blob: 46b82ddc21fb6f23c335d58a578b248562ae68c7 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7</head>
8<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
14<ol>
15 <li><a href="#introduction">Introduction</a></li>
16 <li><a href="#general">General Information</a>
17 <ul>
18 <li><a href="#stl">The C++ Standard Template Library</a></li>
19<!--
20 <li>The <tt>-time-passes</tt> option</li>
21 <li>How to use the LLVM Makefile system</li>
22 <li>How to write a regression test</li>
23
24-->
25 </ul>
26 </li>
27 <li><a href="#apis">Important and useful LLVM APIs</a>
28 <ul>
29 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
31 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
32option</a>
33 <ul>
34 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35and the <tt>-debug-only</tt> option</a> </li>
36 </ul>
37 </li>
38 <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
39option</a></li>
40<!--
41 <li>The <tt>InstVisitor</tt> template
42 <li>The general graph API
43-->
44 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
45 </ul>
46 </li>
47 <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
48 <ul>
49 <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
50 <ul>
51 <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
52 <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
53 <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
54 <li><a href="#dss_vector">&lt;vector&gt;</a></li>
55 <li><a href="#dss_deque">&lt;deque&gt;</a></li>
56 <li><a href="#dss_list">&lt;list&gt;</a></li>
57 <li><a href="#dss_ilist">llvm/ADT/ilist</a></li>
58 <li><a href="#dss_other">Other Sequential Container Options</a></li>
59 </ul></li>
60 <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
61 <ul>
62 <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
63 <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
64 <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
Chris Lattner77ab46d2007-09-30 00:58:59 +000065 <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066 <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
67 <li><a href="#dss_set">&lt;set&gt;</a></li>
68 <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
69 <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
70 <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
71 </ul></li>
72 <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
73 <ul>
74 <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
75 <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
76 <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
77 <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
78 <li><a href="#dss_map">&lt;map&gt;</a></li>
79 <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
80 </ul></li>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +000081 <li><a href="#ds_bit">BitVector-like containers</a>
82 <ul>
83 <li><a href="#dss_bitvector">A dense bitvector</a></li>
84 <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
85 </ul></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 </ul>
87 </li>
88 <li><a href="#common">Helpful Hints for Common Operations</a>
89 <ul>
90 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
91 <ul>
92 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
93in a <tt>Function</tt></a> </li>
94 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
95in a <tt>BasicBlock</tt></a> </li>
96 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
97in a <tt>Function</tt></a> </li>
98 <li><a href="#iterate_convert">Turning an iterator into a
99class pointer</a> </li>
100 <li><a href="#iterate_complex">Finding call sites: a more
101complex example</a> </li>
102 <li><a href="#calls_and_invokes">Treating calls and invokes
103the same way</a> </li>
104 <li><a href="#iterate_chains">Iterating over def-use &amp;
105use-def chains</a> </li>
Chris Lattner0665e1f2008-01-03 16:56:04 +0000106 <li><a href="#iterate_preds">Iterating over predecessors &amp;
107successors of blocks</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 </ul>
109 </li>
110 <li><a href="#simplechanges">Making simple changes</a>
111 <ul>
112 <li><a href="#schanges_creating">Creating and inserting new
113 <tt>Instruction</tt>s</a> </li>
114 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
115 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
116with another <tt>Value</tt></a> </li>
117 <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
118 </ul>
119 </li>
120<!--
121 <li>Working with the Control Flow Graph
122 <ul>
123 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
124 <li>
125 <li>
126 </ul>
127-->
128 </ul>
129 </li>
130
131 <li><a href="#advanced">Advanced Topics</a>
132 <ul>
133 <li><a href="#TypeResolve">LLVM Type Resolution</a>
134 <ul>
135 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
136 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
137 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
138 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
139 </ul></li>
140
Gabor Greif92e87762008-06-16 21:06:12 +0000141 <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
142 <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000143 </ul></li>
144
145 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
146 <ul>
147 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
148 <li><a href="#Module">The <tt>Module</tt> class</a></li>
149 <li><a href="#Value">The <tt>Value</tt> class</a>
150 <ul>
151 <li><a href="#User">The <tt>User</tt> class</a>
152 <ul>
153 <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
154 <li><a href="#Constant">The <tt>Constant</tt> class</a>
155 <ul>
156 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
157 <ul>
158 <li><a href="#Function">The <tt>Function</tt> class</a></li>
159 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
160 </ul>
161 </li>
162 </ul>
163 </li>
164 </ul>
165 </li>
166 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
167 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
168 </ul>
169 </li>
170 </ul>
171 </li>
172</ol>
173
174<div class="doc_author">
175 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
176 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
Gabor Greif92e87762008-06-16 21:06:12 +0000177 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
178 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a> and
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000179 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
180</div>
181
182<!-- *********************************************************************** -->
183<div class="doc_section">
184 <a name="introduction">Introduction </a>
185</div>
186<!-- *********************************************************************** -->
187
188<div class="doc_text">
189
190<p>This document is meant to highlight some of the important classes and
191interfaces available in the LLVM source-base. This manual is not
192intended to explain what LLVM is, how it works, and what LLVM code looks
193like. It assumes that you know the basics of LLVM and are interested
194in writing transformations or otherwise analyzing or manipulating the
195code.</p>
196
197<p>This document should get you oriented so that you can find your
198way in the continuously growing source code that makes up the LLVM
199infrastructure. Note that this manual is not intended to serve as a
200replacement for reading the source code, so if you think there should be
201a method in one of these classes to do something, but it's not listed,
202check the source. Links to the <a href="/doxygen/">doxygen</a> sources
203are provided to make this as easy as possible.</p>
204
205<p>The first section of this document describes general information that is
206useful to know when working in the LLVM infrastructure, and the second describes
207the Core LLVM classes. In the future this manual will be extended with
208information describing how to use extension libraries, such as dominator
209information, CFG traversal routines, and useful utilities like the <tt><a
210href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
211
212</div>
213
214<!-- *********************************************************************** -->
215<div class="doc_section">
216 <a name="general">General Information</a>
217</div>
218<!-- *********************************************************************** -->
219
220<div class="doc_text">
221
222<p>This section contains general information that is useful if you are working
223in the LLVM source-base, but that isn't specific to any particular API.</p>
224
225</div>
226
227<!-- ======================================================================= -->
228<div class="doc_subsection">
229 <a name="stl">The C++ Standard Template Library</a>
230</div>
231
232<div class="doc_text">
233
234<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
235perhaps much more than you are used to, or have seen before. Because of
236this, you might want to do a little background reading in the
237techniques used and capabilities of the library. There are many good
238pages that discuss the STL, and several books on the subject that you
239can get, so it will not be discussed in this document.</p>
240
241<p>Here are some useful links:</p>
242
243<ol>
244
245<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
246reference</a> - an excellent reference for the STL and other parts of the
247standard C++ library.</li>
248
249<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
250O'Reilly book in the making. It has a decent
251Standard Library
252Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
253published.</li>
254
255<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
256Questions</a></li>
257
258<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
259Contains a useful <a
260href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
261STL</a>.</li>
262
263<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
264Page</a></li>
265
266<li><a href="http://64.78.49.204/">
267Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
268the book).</a></li>
269
270</ol>
271
272<p>You are also encouraged to take a look at the <a
273href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
274to write maintainable code more than where to put your curly braces.</p>
275
276</div>
277
278<!-- ======================================================================= -->
279<div class="doc_subsection">
280 <a name="stl">Other useful references</a>
281</div>
282
283<div class="doc_text">
284
285<ol>
286<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
287Branch and Tag Primer</a></li>
288<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
289static and shared libraries across platforms</a></li>
290</ol>
291
292</div>
293
294<!-- *********************************************************************** -->
295<div class="doc_section">
296 <a name="apis">Important and useful LLVM APIs</a>
297</div>
298<!-- *********************************************************************** -->
299
300<div class="doc_text">
301
302<p>Here we highlight some LLVM APIs that are generally useful and good to
303know about when writing transformations.</p>
304
305</div>
306
307<!-- ======================================================================= -->
308<div class="doc_subsection">
309 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
310 <tt>dyn_cast&lt;&gt;</tt> templates</a>
311</div>
312
313<div class="doc_text">
314
315<p>The LLVM source-base makes extensive use of a custom form of RTTI.
316These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
317operator, but they don't have some drawbacks (primarily stemming from
318the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
319have a v-table). Because they are used so often, you must know what they
320do and how they work. All of these templates are defined in the <a
321 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
322file (note that you very rarely have to include this file directly).</p>
323
324<dl>
325 <dt><tt>isa&lt;&gt;</tt>: </dt>
326
327 <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
328 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
329 a reference or pointer points to an instance of the specified class. This can
330 be very useful for constraint checking of various sorts (example below).</p>
331 </dd>
332
333 <dt><tt>cast&lt;&gt;</tt>: </dt>
334
335 <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
Chris Lattner1d5610a2008-06-20 05:03:17 +0000336 converts a pointer or reference from a base class to a derived class, causing
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 an assertion failure if it is not really an instance of the right type. This
338 should be used in cases where you have some information that makes you believe
339 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
340 and <tt>cast&lt;&gt;</tt> template is:</p>
341
342<div class="doc_code">
343<pre>
344static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
345 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
346 return true;
347
348 // <i>Otherwise, it must be an instruction...</i>
349 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
350}
351</pre>
352</div>
353
354 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
355 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
356 operator.</p>
357
358 </dd>
359
360 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
361
362 <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
363 It checks to see if the operand is of the specified type, and if so, returns a
364 pointer to it (this operator does not work with references). If the operand is
365 not of the correct type, a null pointer is returned. Thus, this works very
366 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
367 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
368 operator is used in an <tt>if</tt> statement or some other flow control
369 statement like this:</p>
370
371<div class="doc_code">
372<pre>
373if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
374 // <i>...</i>
375}
376</pre>
377</div>
378
379 <p>This form of the <tt>if</tt> statement effectively combines together a call
380 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
381 statement, which is very convenient.</p>
382
383 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
384 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
385 abused. In particular, you should not use big chained <tt>if/then/else</tt>
386 blocks to check for lots of different variants of classes. If you find
387 yourself wanting to do this, it is much cleaner and more efficient to use the
388 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
389
390 </dd>
391
392 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
393
394 <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
395 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
396 argument (which it then propagates). This can sometimes be useful, allowing
397 you to combine several null checks into one.</p></dd>
398
399 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
400
401 <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
402 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
403 as an argument (which it then propagates). This can sometimes be useful,
404 allowing you to combine several null checks into one.</p></dd>
405
406</dl>
407
408<p>These five templates can be used with any classes, whether they have a
409v-table or not. To add support for these templates, you simply need to add
410<tt>classof</tt> static methods to the class you are interested casting
411to. Describing this is currently outside the scope of this document, but there
412are lots of examples in the LLVM source base.</p>
413
414</div>
415
416<!-- ======================================================================= -->
417<div class="doc_subsection">
418 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
419</div>
420
421<div class="doc_text">
422
423<p>Often when working on your pass you will put a bunch of debugging printouts
424and other code into your pass. After you get it working, you want to remove
425it, but you may need it again in the future (to work out new bugs that you run
426across).</p>
427
428<p> Naturally, because of this, you don't want to delete the debug printouts,
429but you don't want them to always be noisy. A standard compromise is to comment
430them out, allowing you to enable them if you need them in the future.</p>
431
432<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
433file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
434this problem. Basically, you can put arbitrary code into the argument of the
435<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
436tool) is run with the '<tt>-debug</tt>' command line argument:</p>
437
438<div class="doc_code">
439<pre>
440DOUT &lt;&lt; "I am here!\n";
441</pre>
442</div>
443
444<p>Then you can run your pass like this:</p>
445
446<div class="doc_code">
447<pre>
448$ opt &lt; a.bc &gt; /dev/null -mypass
449<i>&lt;no output&gt;</i>
450$ opt &lt; a.bc &gt; /dev/null -mypass -debug
451I am here!
