insert(It, copy0MBB);
3090 F->getBasicBlockList().insert(It, sinkMBB);
3091 // Update machine-CFG edges by first adding all successors of the current
3092 // block to the new block which will contain the Phi node for the select.
3093 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3094 e = BB->succ_end(); i != e; ++i)
3095 sinkMBB->addSuccessor(*i);
3096 // Next, remove all successors of the current block, and add the true
3097 // and fallthrough blocks as its successors.
3098 while(!BB->succ_empty())
3099 BB->removeSuccessor(BB->succ_begin());
3100 BB->addSuccessor(copy0MBB);
3101 BB->addSuccessor(sinkMBB);
3102
3103 // copy0MBB:
3104 // %FalseValue = ...
3105 // # fallthrough to sinkMBB
3106 BB = copy0MBB;
3107
3108 // Update machine-CFG edges
3109 BB->addSuccessor(sinkMBB);
3110
3111 // sinkMBB:
3112 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3113 // ...
3114 BB = sinkMBB;
3115 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3116 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3117 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3118
3119 delete MI; // The pseudo instruction is gone now.
3120 return BB;
3121}
3122
3123//===----------------------------------------------------------------------===//
3124// Target Optimization Hooks
3125//===----------------------------------------------------------------------===//
3126
3127SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3128 DAGCombinerInfo &DCI) const {
3129 TargetMachine &TM = getTargetMachine();
3130 SelectionDAG &DAG = DCI.DAG;
3131 switch (N->getOpcode()) {
3132 default: break;
3133 case PPCISD::SHL:
3134 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3135 if (C->getValue() == 0) // 0 << V -> 0.
3136 return N->getOperand(0);
3137 }
3138 break;
3139 case PPCISD::SRL:
3140 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3141 if (C->getValue() == 0) // 0 >>u V -> 0.
3142 return N->getOperand(0);
3143 }
3144 break;
3145 case PPCISD::SRA:
3146 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3147 if (C->getValue() == 0 || // 0 >>s V -> 0.
3148 C->isAllOnesValue()) // -1 >>s V -> -1.
3149 return N->getOperand(0);
3150 }
3151 break;
3152
3153 case ISD::SINT_TO_FP:
3154 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3155 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3156 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3157 // We allow the src/dst to be either f32/f64, but the intermediate
3158 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003159 if (N->getOperand(0).getValueType() == MVT::i64 &&
3160 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161 SDOperand Val = N->getOperand(0).getOperand(0);
3162 if (Val.getValueType() == MVT::f32) {
3163 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3164 DCI.AddToWorklist(Val.Val);
3165 }
3166
3167 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3168 DCI.AddToWorklist(Val.Val);
3169 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3170 DCI.AddToWorklist(Val.Val);
3171 if (N->getValueType(0) == MVT::f32) {
Chris Lattner5872a362008-01-17 07:00:52 +00003172 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3173 DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003174 DCI.AddToWorklist(Val.Val);
3175 }
3176 return Val;
3177 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3178 // If the intermediate type is i32, we can avoid the load/store here
3179 // too.
3180 }
3181 }
3182 }
3183 break;
3184 case ISD::STORE:
3185 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3186 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3187 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003188 N->getOperand(1).getValueType() == MVT::i32 &&
3189 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003190 SDOperand Val = N->getOperand(1).getOperand(0);
3191 if (Val.getValueType() == MVT::f32) {
3192 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3193 DCI.AddToWorklist(Val.Val);
3194 }
3195 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3196 DCI.AddToWorklist(Val.Val);
3197
3198 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3199 N->getOperand(2), N->getOperand(3));
3200 DCI.AddToWorklist(Val.Val);
3201 return Val;
3202 }
3203
3204 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3205 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3206 N->getOperand(1).Val->hasOneUse() &&
3207 (N->getOperand(1).getValueType() == MVT::i32 ||
3208 N->getOperand(1).getValueType() == MVT::i16)) {
3209 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3210 // Do an any-extend to 32-bits if this is a half-word input.
