blob: d99236b16b65917be15cffe55bb771665d473121 [file] [log] [blame]
Sean Callanan8ed9f512009-12-19 02:59:52 +00001//===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
11// 64-bit X86 instruction sets. The main decode sequence for an assembly
12// instruction in this disassembler is:
13//
14// 1. Read the prefix bytes and determine the attributes of the instruction.
15// These attributes, recorded in enum attributeBits
16// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
17// provides a mapping from bitmasks to contexts, which are represented by
18// enum InstructionContext (ibid.).
19//
20// 2. Read the opcode, and determine what kind of opcode it is. The
21// disassembler distinguishes four kinds of opcodes, which are enumerated in
22// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
23// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
24// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
25//
26// 3. Depending on the opcode type, look in one of four ClassDecision structures
27// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
28// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
29// a ModRMDecision (ibid.).
30//
31// 4. Some instructions, such as escape opcodes or extended opcodes, or even
32// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
33// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
34// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
35// ModR/M byte is required and how to interpret it.
36//
37// 5. After resolving the ModRMDecision, the disassembler has a unique ID
38// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
39// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
40// meanings of its operands.
41//
42// 6. For each operand, its encoding is an entry from OperandEncoding
43// (X86DisassemblerDecoderCommon.h) and its type is an entry from
44// OperandType (ibid.). The encoding indicates how to read it from the
45// instruction; the type indicates how to interpret the value once it has
46// been read. For example, a register operand could be stored in the R/M
47// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
48// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
49// register, for instance). Given this information, the operands can be
50// extracted and interpreted.
51//
52// 7. As the last step, the disassembler translates the instruction information
53// and operands into a format understandable by the client - in this case, an
54// MCInst for use by the MC infrastructure.
55//
56// The disassembler is broken broadly into two parts: the table emitter that
57// emits the instruction decode tables discussed above during compilation, and
58// the disassembler itself. The table emitter is documented in more detail in
59// utils/TableGen/X86DisassemblerEmitter.h.
60//
61// X86Disassembler.h contains the public interface for the disassembler,
62// adhering to the MCDisassembler interface.
63// X86Disassembler.cpp contains the code responsible for step 7, and for
64// invoking the decoder to execute steps 1-6.
65// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
66// table emitter and the disassembler.
67// X86DisassemblerDecoder.h contains the public interface of the decoder,
68// factored out into C for possible use by other projects.
69// X86DisassemblerDecoder.c contains the source code of the decoder, which is
70// responsible for steps 1-6.
71//
72//===----------------------------------------------------------------------===//
73
74#ifndef X86DISASSEMBLER_H
75#define X86DISASSEMBLER_H
76
77#define INSTRUCTION_SPECIFIER_FIELDS \
78 const char* name;
79
80#define INSTRUCTION_IDS \
Benjamin Kramer4d1dca92010-10-23 09:10:44 +000081 const InstrUID *instructionIDs;
Sean Callanan8ed9f512009-12-19 02:59:52 +000082
83#include "X86DisassemblerDecoderCommon.h"
84
85#undef INSTRUCTION_SPECIFIER_FIELDS
86#undef INSTRUCTION_IDS
87
88#include "llvm/MC/MCDisassembler.h"
89
90struct InternalInstruction;
91
92namespace llvm {
93
94class MCInst;
James Molloyb9505852011-09-07 17:24:38 +000095class MCSubtargetInfo;
Sean Callanan8ed9f512009-12-19 02:59:52 +000096class MemoryObject;
97class raw_ostream;
Sean Callanan9899f702010-04-13 21:21:57 +000098
99struct EDInstInfo;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000100
101namespace X86Disassembler {
102
103/// X86GenericDisassembler - Generic disassembler for all X86 platforms.
104/// All each platform class should have to do is subclass the constructor, and
105/// provide a different disassemblerMode value.
106class X86GenericDisassembler : public MCDisassembler {
107protected:
108 /// Constructor - Initializes the disassembler.
109 ///
110 /// @param mode - The X86 architecture mode to decode for.
James Molloyb9505852011-09-07 17:24:38 +0000111 X86GenericDisassembler(const MCSubtargetInfo &STI, DisassemblerMode mode);
Sean Callanan8ed9f512009-12-19 02:59:52 +0000112public:
113 ~X86GenericDisassembler();
114
115 /// getInstruction - See MCDisassembler.
Owen Anderson83e3f672011-08-17 17:44:15 +0000116 DecodeStatus getInstruction(MCInst &instr,
117 uint64_t &size,
118 const MemoryObject &region,
119 uint64_t address,
Owen Anderson98c5dda2011-09-15 23:38:46 +0000120 raw_ostream &vStream,
121 raw_ostream &cStream) const;
Sean Callanan9899f702010-04-13 21:21:57 +0000122
123 /// getEDInfo - See MCDisassembler.
124 EDInstInfo *getEDInfo() const;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000125private:
126 DisassemblerMode fMode;
127};
128
129/// X86_16Disassembler - 16-bit X86 disassembler.
130class X86_16Disassembler : public X86GenericDisassembler {
David Blaikie2d24e2a2011-12-20 02:50:00 +0000131 virtual void anchor();
Sean Callanan8ed9f512009-12-19 02:59:52 +0000132public:
James Molloyb9505852011-09-07 17:24:38 +0000133 X86_16Disassembler(const MCSubtargetInfo &STI) :
134 X86GenericDisassembler(STI, MODE_16BIT) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000135 }
136};
137
138/// X86_16Disassembler - 32-bit X86 disassembler.
139class X86_32Disassembler : public X86GenericDisassembler {
David Blaikie2d24e2a2011-12-20 02:50:00 +0000140 virtual void anchor();
Sean Callanan8ed9f512009-12-19 02:59:52 +0000141public:
James Molloyb9505852011-09-07 17:24:38 +0000142 X86_32Disassembler(const MCSubtargetInfo &STI) :
143 X86GenericDisassembler(STI, MODE_32BIT) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000144 }
145};
146
147/// X86_16Disassembler - 64-bit X86 disassembler.
148class X86_64Disassembler : public X86GenericDisassembler {
David Blaikie2d24e2a2011-12-20 02:50:00 +0000149 virtual void anchor();
Sean Callanan8ed9f512009-12-19 02:59:52 +0000150public:
James Molloyb9505852011-09-07 17:24:38 +0000151 X86_64Disassembler(const MCSubtargetInfo &STI) :
152 X86GenericDisassembler(STI, MODE_64BIT) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000153 }
154};
155
156} // namespace X86Disassembler
157
158} // namespace llvm
159
160#endif