452</pre>
453</div>
454
455<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
456to not have to create "yet another" command line option for the debug output for
457your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
458so they do not cause a performance impact at all (for the same reason, they
459should also not contain side-effects!).</p>
460
461<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
462enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
463"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
464program hasn't been started yet, you can always just run it with
465<tt>-debug</tt>.</p>
466
467</div>
468
469<!-- _______________________________________________________________________ -->
470<div class="doc_subsubsection">
471 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
472 the <tt>-debug-only</tt> option</a>
473</div>
474
475<div class="doc_text">
476
477<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
478just turns on <b>too much</b> information (such as when working on the code
479generator). If you want to enable debug information with more fine-grained
480control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
481option as follows:</p>
482
483<div class="doc_code">
484<pre>
485DOUT &lt;&lt; "No debug type\n";
486#undef DEBUG_TYPE
487#define DEBUG_TYPE "foo"
488DOUT &lt;&lt; "'foo' debug type\n";
489#undef DEBUG_TYPE
490#define DEBUG_TYPE "bar"
491DOUT &lt;&lt; "'bar' debug type\n";
492#undef DEBUG_TYPE
493#define DEBUG_TYPE ""
494DOUT &lt;&lt; "No debug type (2)\n";
495</pre>
496</div>
497
498<p>Then you can run your pass like this:</p>
499
500<div class="doc_code">
501<pre>
502$ opt &lt; a.bc &gt; /dev/null -mypass
503<i>&lt;no output&gt;</i>
504$ opt &lt; a.bc &gt; /dev/null -mypass -debug
505No debug type
506'foo' debug type
507'bar' debug type
508No debug type (2)
509$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
510'foo' debug type
511$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
512'bar' debug type
513</pre>
514</div>
515
516<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
517a file, to specify the debug type for the entire module (if you do this before
518you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
519<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
520"bar", because there is no system in place to ensure that names do not
521conflict. If two different modules use the same string, they will all be turned
522on when the name is specified. This allows, for example, all debug information
523for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
524even if the source lives in multiple files.</p>
525
526</div>
527
528<!-- ======================================================================= -->
529<div class="doc_subsection">
530 <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
531 option</a>
532</div>
533
534<div class="doc_text">
535
536<p>The "<tt><a
537href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
538provides a class named <tt>Statistic</tt> that is used as a unified way to
539keep track of what the LLVM compiler is doing and how effective various
540optimizations are. It is useful to see what optimizations are contributing to
541making a particular program run faster.</p>
542
543<p>Often you may run your pass on some big program, and you're interested to see
544how many times it makes a certain transformation. Although you can do this with
545hand inspection, or some ad-hoc method, this is a real pain and not very useful
546for big programs. Using the <tt>Statistic</tt> class makes it very easy to
547keep track of this information, and the calculated information is presented in a
548uniform manner with the rest of the passes being executed.</p>
549
550<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
551it are as follows:</p>
552
553<ol>
554 <li><p>Define your statistic like this:</p>
555
556<div class="doc_code">
557<pre>
558#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname" <i>// This goes before any #includes.</i>
559STATISTIC(NumXForms, "The # of times I did stuff");
560</pre>
561</div>
562
563 <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
564 specified by the first argument. The pass name is taken from the DEBUG_TYPE
565 macro, and the description is taken from the second argument. The variable
566 defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
567
568 <li><p>Whenever you make a transformation, bump the counter:</p>
569
570<div class="doc_code">
571<pre>
572++NumXForms; // <i>I did stuff!</i>
573</pre>
574</div>
575
576 </li>
577 </ol>
578
579 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
580 statistics gathered, use the '<tt>-stats</tt>' option:</p>
581
582<div class="doc_code">
583<pre>
584$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
585<i>... statistics output ...</i>
586</pre>
587</div>
588
589 <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
590suite, it gives a report that looks like this:</p>
591
592<div class="doc_code">
593<pre>
594 7646 bitcodewriter - Number of normal instructions
595 725 bitcodewriter - Number of oversized instructions
596 129996 bitcodewriter - Number of bitcode bytes written
597 2817 raise - Number of insts DCEd or constprop'd
598 3213 raise - Number of cast-of-self removed
599 5046 raise - Number of expression trees converted
600 75 raise - Number of other getelementptr's formed
601 138 raise - Number of load/store peepholes
602 42 deadtypeelim - Number of unused typenames removed from symtab
603 392 funcresolve - Number of varargs functions resolved
604 27 globaldce - Number of global variables removed
605 2 adce - Number of basic blocks removed
606 134 cee - Number of branches revectored
607 49 cee - Number of setcc instruction eliminated
608 532 gcse - Number of loads removed
609 2919 gcse - Number of instructions removed
610 86 indvars - Number of canonical indvars added
611 87 indvars - Number of aux indvars removed
612 25 instcombine - Number of dead inst eliminate
613 434 instcombine - Number of insts combined
614 248 licm - Number of load insts hoisted
615 1298 licm - Number of insts hoisted to a loop pre-header
616 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
617 75 mem2reg - Number of alloca's promoted
618 1444 cfgsimplify - Number of blocks simplified
619</pre>
620</div>
621
622<p>Obviously, with so many optimizations, having a unified framework for this
623stuff is very nice. Making your pass fit well into the framework makes it more
624maintainable and useful.</p>
625
626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
630 <a name="ViewGraph">Viewing graphs while debugging code</a>
631</div>
632
633<div class="doc_text">
634
635<p>Several of the important data structures in LLVM are graphs: for example
636CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
637LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
638<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
639DAGs</a>. In many cases, while debugging various parts of the compiler, it is
640nice to instantly visualize these graphs.</p>
641
642<p>LLVM provides several callbacks that are available in a debug build to do
643exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
644the current LLVM tool will pop up a window containing the CFG for the function
645where each basic block is a node in the graph, and each node contains the
646instructions in the block. Similarly, there also exists
647<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
648<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
649and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
650you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
651up a window. Alternatively, you can sprinkle calls to these functions in your
652code in places you want to debug.</p>
653
654<p>Getting this to work requires a small amount of configuration. On Unix
655systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
656toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
657Mac OS/X, download and install the Mac OS/X <a
658href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
659<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
660it) to your path. Once in your system and path are set up, rerun the LLVM
661configure script and rebuild LLVM to enable this functionality.</p>
662
663<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
664<i>interesting</i> nodes in large complex graphs. From gdb, if you
665<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
666next <tt>call DAG.viewGraph()</tt> would highlight the node in the
667specified color (choices of colors can be found at <a
668href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
669complex node attributes can be provided with <tt>call
670DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
671found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
672Attributes</a>.) If you want to restart and clear all the current graph
673attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
674
675</div>
676
677<!-- *********************************************************************** -->
678<div class="doc_section">
679 <a name="datastructure">Picking the Right Data Structure for a Task</a>
680</div>
681<!-- *********************************************************************** -->
682
683<div class="doc_text">
684
685<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
686 and we commonly use STL data structures. This section describes the trade-offs
687 you should consider when you pick one.</p>
688
689<p>
690The first step is a choose your own adventure: do you want a sequential
691container, a set-like container, or a map-like container? The most important
692thing when choosing a container is the algorithmic properties of how you plan to
693access the container. Based on that, you should use:</p>
694
695<ul>
696<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
697 of an value based on another value. Map-like containers also support
698 efficient queries for containment (whether a key is in the map). Map-like
699 containers generally do not support efficient reverse mapping (values to
700 keys). If you need that, use two maps. Some map-like containers also
701 support efficient iteration through the keys in sorted order. Map-like
702 containers are the most expensive sort, only use them if you need one of
703 these capabilities.</li>
704
705<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
706 stuff into a container that automatically eliminates duplicates. Some
707 set-like containers support efficient iteration through the elements in
708 sorted order. Set-like containers are more expensive than sequential
709 containers.
710</li>
711
712<li>a <a href="#ds_sequential">sequential</a> container provides
713 the most efficient way to add elements and keeps track of the order they are
714 added to the collection. They permit duplicates and support efficient
715 iteration, but do not support efficient look-up based on a key.
716</li>
717
Daniel Berlin7ea44dc2007-09-24 17:52:25 +0000718<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
719 perform set operations on sets of numeric id's, while automatically
720 eliminating duplicates. Bit containers require a maximum of 1 bit for each
721 identifier you want to store.
722</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723</ul>
724
725<p>
726Once the proper category of container is determined, you can fine tune the
727memory use, constant factors, and cache behaviors of access by intelligently
728picking a member of the category. Note that constant factors and cache behavior
729can be a big deal. If you have a vector that usually only contains a few
730elements (but could contain many), for example, it's much better to use
731<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
732. Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
733cost of adding the elements to the container. </p>
734
735</div>
736
737<!-- ======================================================================= -->
738<div class="doc_subsection">
739 <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
740</div>
741
742<div class="doc_text">
743There are a variety of sequential containers available for you, based on your
744needs. Pick the first in this section that will do what you want.
745</div>
746
747<!-- _______________________________________________________________________ -->
748<div class="doc_subsubsection">
749 <a name="dss_fixedarrays">Fixed Size Arrays</a>
750</div>
751
752<div class="doc_text">
753<p>Fixed size arrays are very simple and very fast. They are good if you know
754exactly how many elements you have, or you have a (low) upper bound on how many
755you have.</p>
756</div>
757
758<!-- _______________________________________________________________________ -->
759<div class="doc_subsubsection">
760 <a name="dss_heaparrays">Heap Allocated Arrays</a>
761</div>
762
763<div class="doc_text">
764<p>Heap allocated arrays (new[] + delete[]) are also simple. They are good if
765the number of elements is variable, if you know how many elements you will need
766before the array is allocated, and if the array is usually large (if not,
767consider a <a href="#dss_smallvector">SmallVector</a>). The cost of a heap
768allocated array is the cost of the new/delete (aka malloc/free). Also note that
769if you are allocating an array of a type with a constructor, the constructor and
770destructors will be run for every element in the array (re-sizable vectors only
771construct those elements actually used).</p>
772</div>
773
774<!-- _______________________________________________________________________ -->
775<div class="doc_subsubsection">
776 <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
777</div>
778
779<div class="doc_text">
780<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
781just like <tt>vector&lt;Type&gt;</tt>:
782it supports efficient iteration, lays out elements in memory order (so you can
783do pointer arithmetic between elements), supports efficient push_back/pop_back
784operations, supports efficient random access to its elements, etc.</p>
785
786<p>The advantage of SmallVector is that it allocates space for
787some number of elements (N) <b>in the object itself</b>. Because of this, if
788the SmallVector is dynamically smaller than N, no malloc is performed. This can
789be a big win in cases where the malloc/free call is far more expensive than the
790code that fiddles around with the elements.</p>
791
792<p>This is good for vectors that are "usually small" (e.g. the number of
793predecessors/successors of a block is usually less than 8). On the other hand,
794this makes the size of the SmallVector itself large, so you don't want to
795allocate lots of them (doing so will waste a lot of space). As such,
796SmallVectors are most useful when on the stack.</p>
797
798<p>SmallVector also provides a nice portable and efficient replacement for
799<tt>alloca</tt>.</p>
800
801</div>
802
803<!-- _______________________________________________________________________ -->
804<div class="doc_subsubsection">
805 <a name="dss_vector">&lt;vector&gt;</a>
806</div>
807
808<div class="doc_text">
809<p>
810std::vector is well loved and respected. It is useful when SmallVector isn't:
811when the size of the vector is often large (thus the small optimization will
812rarely be a benefit) or if you will be allocating many instances of the vector
813itself (which would waste space for elements that aren't in the container).
814vector is also useful when interfacing with code that expects vectors :).