3211 if (BSwapOp.getValueType() == MVT::i16)
3212 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3213
3214 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3215 N->getOperand(2), N->getOperand(3),
3216 DAG.getValueType(N->getOperand(1).getValueType()));
3217 }
3218 break;
3219 case ISD::BSWAP:
3220 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3221 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3222 N->getOperand(0).hasOneUse() &&
3223 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3224 SDOperand Load = N->getOperand(0);
3225 LoadSDNode *LD = cast<LoadSDNode>(Load);
3226 // Create the byte-swapping load.
3227 std::vector<MVT::ValueType> VTs;
3228 VTs.push_back(MVT::i32);
3229 VTs.push_back(MVT::Other);
3230 SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3231 SDOperand Ops[] = {
3232 LD->getChain(), // Chain
3233 LD->getBasePtr(), // Ptr
3234 SV, // SrcValue
3235 DAG.getValueType(N->getValueType(0)) // VT
3236 };
3237 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3238
3239 // If this is an i16 load, insert the truncate.
3240 SDOperand ResVal = BSLoad;
3241 if (N->getValueType(0) == MVT::i16)
3242 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3243
3244 // First, combine the bswap away. This makes the value produced by the
3245 // load dead.
3246 DCI.CombineTo(N, ResVal);
3247
3248 // Next, combine the load away, we give it a bogus result value but a real
3249 // chain result. The result value is dead because the bswap is dead.
3250 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3251
3252 // Return N so it doesn't get rechecked!
3253 return SDOperand(N, 0);
3254 }
3255
3256 break;
3257 case PPCISD::VCMP: {
3258 // If a VCMPo node already exists with exactly the same operands as this
3259 // node, use its result instead of this node (VCMPo computes both a CR6 and
3260 // a normal output).
3261 //
3262 if (!N->getOperand(0).hasOneUse() &&
3263 !N->getOperand(1).hasOneUse() &&
3264 !N->getOperand(2).hasOneUse()) {
3265
3266 // Scan all of the users of the LHS, looking for VCMPo's that match.
3267 SDNode *VCMPoNode = 0;
3268
3269 SDNode *LHSN = N->getOperand(0).Val;
3270 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3271 UI != E; ++UI)
3272 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3273 (*UI)->getOperand(1) == N->getOperand(1) &&
3274 (*UI)->getOperand(2) == N->getOperand(2) &&
3275 (*UI)->getOperand(0) == N->getOperand(0)) {
3276 VCMPoNode = *UI;
3277 break;
3278 }
3279
3280 // If there is no VCMPo node, or if the flag value has a single use, don't
3281 // transform this.
3282 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3283 break;
3284
3285 // Look at the (necessarily single) use of the flag value. If it has a
3286 // chain, this transformation is more complex. Note that multiple things
3287 // could use the value result, which we should ignore.
3288 SDNode *FlagUser = 0;
3289 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3290 FlagUser == 0; ++UI) {
3291 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3292 SDNode *User = *UI;
3293 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3294 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3295 FlagUser = User;
3296 break;
3297 }
3298 }
3299 }
3300
3301 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3302 // give up for right now.
3303 if (FlagUser->getOpcode() == PPCISD::MFCR)
3304 return SDOperand(VCMPoNode, 0);
3305 }
3306 break;
3307 }
3308 case ISD::BR_CC: {
3309 // If this is a branch on an altivec predicate comparison, lower this so
3310 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3311 // lowering is done pre-legalize, because the legalizer lowers the predicate
3312 // compare down to code that is difficult to reassemble.
3313 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3314 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3315 int CompareOpc;
3316 bool isDot;
3317
3318 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3319 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3320 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3321 assert(isDot && "Can't compare against a vector result!");
3322
3323 // If this is a comparison against something other than 0/1, then we know
3324 // that the condition is never/always true.
3325 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3326 if (Val != 0 && Val != 1) {
3327 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3328 return N->getOperand(0);
3329 // Always !=, turn it into an unconditional branch.
3330 return DAG.getNode(ISD::BR, MVT::Other,
3331 N->getOperand(0), N->getOperand(4));
3332 }
3333
3334 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3335
3336 // Create the PPCISD altivec 'dot' comparison node.