815</p>
816
817<p>One worthwhile note about std::vector: avoid code like this:</p>
818
819<div class="doc_code">
820<pre>
821for ( ... ) {
822 std::vector&lt;foo&gt; V;
823 use V;
824}
825</pre>
826</div>
827
828<p>Instead, write this as:</p>
829
830<div class="doc_code">
831<pre>
832std::vector&lt;foo&gt; V;
833for ( ... ) {
834 use V;
835 V.clear();
836}
837</pre>
838</div>
839
840<p>Doing so will save (at least) one heap allocation and free per iteration of
841the loop.</p>
842
843</div>
844
845<!-- _______________________________________________________________________ -->
846<div class="doc_subsubsection">
847 <a name="dss_deque">&lt;deque&gt;</a>
848</div>
849
850<div class="doc_text">
851<p>std::deque is, in some senses, a generalized version of std::vector. Like
852std::vector, it provides constant time random access and other similar
853properties, but it also provides efficient access to the front of the list. It
854does not guarantee continuity of elements within memory.</p>
855
856<p>In exchange for this extra flexibility, std::deque has significantly higher
857constant factor costs than std::vector. If possible, use std::vector or
858something cheaper.</p>
859</div>
860
861<!-- _______________________________________________________________________ -->
862<div class="doc_subsubsection">
863 <a name="dss_list">&lt;list&gt;</a>
864</div>
865
866<div class="doc_text">
867<p>std::list is an extremely inefficient class that is rarely useful.
868It performs a heap allocation for every element inserted into it, thus having an
869extremely high constant factor, particularly for small data types. std::list
870also only supports bidirectional iteration, not random access iteration.</p>
871
872<p>In exchange for this high cost, std::list supports efficient access to both
873ends of the list (like std::deque, but unlike std::vector or SmallVector). In
874addition, the iterator invalidation characteristics of std::list are stronger
875than that of a vector class: inserting or removing an element into the list does
876not invalidate iterator or pointers to other elements in the list.</p>
877</div>
878
879<!-- _______________________________________________________________________ -->
880<div class="doc_subsubsection">
881 <a name="dss_ilist">llvm/ADT/ilist</a>
882</div>
883
884<div class="doc_text">
885<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list. It is
886intrusive, because it requires the element to store and provide access to the
887prev/next pointers for the list.</p>
888
889<p>ilist has the same drawbacks as std::list, and additionally requires an
890ilist_traits implementation for the element type, but it provides some novel
891characteristics. In particular, it can efficiently store polymorphic objects,
892the traits class is informed when an element is inserted or removed from the
893list, and ilists are guaranteed to support a constant-time splice operation.
894</p>
895
896<p>These properties are exactly what we want for things like Instructions and
897basic blocks, which is why these are implemented with ilists.</p>
898</div>
899
900<!-- _______________________________________________________________________ -->
901<div class="doc_subsubsection">
902 <a name="dss_other">Other Sequential Container options</a>
903</div>
904
905<div class="doc_text">
906<p>Other STL containers are available, such as std::string.</p>
907
908<p>There are also various STL adapter classes such as std::queue,
909std::priority_queue, std::stack, etc. These provide simplified access to an
910underlying container but don't affect the cost of the container itself.</p>
911
912</div>
913
914
915<!-- ======================================================================= -->
916<div class="doc_subsection">
917 <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
918</div>
919
920<div class="doc_text">
921
922<p>Set-like containers are useful when you need to canonicalize multiple values
923into a single representation. There are several different choices for how to do
924this, providing various trade-offs.</p>
925
926</div>
927
928
929<!-- _______________________________________________________________________ -->
930<div class="doc_subsubsection">
931 <a name="dss_sortedvectorset">A sorted 'vector'</a>
932</div>
933
934<div class="doc_text">
935
936<p>If you intend to insert a lot of elements, then do a lot of queries, a
937great approach is to use a vector (or other sequential container) with
938std::sort+std::unique to remove duplicates. This approach works really well if
939your usage pattern has these two distinct phases (insert then query), and can be
940coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
941</p>
942
943<p>
944This combination provides the several nice properties: the result data is
945contiguous in memory (good for cache locality), has few allocations, is easy to
946address (iterators in the final vector are just indices or pointers), and can be
947efficiently queried with a standard binary or radix search.</p>
948
949</div>
950
951<!-- _______________________________________________________________________ -->
952<div class="doc_subsubsection">
953 <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
954</div>
955
956<div class="doc_text">
957
958<p>If you have a set-like data structure that is usually small and whose elements
959are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice. This set
960has space for N elements in place (thus, if the set is dynamically smaller than
961N, no malloc traffic is required) and accesses them with a simple linear search.
962When the set grows beyond 'N' elements, it allocates a more expensive representation that
963guarantees efficient access (for most types, it falls back to std::set, but for
964pointers it uses something far better, <a
965href="#dss_smallptrset">SmallPtrSet</a>).</p>
966
967<p>The magic of this class is that it handles small sets extremely efficiently,
968but gracefully handles extremely large sets without loss of efficiency. The
969drawback is that the interface is quite small: it supports insertion, queries
970and erasing, but does not support iteration.</p>
971
972</div>
973
974<!-- _______________________________________________________________________ -->
975<div class="doc_subsubsection">
976 <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
977</div>
978
979<div class="doc_text">
980
981<p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is
982transparently implemented with a SmallPtrSet), but also supports iterators. If
983more than 'N' insertions are performed, a single quadratically
984probed hash table is allocated and grows as needed, providing extremely
985efficient access (constant time insertion/deleting/queries with low constant
986factors) and is very stingy with malloc traffic.</p>
987
988<p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
989whenever an insertion occurs. Also, the values visited by the iterators are not
990visited in sorted order.</p>
991
992</div>
993
994<!-- _______________________________________________________________________ -->
995<div class="doc_subsubsection">
Chris Lattner77ab46d2007-09-30 00:58:59 +0000996 <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
997</div>
998
999<div class="doc_text">
1000
1001<p>
1002DenseSet is a simple quadratically probed hash table. It excels at supporting
1003small values: it uses a single allocation to hold all of the pairs that
1004are currently inserted in the set. DenseSet is a great way to unique small
1005values that are not simple pointers (use <a
1006href="#dss_smallptrset">SmallPtrSet</a> for pointers). Note that DenseSet has
1007the same requirements for the value type that <a
1008href="#dss_densemap">DenseMap</a> has.
1009</p>
1010
1011</div>
1012
1013<!-- _______________________________________________________________________ -->
1014<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1016</div>
1017
1018<div class="doc_text">
1019
1020<p>
1021FoldingSet is an aggregate class that is really good at uniquing
1022expensive-to-create or polymorphic objects. It is a combination of a chained
1023hash table with intrusive links (uniqued objects are required to inherit from
1024FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1025its ID process.</p>
1026
1027<p>Consider a case where you want to implement a "getOrCreateFoo" method for
1028a complex object (for example, a node in the code generator). The client has a
1029description of *what* it wants to generate (it knows the opcode and all the
1030operands), but we don't want to 'new' a node, then try inserting it into a set
1031only to find out it already exists, at which point we would have to delete it
1032and return the node that already exists.
1033</p>
1034
1035<p>To support this style of client, FoldingSet perform a query with a
1036FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1037element that we want to query for. The query either returns the element
1038matching the ID or it returns an opaque ID that indicates where insertion should
1039take place. Construction of the ID usually does not require heap traffic.</p>
1040
1041<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1042in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1043Because the elements are individually allocated, pointers to the elements are
1044stable: inserting or removing elements does not invalidate any pointers to other
1045elements.
1046</p>
1047
1048</div>
1049
1050<!-- _______________________________________________________________________ -->
1051<div class="doc_subsubsection">
1052 <a name="dss_set">&lt;set&gt;</a>
1053</div>
1054
1055<div class="doc_text">
1056
1057<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1058many things but great at nothing. std::set allocates memory for each element
1059inserted (thus it is very malloc intensive) and typically stores three pointers
1060per element in the set (thus adding a large amount of per-element space
1061overhead). It offers guaranteed log(n) performance, which is not particularly
1062fast from a complexity standpoint (particularly if the elements of the set are
1063expensive to compare, like strings), and has extremely high constant factors for
1064lookup, insertion and removal.</p>
1065
1066<p>The advantages of std::set are that its iterators are stable (deleting or
1067inserting an element from the set does not affect iterators or pointers to other
1068elements) and that iteration over the set is guaranteed to be in sorted order.
1069If the elements in the set are large, then the relative overhead of the pointers
1070and malloc traffic is not a big deal, but if the elements of the set are small,
1071std::set is almost never a good choice.</p>
1072
1073</div>
1074
1075<!-- _______________________________________________________________________ -->
1076<div class="doc_subsubsection">
1077 <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1078</div>
1079
1080<div class="doc_text">
1081<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1082a set-like container along with a <a href="#ds_sequential">Sequential
1083Container</a>. The important property
1084that this provides is efficient insertion with uniquing (duplicate elements are
1085ignored) with iteration support. It implements this by inserting elements into
1086both a set-like container and the sequential container, using the set-like
1087container for uniquing and the sequential container for iteration.
1088</p>
1089
1090<p>The difference between SetVector and other sets is that the order of
1091iteration is guaranteed to match the order of insertion into the SetVector.
1092This property is really important for things like sets of pointers. Because
1093pointer values are non-deterministic (e.g. vary across runs of the program on
1094different machines), iterating over the pointers in the set will
1095not be in a well-defined order.</p>
1096
1097<p>
1098The drawback of SetVector is that it requires twice as much space as a normal
1099set and has the sum of constant factors from the set-like container and the
1100sequential container that it uses. Use it *only* if you need to iterate over
1101the elements in a deterministic order. SetVector is also expensive to delete
1102elements out of (linear time), unless you use it's "pop_back" method, which is
1103faster.
1104</p>
1105
1106<p>SetVector is an adapter class that defaults to using std::vector and std::set
1107for the underlying containers, so it is quite expensive. However,
1108<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1109defaults to using a SmallVector and SmallSet of a specified size. If you use
1110this, and if your sets are dynamically smaller than N, you will save a lot of
1111heap traffic.</p>
1112
1113</div>
1114
1115<!-- _______________________________________________________________________ -->
1116<div class="doc_subsubsection">
1117 <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1118</div>
1119
1120<div class="doc_text">
1121
1122<p>
1123UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1124retains a unique ID for each element inserted into the set. It internally
1125contains a map and a vector, and it assigns a unique ID for each value inserted
1126into the set.</p>
1127
1128<p>UniqueVector is very expensive: its cost is the sum of the cost of
1129maintaining both the map and vector, it has high complexity, high constant
1130factors, and produces a lot of malloc traffic. It should be avoided.</p>
1131
1132</div>
1133
1134
1135<!-- _______________________________________________________________________ -->
1136<div class="doc_subsubsection">
1137 <a name="dss_otherset">Other Set-Like Container Options</a>
1138</div>
1139
1140<div class="doc_text">
1141
1142<p>
1143The STL provides several other options, such as std::multiset and the various
1144"hash_set" like containers (whether from C++ TR1 or from the SGI library).</p>
1145
1146<p>std::multiset is useful if you're not interested in elimination of
1147duplicates, but has all the drawbacks of std::set. A sorted vector (where you
1148don't delete duplicate entries) or some other approach is almost always
1149better.</p>
1150
1151<p>The various hash_set implementations (exposed portably by
1152"llvm/ADT/hash_set") is a simple chained hashtable. This algorithm is as malloc
1153intensive as std::set (performing an allocation for each element inserted,
1154thus having really high constant factors) but (usually) provides O(1)
1155insertion/deletion of elements. This can be useful if your elements are large
1156(thus making the constant-factor cost relatively low) or if comparisons are
1157expensive. Element iteration does not visit elements in a useful order.</p>
1158
1159</div>
1160
1161<!-- ======================================================================= -->
1162<div class="doc_subsection">
1163 <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1164</div>
1165
1166<div class="doc_text">
1167Map-like containers are useful when you want to associate data to a key. As
1168usual, there are a lot of different ways to do this. :)
1169</div>
1170
1171<!-- _______________________________________________________________________ -->
1172<div class="doc_subsubsection">
1173 <a name="dss_sortedvectormap">A sorted 'vector'</a>
1174</div>
1175
1176<div class="doc_text">
1177
1178<p>
1179If your usage pattern follows a strict insert-then-query approach, you can
1180trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1181for set-like containers</a>. The only difference is that your query function
1182(which uses std::lower_bound to get efficient log(n) lookup) should only compare
1183the key, not both the key and value. This yields the same advantages as sorted
1184vectors for sets.
1185</p>
1186</div>
1187
1188<!-- _______________________________________________________________________ -->
1189<div class="doc_subsubsection">
1190 <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1191</div>
1192
1193<div class="doc_text">
1194
1195<p>
1196Strings are commonly used as keys in maps, and they are difficult to support
1197efficiently: they are variable length, inefficient to hash and compare when
1198long, expensive to copy, etc. StringMap is a specialized container designed to
1199cope with these issues. It supports mapping an arbitrary range of bytes to an
1200arbitrary other object.</p>
1201
1202<p>The StringMap implementation uses a quadratically-probed hash table, where
1203the buckets store a pointer to the heap allocated entries (and some other
1204stuff). The entries in the map must be heap allocated because the strings are
1205variable length. The string data (key) and the element object (value) are
1206stored in the same allocation with the string data immediately after the element
1207object. This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1208to the key string for a value.</p>
1209
1210<p>The StringMap is very fast for several reasons: quadratic probing is very
1211cache efficient for lookups, the hash value of strings in buckets is not
1212recomputed when lookup up an element, StringMap rarely has to touch the
1213memory for unrelated objects when looking up a value (even when hash collisions
1214happen), hash table growth does not recompute the hash values for strings
1215already in the table, and each pair in the map is store in a single allocation
1216(the string data is stored in the same allocation as the Value of a pair).</p>
1217
1218<p>StringMap also provides query methods that take byte ranges, so it only ever
1219copies a string if a value is inserted into the table.</p>
1220</div>
1221
1222<!-- _______________________________________________________________________ -->
1223<div class="doc_subsubsection">
1224 <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1225</div>
1226
1227<div class="doc_text">
1228<p>
1229IndexedMap is a specialized container for mapping small dense integers (or
1230values that can be mapped to small dense integers) to some other type. It is
1231internally implemented as a vector with a mapping function that maps the keys to
1232the dense integer range.
1233</p>
1234
1235<p>
1236This is useful for cases like virtual registers in the LLVM code generator: they
1237have a dense mapping that is offset by a compile-time constant (the first
1238virtual register ID).</p>
1239
1240</div>
1241
1242<!-- _______________________________________________________________________ -->
1243<div class="doc_subsubsection">
1244 <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1245</div>
1246
1247<div class="doc_text">
1248
1249<p>
1250DenseMap is a simple quadratically probed hash table. It excels at supporting
1251small keys and values: it uses a single allocation to hold all of the pairs that
1252are currently inserted in the map. DenseMap is a great way to map pointers to
1253pointers, or map other small types to each other.
1254</p>
1255
1256<p>
1257There are several aspects of DenseMap that you should be aware of, however. The
1258iterators in a densemap are invalidated whenever an insertion occurs, unlike
1259map. Also, because DenseMap allocates space for a large number of key/value
1260pairs (it starts with 64 by default), it will waste a lot of space if your keys
1261or values are large. Finally, you must implement a partial specialization of
Chris Lattner92eea072007-09-17 18:34:04 +00001262DenseMapInfo for the key that you want, if it isn't already supported. This
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001263is required to tell DenseMap about two special marker values (which can never be
1264inserted into the map) that it needs internally.</p>
1265
1266</div>
1267
1268<!-- _______________________________________________________________________ -->
1269<div class="doc_subsubsection">
1270 <a name="dss_map">&lt;map&gt;</a>
1271</div>
1272
1273<div class="doc_text">
1274
1275<p>
1276std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1277a single allocation per pair inserted into the map, it offers log(n) lookup with
1278an extremely large constant factor, imposes a space penalty of 3 pointers per
1279pair in the map, etc.</p>
1280
1281<p>std::map is most useful when your keys or values are very large, if you need
1282to iterate over the collection in sorted order, or if you need stable iterators
1283into the map (i.e. they don't get invalidated if an insertion or deletion of
1284another element takes place).</p>
1285
1286</div>
1287
1288<!-- _______________________________________________________________________ -->
1289<div class="doc_subsubsection">
1290 <a name="dss_othermap">Other Map-Like Container Options</a>
1291</div>
1292
1293<div class="doc_text">
1294
1295<p>
1296The STL provides several other options, such as std::multimap and the various
1297"hash_map" like containers (whether from C++ TR1 or from the SGI library).</p>
1298
1299<p>std::multimap is useful if you want to map a key to multiple values, but has
1300all the drawbacks of std::map. A sorted vector or some other approach is almost
1301always better.</p>
1302
1303<p>The various hash_map implementations (exposed portably by
1304"llvm/ADT/hash_map") are simple chained hash tables. This algorithm is as
1305malloc intensive as std::map (performing an allocation for each element
1306inserted, thus having really high constant factors) but (usually) provides O(1)
1307insertion/deletion of elements. This can be useful if your elements are large
1308(thus making the constant-factor cost relatively low) or if comparisons are
1309expensive. Element iteration does not visit elements in a useful order.</p>
1310
1311</div>
1312
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001313<!-- ======================================================================= -->
1314<div class="doc_subsection">
1315 <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1316</div>
1317
1318<div class="doc_text">
Chris Lattner62a4eae2007-09-25 22:37:50 +00001319<p>Unlike the other containers, there are only two bit storage containers, and
1320choosing when to use each is relatively straightforward.</p>
1321
1322<p>One additional option is
1323<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1324implementation in many common compilers (e.g. commonly available versions of
1325GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1326deprecate this container and/or change it significantly somehow. In any case,
1327please don't use it.</p>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001328</div>
1329
1330<!-- _______________________________________________________________________ -->
1331<div class="doc_subsubsection">
1332 <a name="dss_bitvector">BitVector</a>
1333</div>
1334
1335<div class="doc_text">
1336<p> The BitVector container provides a fixed size set of bits for manipulation.
1337It supports individual bit setting/testing, as well as set operations. The set
1338operations take time O(size of bitvector), but operations are performed one word
1339at a time, instead of one bit at a time. This makes the BitVector very fast for
1340set operations compared to other containers. Use the BitVector when you expect
1341the number of set bits to be high (IE a dense set).
1342</p>
1343</div>
1344
1345<!-- _______________________________________________________________________ -->
1346<div class="doc_subsubsection">
1347 <a name="dss_sparsebitvector">SparseBitVector</a>
1348</div>
1349
1350<div class="doc_text">
1351<p> The SparseBitVector container is much like BitVector, with one major
1352difference: Only the bits that are set, are stored. This makes the
1353SparseBitVector much more space efficient than BitVector when the set is sparse,
1354as well as making set operations O(number of set bits) instead of O(size of
1355universe). The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1356(either forwards or reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1357</p>
1358</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001359
1360<!-- *********************************************************************** -->
1361<div class="doc_section">
1362 <a name="common">Helpful Hints for Common Operations</a>
1363</div>
1364<!-- *********************************************************************** -->
1365
1366<div class="doc_text">
1367
1368<p>This section describes how to perform some very simple transformations of
1369LLVM code. This is meant to give examples of common idioms used, showing the
1370practical side of LLVM transformations. <p> Because this is a "how-to" section,
1371you should also read about the main classes that you will be working with. The
1372<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1373and descriptions of the main classes that you should know about.</p>
1374
1375</div>
1376
1377<!-- NOTE: this section should be heavy on example code -->
1378<!-- ======================================================================= -->
1379<div class="doc_subsection">
1380 <a name="inspection">Basic Inspection and Traversal Routines</a>
1381</div>
1382
1383<div class="doc_text">
1384
1385<p>The LLVM compiler infrastructure have many different data structures that may
1386be traversed. Following the example of the C++ standard template library, the
1387techniques used to traverse these various data structures are all basically the
1388same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1389method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1390function returns an iterator pointing to one past the last valid element of the
1391sequence, and there is some <tt>XXXiterator</tt> data type that is common
1392between the two operations.</p>
1393
1394<p>Because the pattern for iteration is common across many different aspects of
1395the program representation, the standard template library algorithms may be used
1396on them, and it is easier to remember how to iterate. First we show a few common
1397examples of the data structures that need to be traversed. Other data
1398structures are traversed in very similar ways.</p>
1399
1400</div>
1401
1402<!-- _______________________________________________________________________ -->
1403<div class="doc_subsubsection">
1404 <a name="iterate_function">Iterating over the </a><a
1405 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1406 href="#Function"><tt>Function</tt></a>
1407</div>
1408
1409<div class="doc_text">
1410
1411<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1412transform in some way; in particular, you'd like to manipulate its
1413<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
1414the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1415an example that prints the name of a <tt>BasicBlock</tt> and the number of
1416<tt>Instruction</tt>s it contains:</p>
1417
1418<div class="doc_code">
1419<pre>
1420// <i>func is a pointer to a Function instance</i>
1421for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1422 // <i>Print out the name of the basic block if it has one, and then the</i>
1423 // <i>number of instructions that it contains</i>
1424 llvm::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1425 &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1426</pre>
1427</div>
1428
1429<p>Note that i can be used as if it were a pointer for the purposes of
1430invoking member functions of the <tt>Instruction</tt> class. This is
1431because the indirection operator is overloaded for the iterator
1432classes. In the above code, the expression <tt>i-&gt;size()</tt> is
1433exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1434
1435</div>
1436
1437<!-- _______________________________________________________________________ -->
1438<div class="doc_subsubsection">
1439 <a name="iterate_basicblock">Iterating over the </a><a
1440 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1441 href="#BasicBlock"><tt>BasicBlock</tt></a>
1442</div>
1443
1444<div class="doc_text">
1445
1446<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1447easy to iterate over the individual instructions that make up
1448<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1449a <tt>BasicBlock</tt>:</p>
1450
1451<div class="doc_code">
1452<pre>
1453// <i>blk is a pointer to a BasicBlock instance</i>
1454for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1455 // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1456 // <i>is overloaded for Instruction&amp;</i>
1457 llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
1458</pre>
1459</div>
1460
1461<p>However, this isn't really the best way to print out the contents of a
1462<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
1463anything you'll care about, you could have just invoked the print routine on the
1464basic block itself: <tt>llvm::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1465
1466</div>
1467
1468<!-- _______________________________________________________________________ -->
1469<div class="doc_subsubsection">
1470 <a name="iterate_institer">Iterating over the </a><a
1471 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1472 href="#Function"><tt>Function</tt></a>
1473</div>
1474
1475<div class="doc_text">
1476
1477<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1478<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1479<tt>InstIterator</tt> should be used instead. You'll need to include <a
1480href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1481and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
1482small example that shows how to dump all instructions in a function to the standard error stream:<p>
1483
1484<div class="doc_code">
1485<pre>
1486#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1487
1488// <i>F is a pointer to a Function instance</i>
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001489for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1490 llvm::cerr &lt;&lt; *I &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491</pre>
1492</div>
1493
1494<p>Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
1495work list with its initial contents. For example, if you wanted to
1496initialize a work list to contain all instructions in a <tt>Function</tt>
1497F, all you would need to do is something like:</p>
1498
1499<div class="doc_code">
1500<pre>
1501std::set&lt;Instruction*&gt; worklist;
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001502// or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1503
1504for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1505 worklist.insert(&amp;*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506</pre>
1507</div>
1508
1509<p>The STL set <tt>worklist</tt> would now contain all instructions in the
1510<tt>Function</tt> pointed to by F.</p>
1511
1512</div>
1513
1514<!-- _______________________________________________________________________ -->
1515<div class="doc_subsubsection">
1516 <a name="iterate_convert">Turning an iterator into a class pointer (and
1517 vice-versa)</a>
1518</div>
1519
1520<div class="doc_text">
1521
1522<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1523instance when all you've got at hand is an iterator. Well, extracting
1524a reference or a pointer from an iterator is very straight-forward.