3337 std::vector<MVT::ValueType> VTs;
3338 SDOperand Ops[] = {
3339 LHS.getOperand(2), // LHS of compare
3340 LHS.getOperand(3), // RHS of compare
3341 DAG.getConstant(CompareOpc, MVT::i32)
3342 };
3343 VTs.push_back(LHS.getOperand(2).getValueType());
3344 VTs.push_back(MVT::Flag);
3345 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3346
3347 // Unpack the result based on how the target uses it.
3348 PPC::Predicate CompOpc;
3349 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3350 default: // Can't happen, don't crash on invalid number though.
3351 case 0: // Branch on the value of the EQ bit of CR6.
3352 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3353 break;
3354 case 1: // Branch on the inverted value of the EQ bit of CR6.
3355 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3356 break;
3357 case 2: // Branch on the value of the LT bit of CR6.
3358 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3359 break;
3360 case 3: // Branch on the inverted value of the LT bit of CR6.
3361 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3362 break;
3363 }
3364
3365 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3366 DAG.getConstant(CompOpc, MVT::i32),
3367 DAG.getRegister(PPC::CR6, MVT::i32),
3368 N->getOperand(4), CompNode.getValue(1));
3369 }
3370 break;
3371 }
3372 }
3373
3374 return SDOperand();
3375}
3376
3377//===----------------------------------------------------------------------===//
3378// Inline Assembly Support
3379//===----------------------------------------------------------------------===//
3380
3381void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3382 uint64_t Mask,
3383 uint64_t &KnownZero,
3384 uint64_t &KnownOne,
3385 const SelectionDAG &DAG,
3386 unsigned Depth) const {
3387 KnownZero = 0;
3388 KnownOne = 0;
3389 switch (Op.getOpcode()) {
3390 default: break;
3391 case PPCISD::LBRX: {
3392 // lhbrx is known to have the top bits cleared out.
3393 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3394 KnownZero = 0xFFFF0000;
3395 break;
3396 }
3397 case ISD::INTRINSIC_WO_CHAIN: {
3398 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3399 default: break;
3400 case Intrinsic::ppc_altivec_vcmpbfp_p:
3401 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3402 case Intrinsic::ppc_altivec_vcmpequb_p:
3403 case Intrinsic::ppc_altivec_vcmpequh_p:
3404 case Intrinsic::ppc_altivec_vcmpequw_p:
3405 case Intrinsic::ppc_altivec_vcmpgefp_p:
3406 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3407 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3408 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3409 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3410 case Intrinsic::ppc_altivec_vcmpgtub_p:
3411 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3412 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3413 KnownZero = ~1U; // All bits but the low one are known to be zero.
3414 break;
3415 }
3416 }
3417 }
3418}
3419
3420
3421/// getConstraintType - Given a constraint, return the type of
3422/// constraint it is for this target.
3423PPCTargetLowering::ConstraintType
3424PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3425 if (Constraint.size() == 1) {
3426 switch (Constraint[0]) {
3427 default: break;
3428 case 'b':
3429 case 'r':
3430 case 'f':
3431 case 'v':
3432 case 'y':
3433 return C_RegisterClass;
3434 }
3435 }
3436 return TargetLowering::getConstraintType(Constraint);
3437}
3438
3439std::pair<unsigned, const TargetRegisterClass*>
3440PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3441 MVT::ValueType VT) const {
3442 if (Constraint.size() == 1) {
3443 // GCC RS6000 Constraint Letters
3444 switch (Constraint[0]) {
3445 case 'b': // R1-R31
3446 case 'r': // R0-R31
3447 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3448 return std::make_pair(0U, PPC::G8RCRegisterClass);
3449 return std::make_pair(0U, PPC::GPRCRegisterClass);
3450 case 'f':
3451 if (VT == MVT::f32)
3452 return std::make_pair(0U, PPC::F4RCRegisterClass);
3453 else if (VT == MVT::f64)
3454 return std::make_pair(0U, PPC::F8RCRegisterClass);
3455 break;
3456 case 'v':
3457 return std::make_pair(0U, PPC::VRRCRegisterClass);
3458 case 'y': // crrc
3459 return std::make_pair(0U, PPC::CRRCRegisterClass);
3460 }
3461 }
3462
3463 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3464}
3465
3466
Chris Lattnera531abc2007-08-25 00:47:38 +00003467/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3468/// vector. If it is invalid, don't add anything to Ops.