1525Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1526is a <tt>BasicBlock::const_iterator</tt>:</p>
1527
1528<div class="doc_code">
1529<pre>
1530Instruction&amp; inst = *i; // <i>Grab reference to instruction reference</i>
1531Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1532const Instruction&amp; inst = *j;
1533</pre>
1534</div>
1535
1536<p>However, the iterators you'll be working with in the LLVM framework are
1537special: they will automatically convert to a ptr-to-instance type whenever they
1538need to. Instead of dereferencing the iterator and then taking the address of
1539the result, you can simply assign the iterator to the proper pointer type and
1540you get the dereference and address-of operation as a result of the assignment
1541(behind the scenes, this is a result of overloading casting mechanisms). Thus
1542the last line of the last example,</p>
1543
1544<div class="doc_code">
1545<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001546Instruction *pinst = &amp;*i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547</pre>
1548</div>
1549
1550<p>is semantically equivalent to</p>
1551
1552<div class="doc_code">
1553<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001554Instruction *pinst = i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001555</pre>
1556</div>
1557
1558<p>It's also possible to turn a class pointer into the corresponding iterator,
1559and this is a constant time operation (very efficient). The following code
1560snippet illustrates use of the conversion constructors provided by LLVM
1561iterators. By using these, you can explicitly grab the iterator of something
1562without actually obtaining it via iteration over some structure:</p>
1563
1564<div class="doc_code">
1565<pre>
1566void printNextInstruction(Instruction* inst) {
1567 BasicBlock::iterator it(inst);
1568 ++it; // <i>After this line, it refers to the instruction after *inst</i>
1569 if (it != inst-&gt;getParent()-&gt;end()) llvm::cerr &lt;&lt; *it &lt;&lt; "\n";
1570}
1571</pre>
1572</div>
1573
1574</div>
1575
1576<!--_______________________________________________________________________-->
1577<div class="doc_subsubsection">
1578 <a name="iterate_complex">Finding call sites: a slightly more complex
1579 example</a>
1580</div>
1581
1582<div class="doc_text">
1583
1584<p>Say that you're writing a FunctionPass and would like to count all the
1585locations in the entire module (that is, across every <tt>Function</tt>) where a
1586certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
1587learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1588much more straight-forward manner, but this example will allow us to explore how
1589you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1590is what we want to do:</p>
1591
1592<div class="doc_code">
1593<pre>
1594initialize callCounter to zero
1595for each Function f in the Module
1596 for each BasicBlock b in f
1597 for each Instruction i in b
1598 if (i is a CallInst and calls the given function)
1599 increment callCounter
1600</pre>
1601</div>
1602
1603<p>And the actual code is (remember, because we're writing a
1604<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1605override the <tt>runOnFunction</tt> method):</p>
1606
1607<div class="doc_code">
1608<pre>
1609Function* targetFunc = ...;
1610
1611class OurFunctionPass : public FunctionPass {
1612 public:
1613 OurFunctionPass(): callCounter(0) { }
1614
1615 virtual runOnFunction(Function&amp; F) {
1616 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
1617 for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
1618 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1619 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1620 // <i>We know we've encountered a call instruction, so we</i>
1621 // <i>need to determine if it's a call to the</i>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001622 // <i>function pointed to by m_func or not.</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001623 if (callInst-&gt;getCalledFunction() == targetFunc)
1624 ++callCounter;
1625 }
1626 }
1627 }
1628 }
1629
1630 private:
Chris Lattner0665e1f2008-01-03 16:56:04 +00001631 unsigned callCounter;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001632};
1633</pre>
1634</div>
1635
1636</div>
1637
1638<!--_______________________________________________________________________-->
1639<div class="doc_subsubsection">
1640 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1641</div>
1642
1643<div class="doc_text">
1644
1645<p>You may have noticed that the previous example was a bit oversimplified in
1646that it did not deal with call sites generated by 'invoke' instructions. In
1647this, and in other situations, you may find that you want to treat
1648<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1649most-specific common base class is <tt>Instruction</tt>, which includes lots of
1650less closely-related things. For these cases, LLVM provides a handy wrapper
1651class called <a
1652href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1653It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1654methods that provide functionality common to <tt>CallInst</tt>s and
1655<tt>InvokeInst</tt>s.</p>
1656
1657<p>This class has "value semantics": it should be passed by value, not by
1658reference and it should not be dynamically allocated or deallocated using
1659<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1660assignable and constructable, with costs equivalents to that of a bare pointer.
1661If you look at its definition, it has only a single pointer member.</p>
1662
1663</div>
1664
1665<!--_______________________________________________________________________-->
1666<div class="doc_subsubsection">
1667 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1668</div>
1669
1670<div class="doc_text">
1671
1672<p>Frequently, we might have an instance of the <a
1673href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1674determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
1675<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1676For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1677particular function <tt>foo</tt>. Finding all of the instructions that
1678<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1679of <tt>F</tt>:</p>
1680
1681<div class="doc_code">
1682<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001683Function *F = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684
1685for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1686 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
1687 llvm::cerr &lt;&lt; "F is used in instruction:\n";
1688 llvm::cerr &lt;&lt; *Inst &lt;&lt; "\n";
1689 }
1690</pre>
1691</div>
1692
1693<p>Alternately, it's common to have an instance of the <a
1694href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1695<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
1696<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
1697<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1698all of the values that a particular instruction uses (that is, the operands of
1699the particular <tt>Instruction</tt>):</p>
1700
1701<div class="doc_code">
1702<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001703Instruction *pi = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001704
1705for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Chris Lattner0665e1f2008-01-03 16:56:04 +00001706 Value *v = *i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707 // <i>...</i>
1708}
1709</pre>
1710</div>
1711
1712<!--
1713 def-use chains ("finding all users of"): Value::use_begin/use_end
1714 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
1715-->
1716
1717</div>
1718
Chris Lattner0665e1f2008-01-03 16:56:04 +00001719<!--_______________________________________________________________________-->
1720<div class="doc_subsubsection">
1721 <a name="iterate_preds">Iterating over predecessors &amp;
1722successors of blocks</a>
1723</div>
1724
1725<div class="doc_text">
1726
1727<p>Iterating over the predecessors and successors of a block is quite easy
1728with the routines defined in <tt>"llvm/Support/CFG.h"</tt>. Just use code like
1729this to iterate over all predecessors of BB:</p>
1730
1731<div class="doc_code">
1732<pre>
1733#include "llvm/Support/CFG.h"
1734BasicBlock *BB = ...;
1735
1736for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1737 BasicBlock *Pred = *PI;
1738 // <i>...</i>
1739}
1740</pre>
1741</div>
1742
1743<p>Similarly, to iterate over successors use
1744succ_iterator/succ_begin/succ_end.</p>
1745
1746</div>
1747
1748
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749<!-- ======================================================================= -->
1750<div class="doc_subsection">
1751 <a name="simplechanges">Making simple changes</a>
1752</div>
1753
1754<div class="doc_text">
1755
1756<p>There are some primitive transformation operations present in the LLVM
1757infrastructure that are worth knowing about. When performing
1758transformations, it's fairly common to manipulate the contents of basic
1759blocks. This section describes some of the common methods for doing so
1760and gives example code.</p>
1761
1762</div>
1763
1764<!--_______________________________________________________________________-->
1765<div class="doc_subsubsection">
1766 <a name="schanges_creating">Creating and inserting new
1767 <tt>Instruction</tt>s</a>
1768</div>
1769
1770<div class="doc_text">
1771
1772<p><i>Instantiating Instructions</i></p>
1773
1774<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
1775constructor for the kind of instruction to instantiate and provide the necessary
1776parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
1777(const-ptr-to) <tt>Type</tt>. Thus:</p>
1778
1779<div class="doc_code">
1780<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00001781AllocaInst* ai = new AllocaInst(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001782</pre>
1783</div>
1784
1785<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
1786one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
1787subclass is likely to have varying default parameters which change the semantics
1788of the instruction, so refer to the <a
1789href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
1790Instruction</a> that you're interested in instantiating.</p>
1791
1792<p><i>Naming values</i></p>
1793
1794<p>It is very useful to name the values of instructions when you're able to, as
1795this facilitates the debugging of your transformations. If you end up looking
1796at generated LLVM machine code, you definitely want to have logical names
1797associated with the results of instructions! By supplying a value for the
1798<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
1799associate a logical name with the result of the instruction's execution at
1800run time. For example, say that I'm writing a transformation that dynamically
1801allocates space for an integer on the stack, and that integer is going to be
1802used as some kind of index by some other code. To accomplish this, I place an
1803<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
1804<tt>Function</tt>, and I'm intending to use it within the same
1805<tt>Function</tt>. I might do:</p>
1806
1807<div class="doc_code">
1808<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00001809AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810</pre>
1811</div>
1812
1813<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
1814execution value, which is a pointer to an integer on the run time stack.</p>
1815
1816<p><i>Inserting instructions</i></p>
1817
1818<p>There are essentially two ways to insert an <tt>Instruction</tt>
1819into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
1820
1821<ul>
1822 <li>Insertion into an explicit instruction list
1823
1824 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
1825 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
1826 before <tt>*pi</tt>, we do the following: </p>
1827
1828<div class="doc_code">
1829<pre>
1830BasicBlock *pb = ...;
1831Instruction *pi = ...;
1832Instruction *newInst = new Instruction(...);
1833
1834pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
1835</pre>
1836</div>
1837
1838 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
1839 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
1840 classes provide constructors which take a pointer to a
1841 <tt>BasicBlock</tt> to be appended to. For example code that
1842 looked like: </p>
1843
1844<div class="doc_code">
1845<pre>
1846BasicBlock *pb = ...;
1847Instruction *newInst = new Instruction(...);
1848
1849pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
1850</pre>
1851</div>
1852
1853 <p>becomes: </p>
1854
1855<div class="doc_code">
1856<pre>
1857BasicBlock *pb = ...;
1858Instruction *newInst = new Instruction(..., pb);
1859</pre>
1860</div>
1861
1862 <p>which is much cleaner, especially if you are creating
1863 long instruction streams.</p></li>
1864
1865 <li>Insertion into an implicit instruction list
1866
1867 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
1868 are implicitly associated with an existing instruction list: the instruction
1869 list of the enclosing basic block. Thus, we could have accomplished the same
1870 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
1871 </p>
1872
1873<div class="doc_code">
1874<pre>
1875Instruction *pi = ...;
1876Instruction *newInst = new Instruction(...);
1877
1878pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
1879</pre>
1880</div>
1881
1882 <p>In fact, this sequence of steps occurs so frequently that the
1883 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
1884 constructors which take (as a default parameter) a pointer to an
1885 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
1886 precede. That is, <tt>Instruction</tt> constructors are capable of
1887 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
1888 provided instruction, immediately before that instruction. Using an
1889 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
1890 parameter, the above code becomes:</p>
1891
1892<div class="doc_code">
1893<pre>
1894Instruction* pi = ...;
1895Instruction* newInst = new Instruction(..., pi);
1896</pre>
1897</div>
1898
1899 <p>which is much cleaner, especially if you're creating a lot of
1900 instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
1901</ul>
1902
1903</div>
1904
1905<!--_______________________________________________________________________-->
1906<div class="doc_subsubsection">
1907 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
1908</div>
1909
1910<div class="doc_text">
1911
1912<p>Deleting an instruction from an existing sequence of instructions that form a
1913<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
1914you must have a pointer to the instruction that you wish to delete. Second, you
1915need to obtain the pointer to that instruction's basic block. You use the
1916pointer to the basic block to get its list of instructions and then use the
1917erase function to remove your instruction. For example:</p>
1918
1919<div class="doc_code">
1920<pre>
1921<a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner3db8f772008-02-15 22:57:17 +00001922I-&gt;eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923</pre>
1924</div>
1925
1926</div>
1927
1928<!--_______________________________________________________________________-->
1929<div class="doc_subsubsection">
1930 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
1931 <tt>Value</tt></a>
1932</div>
1933
1934<div class="doc_text">
1935
1936<p><i>Replacing individual instructions</i></p>
1937
1938<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
1939permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
1940and <tt>ReplaceInstWithInst</tt>.</p>
1941
1942<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
1943
1944<ul>
1945 <li><tt>ReplaceInstWithValue</tt>
1946
1947 <p>This function replaces all uses (within a basic block) of a given
1948 instruction with a value, and then removes the original instruction. The
1949 following example illustrates the replacement of the result of a particular
1950 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
1951 pointer to an integer.</p>
1952
1953<div class="doc_code">
1954<pre>
1955AllocaInst* instToReplace = ...;
1956BasicBlock::iterator ii(instToReplace);
1957
1958ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00001959 Constant::getNullValue(PointerType::get(Type::Int32Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001960</pre></div></li>
1961
1962 <li><tt>ReplaceInstWithInst</tt>
1963
1964 <p>This function replaces a particular instruction with another
1965 instruction. The following example illustrates the replacement of one
1966 <tt>AllocaInst</tt> with another.</p>
1967
1968<div class="doc_code">
1969<pre>
1970AllocaInst* instToReplace = ...;
1971BasicBlock::iterator ii(instToReplace);
1972
1973ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00001974 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975</pre></div></li>
1976</ul>
1977
1978<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
1979
1980<p>You can use <tt>Value::replaceAllUsesWith</tt> and
1981<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
1982doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
1983and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
1984information.</p>
1985
1986<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
1987include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
1988ReplaceInstWithValue, ReplaceInstWithInst -->
1989
1990</div>
1991
1992<!--_______________________________________________________________________-->
1993<div class="doc_subsubsection">
1994 <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
1995</div>
1996
1997<div class="doc_text">
1998
1999<p>Deleting a global variable from a module is just as easy as deleting an
2000Instruction. First, you must have a pointer to the global variable that you wish
2001 to delete. You use this pointer to erase it from its parent, the module.
2002 For example:</p>
2003
2004<div class="doc_code">
2005<pre>
2006<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2007
2008GV-&gt;eraseFromParent();
2009</pre>
2010</div>
2011
2012</div>
2013
2014<!-- *********************************************************************** -->
2015<div class="doc_section">
2016 <a name="advanced">Advanced Topics</a>
2017</div>
2018<!-- *********************************************************************** -->
2019
2020<div class="doc_text">
2021<p>
2022This section describes some of the advanced or obscure API's that most clients
2023do not need to be aware of. These API's tend manage the inner workings of the
2024LLVM system, and only need to be accessed in unusual circumstances.
2025</p>
2026</div>
2027
2028<!-- ======================================================================= -->
2029<div class="doc_subsection">
2030 <a name="TypeResolve">LLVM Type Resolution</a>
2031</div>
2032
2033<div class="doc_text">
2034
2035<p>
2036The LLVM type system has a very simple goal: allow clients to compare types for
2037structural equality with a simple pointer comparison (aka a shallow compare).
2038This goal makes clients much simpler and faster, and is used throughout the LLVM
2039system.
2040</p>
2041
2042<p>
2043Unfortunately achieving this goal is not a simple matter. In particular,
2044recursive types and late resolution of opaque types makes the situation very
2045difficult to handle. Fortunately, for the most part, our implementation makes
2046most clients able to be completely unaware of the nasty internal details. The
2047primary case where clients are exposed to the inner workings of it are when
2048building a recursive type. In addition to this case, the LLVM bitcode reader,
2049assembly parser, and linker also have to be aware of the inner workings of this
2050system.
2051</p>
2052
2053<p>
2054For our purposes below, we need three concepts. First, an "Opaque Type" is
2055exactly as defined in the <a href="LangRef.html#t_opaque">language
2056reference</a>. Second an "Abstract Type" is any type which includes an
2057opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2058Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32,
2059float }</tt>").
2060</p>
2061
2062</div>
2063
2064<!-- ______________________________________________________________________ -->
2065<div class="doc_subsubsection">
2066 <a name="BuildRecType">Basic Recursive Type Construction</a>
2067</div>
2068
2069<div class="doc_text">
2070
2071<p>
2072Because the most common question is "how do I build a recursive type with LLVM",
2073we answer it now and explain it as we go. Here we include enough to cause this
2074to be emitted to an output .ll file:
2075</p>
2076
2077<div class="doc_code">
2078<pre>
2079%mylist = type { %mylist*, i32 }
2080</pre>
2081</div>
2082
2083<p>
2084To build this, use the following LLVM APIs:
2085</p>
2086
2087<div class="doc_code">
2088<pre>
2089// <i>Create the initial outer struct</i>
2090<a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2091std::vector&lt;const Type*&gt; Elts;
2092Elts.push_back(PointerType::get(StructTy));
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002093Elts.push_back(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002094StructType *NewSTy = StructType::get(Elts);
2095
2096// <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2097// <i>the struct and the opaque type are actually the same.</i>
2098cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2099
2100// <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2101// <i>kept up-to-date</i>
2102NewSTy = cast&lt;StructType&gt;(StructTy.get());
2103
2104// <i>Add a name for the type to the module symbol table (optional)</i>
2105MyModule-&gt;addTypeName("mylist", NewSTy);
2106</pre>
2107</div>
2108
2109<p>
2110This code shows the basic approach used to build recursive types: build a
2111non-recursive type using 'opaque', then use type unification to close the cycle.
2112The type unification step is performed by the <tt><a
2113href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2114described next. After that, we describe the <a
2115href="#PATypeHolder">PATypeHolder class</a>.
2116</p>
2117
2118</div>
2119
2120<!-- ______________________________________________________________________ -->
2121<div class="doc_subsubsection">
2122 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2123</div>
2124
2125<div class="doc_text">
2126<p>
2127The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2128While this method is actually a member of the DerivedType class, it is most
2129often used on OpaqueType instances. Type unification is actually a recursive
2130process. After unification, types can become structurally isomorphic to
2131existing types, and all duplicates are deleted (to preserve pointer equality).
2132</p>
2133
2134<p>
2135In the example above, the OpaqueType object is definitely deleted.
2136Additionally, if there is an "{ \2*, i32}" type already created in the system,
2137the pointer and struct type created are <b>also</b> deleted. Obviously whenever
2138a type is deleted, any "Type*" pointers in the program are invalidated. As
2139such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2140live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2141types can never move or be deleted). To deal with this, the <a
2142href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2143reference to a possibly refined type, and the <a
2144href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2145complex datastructures.
2146</p>
2147
2148</div>
2149
2150<!-- ______________________________________________________________________ -->
2151<div class="doc_subsubsection">
2152 <a name="PATypeHolder">The PATypeHolder Class</a>
2153</div>
2154
2155<div class="doc_text">
2156<p>
2157PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
2158happily goes about nuking types that become isomorphic to existing types, it
2159automatically updates all PATypeHolder objects to point to the new type. In the
2160example above, this allows the code to maintain a pointer to the resultant
2161resolved recursive type, even though the Type*'s are potentially invalidated.
2162</p>
2163
2164<p>
2165PATypeHolder is an extremely light-weight object that uses a lazy union-find
2166implementation to update pointers. For example the pointer from a Value to its
2167Type is maintained by PATypeHolder objects.
2168</p>
2169
2170</div>
2171
2172<!-- ______________________________________________________________________ -->
2173<div class="doc_subsubsection">
2174 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2175</div>
2176
2177<div class="doc_text">
2178
2179<p>
2180Some data structures need more to perform more complex updates when types get
2181resolved. To support this, a class can derive from the AbstractTypeUser class.
2182This class
2183allows it to get callbacks when certain types are resolved. To register to get
2184callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2185methods can be called on a type. Note that these methods only work for <i>
2186 abstract</i> types. Concrete types (those that do not include any opaque
2187objects) can never be refined.
2188</p>
2189</div>
2190
2191
2192<!-- ======================================================================= -->
2193<div class="doc_subsection">
2194 <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2195 <tt>TypeSymbolTable</tt> classes</a>
2196</div>
2197
2198<div class="doc_text">
2199<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2200ValueSymbolTable</a></tt> class provides a symbol table that the <a
2201href="#Function"><tt>Function</tt></a> and <a href="#Module">
2202<tt>Module</tt></a> classes use for naming value definitions. The symbol table
2203can provide a name for any <a href="#Value"><tt>Value</tt></a>.
2204The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2205TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2206names for types.</p>
2207
2208<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2209by most clients. It should only be used when iteration over the symbol table
2210names themselves are required, which is very special purpose. Note that not
2211all LLVM
Gabor Greif92e87762008-06-16 21:06:12 +00002212<tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213an empty name) do not exist in the symbol table.
2214</p>
2215
2216<p>These symbol tables support iteration over the values/types in the symbol
2217table with <tt>begin/end/iterator</tt> and supports querying to see if a
2218specific name is in the symbol table (with <tt>lookup</tt>). The
2219<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2220simply call <tt>setName</tt> on a value, which will autoinsert it into the
2221appropriate symbol table. For types, use the Module::addTypeName method to
2222insert entries into the symbol table.</p>
2223
2224</div>
2225
2226
2227
Gabor Greif92e87762008-06-16 21:06:12 +00002228<!-- ======================================================================= -->
2229<div class="doc_subsection">
2230 <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2231</div>
2232
2233<div class="doc_text">
2234<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2235User</a></tt> class provides a base for expressing the ownership of <tt>User</tt>
2236towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2237Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
Gabor Greif93b462b2008-06-18 13:44:57 +00002238Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002239addition and removal.</p>
2240
Gabor Greif93b462b2008-06-18 13:44:57 +00002241<!-- ______________________________________________________________________ -->
2242<div class="doc_subsubsection">
2243 <a name="PATypeHolder">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
2244</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002245
Gabor Greif93b462b2008-06-18 13:44:57 +00002246<div class="doc_text">
2247<p>
2248A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
Gabor Greif92e87762008-06-16 21:06:12 +00002249or refer to them out-of-line by means of a pointer. A mixed variant
Gabor Greif93b462b2008-06-18 13:44:57 +00002250(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2251that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2252</p>
2253</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002254
Gabor Greif93b462b2008-06-18 13:44:57 +00002255<p>
2256We have 2 different layouts in the <tt>User</tt> (sub)classes:
2257<ul>
2258<li><p>Layout a)
2259The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2260object and there are a fixed number of them.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002261
Gabor Greif93b462b2008-06-18 13:44:57 +00002262<li><p>Layout b)
2263The <tt>Use</tt> object(s) are referenced by a pointer to an
2264array from the <tt>User</tt> object and there may be a variable
2265number of them.</p>
2266</ul>
2267<p>
Gabor Greif92e87762008-06-16 21:06:12 +00002268Initially each layout will possess a direct pointer to the
Gabor Greif93b462b2008-06-18 13:44:57 +00002269start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
Gabor Greif92e87762008-06-16 21:06:12 +00002270we stick to this redundancy for the sake of simplicity.
Gabor Greif93b462b2008-06-18 13:44:57 +00002271The <tt>User</tt> object will also store the number of <tt>Use</tt> objects it
Gabor Greif92e87762008-06-16 21:06:12 +00002272has. (Theoretically this information can also be calculated
Gabor Greif93b462b2008-06-18 13:44:57 +00002273given the scheme presented below.)</p>
2274<p>
2275Special forms of allocation operators (<tt>operator new</tt>)
2276will enforce the following memory layouts:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002277
Gabor Greif93b462b2008-06-18 13:44:57 +00002278<ul>
2279<li><p>Layout a) will be modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002280
Gabor Greif93b462b2008-06-18 13:44:57 +00002281<pre>
2282...---.---.---.---.-------...