3469void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3470 std::vector<SDOperand>&Ops,
3471 SelectionDAG &DAG) {
3472 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003473 switch (Letter) {
3474 default: break;
3475 case 'I':
3476 case 'J':
3477 case 'K':
3478 case 'L':
3479 case 'M':
3480 case 'N':
3481 case 'O':
3482 case 'P': {
3483 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003484 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003485 unsigned Value = CST->getValue();
3486 switch (Letter) {
3487 default: assert(0 && "Unknown constraint letter!");
3488 case 'I': // "I" is a signed 16-bit constant.
3489 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003490 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491 break;
3492 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3493 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3494 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003495 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496 break;
3497 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3498 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003499 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003500 break;
3501 case 'M': // "M" is a constant that is greater than 31.
3502 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003503 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003504 break;
3505 case 'N': // "N" is a positive constant that is an exact power of two.
3506 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003507 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003508 break;
3509 case 'O': // "O" is the constant zero.
3510 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003511 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003512 break;
3513 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3514 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003515 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 break;
3517 }
3518 break;
3519 }
3520 }
3521
Chris Lattnera531abc2007-08-25 00:47:38 +00003522 if (Result.Val) {
3523 Ops.push_back(Result);
3524 return;
3525 }
3526
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003527 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003528 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003529}
3530
3531// isLegalAddressingMode - Return true if the addressing mode represented
3532// by AM is legal for this target, for a load/store of the specified type.
3533bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3534 const Type *Ty) const {
3535 // FIXME: PPC does not allow r+i addressing modes for vectors!
3536
3537 // PPC allows a sign-extended 16-bit immediate field.
3538 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3539 return false;
3540
3541 // No global is ever allowed as a base.
3542 if (AM.BaseGV)
3543 return false;
3544
3545 // PPC only support r+r,
3546 switch (AM.Scale) {
3547 case 0: // "r+i" or just "i", depending on HasBaseReg.
3548 break;
3549 case 1:
3550 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3551 return false;
3552 // Otherwise we have r+r or r+i.
3553 break;
3554 case 2:
3555 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3556 return false;
3557 // Allow 2*r as r+r.
3558 break;
3559 default:
3560 // No other scales are supported.
3561 return false;
3562 }
3563
3564 return true;
3565}
3566
3567/// isLegalAddressImmediate - Return true if the integer value can be used
3568/// as the offset of the target addressing mode for load / store of the
3569/// given type.
3570bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3571 // PPC allows a sign-extended 16-bit immediate field.
3572 return (V > -(1 << 16) && V < (1 << 16)-1);
3573}
3574
3575bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3576 return false;
3577}
3578
Chris Lattnerf8b93372007-12-08 06:59:59 +00003579SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3580 // Depths > 0 not supported yet!
3581 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3582 return SDOperand();
3583
3584 MachineFunction &MF = DAG.getMachineFunction();
3585 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3586 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3587 if (RAIdx == 0) {
3588 bool isPPC64 = PPCSubTarget.isPPC64();
3589 int Offset =
3590 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3591
3592 // Set up a frame object for the return address.
3593 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3594
3595 // Remember it for next time.
3596 FuncInfo->setReturnAddrSaveIndex(RAIdx);
3597
3598 // Make sure the function really does not optimize away the store of the RA
3599 // to the stack.
3600 FuncInfo->setLRStoreRequired();
3601 }
3602
3603 // Just load the return address off the stack.
3604 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
3605 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3606}
3607
3608SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003609 // Depths > 0 not supported yet!
3610 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3611 return SDOperand();
3612
3613 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3614 bool isPPC64 = PtrVT == MVT::i64;
3615
3616 MachineFunction &MF = DAG.getMachineFunction();
3617 MachineFrameInfo *MFI = MF.getFrameInfo();
3618 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3619 && MFI->getStackSize();
3620
3621 if (isPPC64)
3622 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003623 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624 else
3625 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3626 MVT::i32);
3627}