2283 | P | P | P | P | User
2284'''---'---'---'---'-------'''
2285</pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002286
Gabor Greif93b462b2008-06-18 13:44:57 +00002287<li><p>Layout b) will be modelled by pointing at the Use[] array.</p>
2288<pre>
2289.-------...
2290| User
2291'-------'''
2292 |
2293 v
2294 .---.---.---.---...
2295 | P | P | P | P |
2296 '---'---'---'---'''
2297</pre>
2298</ul>
2299<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2300 is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002301
Gabor Greif93b462b2008-06-18 13:44:57 +00002302<!-- ______________________________________________________________________ -->
2303<div class="doc_subsubsection">
2304 <a name="PATypeHolder">The waymarking algorithm</a>
2305</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002306
Gabor Greif93b462b2008-06-18 13:44:57 +00002307<div class="doc_text">
2308<p>
2309Since the <tt>Use</tt> objects will be deprived of the direct pointer to
2310their <tt>User</tt> objects, there must be a fast and exact method to
2311recover it. This is accomplished by the following scheme:</p>
2312</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002313
Gabor Greif93b462b2008-06-18 13:44:57 +00002314A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> will allow to find the
2315start of the <tt>User</tt> object:
2316<ul>
2317<li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2318<li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2319<li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2320<li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2321</ul>
2322<p>
2323Given a <tt>Use*</tt>, all we have to do is to walk till we get
2324a stop and we either have a <tt>User</tt> immediately behind or
Gabor Greif92e87762008-06-16 21:06:12 +00002325we have to walk to the next stop picking up digits
Gabor Greif93b462b2008-06-18 13:44:57 +00002326and calculating the offset:</p>
2327<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002328.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2329| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2330'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2331 |+15 |+10 |+6 |+3 |+1
2332 | | | | |__>
2333 | | | |__________>
2334 | | |______________________>
2335 | |______________________________________>
2336 |__________________________________________________________>
Gabor Greif93b462b2008-06-18 13:44:57 +00002337</pre>
2338<p>
Gabor Greif92e87762008-06-16 21:06:12 +00002339Only the significant number of bits need to be stored between the
Gabor Greif93b462b2008-06-18 13:44:57 +00002340stops, so that the <i>worst case is 20 memory accesses</i> when there are
23411000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002342
Gabor Greif93b462b2008-06-18 13:44:57 +00002343<!-- ______________________________________________________________________ -->
2344<div class="doc_subsubsection">
2345 <a name="PATypeHolder">Reference implementation</a>
2346</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002347
Gabor Greif93b462b2008-06-18 13:44:57 +00002348<div class="doc_text">
2349<p>
2350The following literate Haskell fragment demonstrates the concept:</p>
2351</div>
2352
2353<div class="doc_code">
2354<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002355> import Test.QuickCheck
2356>
2357> digits :: Int -> [Char] -> [Char]
2358> digits 0 acc = '0' : acc
2359> digits 1 acc = '1' : acc
2360> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2361>
2362> dist :: Int -> [Char] -> [Char]
2363> dist 0 [] = ['S']
2364> dist 0 acc = acc
2365> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2366> dist n acc = dist (n - 1) $ dist 1 acc
2367>
2368> takeLast n ss = reverse $ take n $ reverse ss
2369>
2370> test = takeLast 40 $ dist 20 []
2371>
Gabor Greif93b462b2008-06-18 13:44:57 +00002372</pre>
2373</div>
2374<p>
2375Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2376<p>
2377The reverse algorithm computes the length of the string just by examining
2378a certain prefix:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002379
Gabor Greif93b462b2008-06-18 13:44:57 +00002380<div class="doc_code">
2381<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002382> pref :: [Char] -> Int
2383> pref "S" = 1
2384> pref ('s':'1':rest) = decode 2 1 rest
2385> pref (_:rest) = 1 + pref rest
2386>
2387> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2388> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2389> decode walk acc _ = walk + acc
2390>
Gabor Greif93b462b2008-06-18 13:44:57 +00002391</pre>
2392</div>
2393<p>
2394Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2395<p>
2396We can <i>quickCheck</i> this with following property:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002397
Gabor Greif93b462b2008-06-18 13:44:57 +00002398<div class="doc_code">
2399<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002400> testcase = dist 2000 []
2401> testcaseLength = length testcase
2402>
2403> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2404> where arr = takeLast n testcase
Gabor Greif93b462b2008-06-18 13:44:57 +00002405>
2406</pre>
2407</div>
2408<p>
2409As expected &lt;quickCheck identityProp&gt; gives:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002410
Gabor Greif93b462b2008-06-18 13:44:57 +00002411<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002412*Main> quickCheck identityProp
2413OK, passed 100 tests.
Gabor Greif93b462b2008-06-18 13:44:57 +00002414</pre>
2415<p>
2416Let's be a bit more exhaustive:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002417
Gabor Greif93b462b2008-06-18 13:44:57 +00002418<div class="doc_code">
2419<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002420>
2421> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2422>
Gabor Greif93b462b2008-06-18 13:44:57 +00002423</pre>
2424</div>
2425<p>
2426And here is the result of &lt;deepCheck identityProp&gt;:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002427
Gabor Greif93b462b2008-06-18 13:44:57 +00002428<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002429*Main> deepCheck identityProp
2430OK, passed 500 tests.
Gabor Greif92e87762008-06-16 21:06:12 +00002431</pre>
2432
Gabor Greif93b462b2008-06-18 13:44:57 +00002433<!-- ______________________________________________________________________ -->
2434<div class="doc_subsubsection">
2435 <a name="PATypeHolder">Tagging considerations</a>
2436</div>
2437
2438<p>
2439To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2440never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2441new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2442tag bits.</p>
2443<p>
2444For layout b) instead of the <tt>User</tt> we will find a pointer (<tt>User*</tt> with LSBit set).
2445Following this pointer brings us to the <tt>User</tt>. A portable trick will ensure
2446that the first bytes of <tt>User</tt> (if interpreted as a pointer) will never have
2447the LSBit set.</p>
2448
Gabor Greif92e87762008-06-16 21:06:12 +00002449</div>
2450
2451 <!-- *********************************************************************** -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002452<div class="doc_section">
2453 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2454</div>
2455<!-- *********************************************************************** -->
2456
2457<div class="doc_text">
2458<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2459<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2460
2461<p>The Core LLVM classes are the primary means of representing the program
2462being inspected or transformed. The core LLVM classes are defined in
2463header files in the <tt>include/llvm/</tt> directory, and implemented in
2464the <tt>lib/VMCore</tt> directory.</p>
2465
2466</div>
2467
2468<!-- ======================================================================= -->
2469<div class="doc_subsection">
2470 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2471</div>
2472
2473<div class="doc_text">
2474
2475 <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2476 a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2477 through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2478 <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
2479 subclasses. They are hidden because they offer no useful functionality beyond
2480 what the <tt>Type</tt> class offers except to distinguish themselves from
2481 other subclasses of <tt>Type</tt>.</p>
2482 <p>All other types are subclasses of <tt>DerivedType</tt>. Types can be
2483 named, but this is not a requirement. There exists exactly
2484 one instance of a given shape at any one time. This allows type equality to
2485 be performed with address equality of the Type Instance. That is, given two
2486 <tt>Type*</tt> values, the types are identical if the pointers are identical.
2487 </p>
2488</div>
2489
2490<!-- _______________________________________________________________________ -->
2491<div class="doc_subsubsection">
2492 <a name="m_Value">Important Public Methods</a>
2493</div>
2494
2495<div class="doc_text">
2496
2497<ul>
2498 <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
2499
2500 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2501 floating point types.</li>
2502
2503 <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
2504 an OpaqueType anywhere in its definition).</li>
2505
2506 <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2507 that don't have a size are abstract types, labels and void.</li>
2508
2509</ul>
2510</div>
2511
2512<!-- _______________________________________________________________________ -->
2513<div class="doc_subsubsection">
2514 <a name="m_Value">Important Derived Types</a>
2515</div>
2516<div class="doc_text">
2517<dl>
2518 <dt><tt>IntegerType</tt></dt>
2519 <dd>Subclass of DerivedType that represents integer types of any bit width.
2520 Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
2521 <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2522 <ul>
2523 <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2524 type of a specific bit width.</li>
2525 <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
2526 type.</li>
2527 </ul>
2528 </dd>
2529 <dt><tt>SequentialType</tt></dt>
2530 <dd>This is subclassed by ArrayType and PointerType
2531 <ul>
2532 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2533 of the elements in the sequential type. </li>
2534 </ul>
2535 </dd>
2536 <dt><tt>ArrayType</tt></dt>
2537 <dd>This is a subclass of SequentialType and defines the interface for array
2538 types.
2539 <ul>
2540 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
2541 elements in the array. </li>
2542 </ul>
2543 </dd>
2544 <dt><tt>PointerType</tt></dt>
2545 <dd>Subclass of SequentialType for pointer types.</dd>
2546 <dt><tt>VectorType</tt></dt>
2547 <dd>Subclass of SequentialType for vector types. A
2548 vector type is similar to an ArrayType but is distinguished because it is
2549 a first class type wherease ArrayType is not. Vector types are used for
2550 vector operations and are usually small vectors of of an integer or floating
2551 point type.</dd>
2552 <dt><tt>StructType</tt></dt>
2553 <dd>Subclass of DerivedTypes for struct types.</dd>
2554 <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
2555 <dd>Subclass of DerivedTypes for function types.
2556 <ul>
2557 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2558 function</li>
2559 <li><tt> const Type * getReturnType() const</tt>: Returns the
2560 return type of the function.</li>
2561 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2562 the type of the ith parameter.</li>
2563 <li><tt> const unsigned getNumParams() const</tt>: Returns the
2564 number of formal parameters.</li>
2565 </ul>
2566 </dd>
2567 <dt><tt>OpaqueType</tt></dt>
2568 <dd>Sublcass of DerivedType for abstract types. This class
2569 defines no content and is used as a placeholder for some other type. Note
2570 that OpaqueType is used (temporarily) during type resolution for forward
2571 references of types. Once the referenced type is resolved, the OpaqueType
2572 is replaced with the actual type. OpaqueType can also be used for data
2573 abstraction. At link time opaque types can be resolved to actual types
2574 of the same name.</dd>
2575</dl>
2576</div>
2577
2578
2579
2580<!-- ======================================================================= -->
2581<div class="doc_subsection">
2582 <a name="Module">The <tt>Module</tt> class</a>
2583</div>
2584
2585<div class="doc_text">
2586
2587<p><tt>#include "<a
2588href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
2589<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
2590
2591<p>The <tt>Module</tt> class represents the top level structure present in LLVM
2592programs. An LLVM module is effectively either a translation unit of the
2593original program or a combination of several translation units merged by the
2594linker. The <tt>Module</tt> class keeps track of a list of <a
2595href="#Function"><tt>Function</tt></a>s, a list of <a
2596href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
2597href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
2598helpful member functions that try to make common operations easy.</p>
2599
2600</div>
2601
2602<!-- _______________________________________________________________________ -->
2603<div class="doc_subsubsection">
2604 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2605</div>
2606
2607<div class="doc_text">
2608
2609<ul>
2610 <li><tt>Module::Module(std::string name = "")</tt></li>
2611</ul>
2612
2613<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2614provide a name for it (probably based on the name of the translation unit).</p>
2615
2616<ul>
2617 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
2618 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
2619
2620 <tt>begin()</tt>, <tt>end()</tt>
2621 <tt>size()</tt>, <tt>empty()</tt>
2622
2623 <p>These are forwarding methods that make it easy to access the contents of
2624 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2625 list.</p></li>
2626
2627 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
2628
2629 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
2630 necessary to use when you need to update the list or perform a complex
2631 action that doesn't have a forwarding method.</p>
2632
2633 <p><!-- Global Variable --></p></li>
2634</ul>
2635
2636<hr>
2637
2638<ul>
2639 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
2640
2641 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
2642
2643 <tt>global_begin()</tt>, <tt>global_end()</tt>
2644 <tt>global_size()</tt>, <tt>global_empty()</tt>
2645
2646 <p> These are forwarding methods that make it easy to access the contents of
2647 a <tt>Module</tt> object's <a
2648 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2649
2650 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2651
2652 <p>Returns the list of <a
2653 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
2654 use when you need to update the list or perform a complex action that
2655 doesn't have a forwarding method.</p>
2656
2657 <p><!-- Symbol table stuff --> </p></li>
2658</ul>
2659
2660<hr>
2661
2662<ul>
2663 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2664
2665 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2666 for this <tt>Module</tt>.</p>
2667
2668 <p><!-- Convenience methods --></p></li>
2669</ul>
2670
2671<hr>
2672
2673<ul>
2674 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2675 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2676
2677 <p>Look up the specified function in the <tt>Module</tt> <a
2678 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2679 <tt>null</tt>.</p></li>
2680
2681 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2682 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2683
2684 <p>Look up the specified function in the <tt>Module</tt> <a
2685 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2686 external declaration for the function and return it.</p></li>
2687
2688 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2689
2690 <p>If there is at least one entry in the <a
2691 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2692 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
2693 string.</p></li>
2694
2695 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2696 href="#Type">Type</a> *Ty)</tt>
2697
2698 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2699 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2700 name, true is returned and the <a
2701 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2702</ul>
2703
2704</div>
2705
2706
2707<!-- ======================================================================= -->
2708<div class="doc_subsection">
2709 <a name="Value">The <tt>Value</tt> class</a>
2710</div>
2711
2712<div class="doc_text">
2713
2714<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
2715<br>
2716doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
2717
2718<p>The <tt>Value</tt> class is the most important class in the LLVM Source
2719base. It represents a typed value that may be used (among other things) as an
2720operand to an instruction. There are many different types of <tt>Value</tt>s,
2721such as <a href="#Constant"><tt>Constant</tt></a>s,<a
2722href="#Argument"><tt>Argument</tt></a>s. Even <a
2723href="#Instruction"><tt>Instruction</tt></a>s and <a
2724href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
2725
2726<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
2727for a program. For example, an incoming argument to a function (represented
2728with an instance of the <a href="#Argument">Argument</a> class) is "used" by
2729every instruction in the function that references the argument. To keep track
2730of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
2731href="#User"><tt>User</tt></a>s that is using it (the <a
2732href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
2733graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
2734def-use information in the program, and is accessible through the <tt>use_</tt>*
2735methods, shown below.</p>
2736
2737<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
2738and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
2739method. In addition, all LLVM values can be named. The "name" of the
2740<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
2741
2742<div class="doc_code">
2743<pre>
2744%<b>foo</b> = add i32 1, 2
2745</pre>
2746</div>
2747
2748<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
2749that the name of any value may be missing (an empty string), so names should
2750<b>ONLY</b> be used for debugging (making the source code easier to read,
2751debugging printouts), they should not be used to keep track of values or map
2752between them. For this purpose, use a <tt>std::map</tt> of pointers to the
2753<tt>Value</tt> itself instead.</p>
2754
2755<p>One important aspect of LLVM is that there is no distinction between an SSA
2756variable and the operation that produces it. Because of this, any reference to
2757the value produced by an instruction (or the value available as an incoming
2758argument, for example) is represented as a direct pointer to the instance of
2759the class that
2760represents this value. Although this may take some getting used to, it
2761simplifies the representation and makes it easier to manipulate.</p>
2762
2763</div>
2764
2765<!-- _______________________________________________________________________ -->
2766<div class="doc_subsubsection">
2767 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
2768</div>
2769
2770<div class="doc_text">
2771
2772<ul>
2773 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
2774use-list<br>
2775 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
2776the use-list<br>
2777 <tt>unsigned use_size()</tt> - Returns the number of users of the
2778value.<br>
2779 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
2780 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
2781the use-list.<br>
2782 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
2783use-list.<br>
2784 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
2785element in the list.
2786 <p> These methods are the interface to access the def-use
2787information in LLVM. As with all other iterators in LLVM, the naming
2788conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
2789 </li>
2790 <li><tt><a href="#Type">Type</a> *getType() const</tt>
2791 <p>This method returns the Type of the Value.</p>
2792 </li>
2793 <li><tt>bool hasName() const</tt><br>
2794 <tt>std::string getName() const</tt><br>
2795 <tt>void setName(const std::string &amp;Name)</tt>
2796 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
2797be aware of the <a href="#nameWarning">precaution above</a>.</p>
2798 </li>
2799 <li><tt>void replaceAllUsesWith(Value *V)</tt>
2800
2801 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
2802 href="#User"><tt>User</tt>s</a> of the current value to refer to
2803 "<tt>V</tt>" instead. For example, if you detect that an instruction always
2804 produces a constant value (for example through constant folding), you can
2805 replace all uses of the instruction with the constant like this:</p>
2806
2807<div class="doc_code">
2808<pre>
2809Inst-&gt;replaceAllUsesWith(ConstVal);
2810</pre>
2811</div>
2812
2813</ul>
2814
2815</div>
2816
2817<!-- ======================================================================= -->
2818<div class="doc_subsection">
2819 <a name="User">The <tt>User</tt> class</a>
2820</div>
2821
2822<div class="doc_text">
2823
2824<p>
2825<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
2826doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
2827Superclass: <a href="#Value"><tt>Value</tt></a></p>
2828
2829<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
2830refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
2831that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
2832referring to. The <tt>User</tt> class itself is a subclass of
2833<tt>Value</tt>.</p>
2834
2835<p>The operands of a <tt>User</tt> point directly to the LLVM <a
2836href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
2837Single Assignment (SSA) form, there can only be one definition referred to,
2838allowing this direct connection. This connection provides the use-def
2839information in LLVM.</p>
2840
2841</div>
2842
2843<!-- _______________________________________________________________________ -->
2844<div class="doc_subsubsection">
2845 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
2846</div>
2847
2848<div class="doc_text">
2849
2850<p>The <tt>User</tt> class exposes the operand list in two ways: through
2851an index access interface and through an iterator based interface.</p>
2852
2853<ul>
2854 <li><tt>Value *getOperand(unsigned i)</tt><br>
2855 <tt>unsigned getNumOperands()</tt>
2856 <p> These two methods expose the operands of the <tt>User</tt> in a
2857convenient form for direct access.</p></li>
2858
2859 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
2860list<br>
2861 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
2862the operand list.<br>
2863 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
2864operand list.
2865 <p> Together, these methods make up the iterator based interface to
2866the operands of a <tt>User</tt>.</p></li>
2867</ul>
2868
2869</div>
2870
2871<!-- ======================================================================= -->
2872<div class="doc_subsection">
2873 <a name="Instruction">The <tt>Instruction</tt> class</a>
2874</div>
2875
2876<div class="doc_text">
2877
2878<p><tt>#include "</tt><tt><a
2879href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
2880doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
2881Superclasses: <a href="#User"><tt>User</tt></a>, <a
2882href="#Value"><tt>Value</tt></a></p>
2883
2884<p>The <tt>Instruction</tt> class is the common base class for all LLVM
2885instructions. It provides only a few methods, but is a very commonly used
2886class. The primary data tracked by the <tt>Instruction</tt> class itself is the
2887opcode (instruction type) and the parent <a
2888href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
2889into. To represent a specific type of instruction, one of many subclasses of
2890<tt>Instruction</tt> are used.</p>
2891
2892<p> Because the <tt>Instruction</tt> class subclasses the <a
2893href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
2894way as for other <a href="#User"><tt>User</tt></a>s (with the
2895<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
2896<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
2897the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
2898file contains some meta-data about the various different types of instructions
2899in LLVM. It describes the enum values that are used as opcodes (for example
2900<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
2901concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
2902example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
2903href="#CmpInst">CmpInst</a></tt>). Unfortunately, the use of macros in
2904this file confuses doxygen, so these enum values don't show up correctly in the
2905<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
2906
2907</div>
2908
2909<!-- _______________________________________________________________________ -->
2910<div class="doc_subsubsection">
2911 <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
2912 class</a>
2913</div>
2914<div class="doc_text">
2915 <ul>
2916 <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
2917 <p>This subclasses represents all two operand instructions whose operands
2918 must be the same type, except for the comparison instructions.</p></li>
2919 <li><tt><a name="CastInst">CastInst</a></tt>
2920 <p>This subclass is the parent of the 12 casting instructions. It provides
2921 common operations on cast instructions.</p>
2922 <li><tt><a name="CmpInst">CmpInst</a></tt>
2923 <p>This subclass respresents the two comparison instructions,
2924 <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
2925 <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
2926 <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
2927 <p>This subclass is the parent of all terminator instructions (those which
2928 can terminate a block).</p>
2929 </ul>
2930 </div>
2931
2932<!-- _______________________________________________________________________ -->
2933<div class="doc_subsubsection">
2934 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
2935 class</a>
2936</div>
2937
2938<div class="doc_text">
2939
2940<ul>
2941 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
2942 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
2943this <tt>Instruction</tt> is embedded into.</p></li>
2944 <li><tt>bool mayWriteToMemory()</tt>
2945 <p>Returns true if the instruction writes to memory, i.e. it is a
2946 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
2947 <li><tt>unsigned getOpcode()</tt>
2948 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
2949 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
2950 <p>Returns another instance of the specified instruction, identical
2951in all ways to the original except that the instruction has no parent
2952(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
2953and it has no name</p></li>
2954</ul>
2955
2956</div>
2957
2958<!-- ======================================================================= -->
2959<div class="doc_subsection">
2960 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
2961</div>
2962
2963<div class="doc_text">
2964
2965<p>Constant represents a base class for different types of constants. It
2966is subclassed by ConstantInt, ConstantArray, etc. for representing
2967the various types of Constants. <a href="#GlobalValue">GlobalValue</a> is also
2968a subclass, which represents the address of a global variable or function.
2969</p>
2970
2971</div>
2972
2973<!-- _______________________________________________________________________ -->
2974<div class="doc_subsubsection">Important Subclasses of Constant </div>
2975<div class="doc_text">
2976<ul>
2977 <li>ConstantInt : This subclass of Constant represents an integer constant of
2978 any width.
2979 <ul>
2980 <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
2981 value of this constant, an APInt value.</li>
2982 <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
2983 value to an int64_t via sign extension. If the value (not the bit width)
2984 of the APInt is too large to fit in an int64_t, an assertion will result.
2985 For this reason, use of this method is discouraged.</li>
2986 <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
2987 value to a uint64_t via zero extension. IF the value (not the bit width)
2988 of the APInt is too large to fit in a uint64_t, an assertion will result.
2989 For this reason, use of this method is discouraged.</li>
2990 <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
2991 ConstantInt object that represents the value provided by <tt>Val</tt>.
2992 The type is implied as the IntegerType that corresponds to the bit width
2993 of <tt>Val</tt>.</li>
2994 <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
2995 Returns the ConstantInt object that represents the value provided by
2996 <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
2997 </ul>
2998 </li>
2999 <li>ConstantFP : This class represents a floating point constant.
3000 <ul>
3001 <li><tt>double getValue() const</tt>: Returns the underlying value of
3002 this constant. </li>
3003 </ul>
3004 </li>
3005 <li>ConstantArray : This represents a constant array.
3006 <ul>
3007 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3008 a vector of component constants that makeup this array. </li>
3009 </ul>
3010 </li>
3011 <li>ConstantStruct : This represents a constant struct.
3012 <ul>
3013 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3014 a vector of component constants that makeup this array. </li>
3015 </ul>
3016 </li>
3017 <li>GlobalValue : This represents either a global variable or a function. In
3018 either case, the value is a constant fixed address (after linking).
3019 </li>
3020</ul>
3021</div>
3022
3023
3024<!-- ======================================================================= -->
3025<div class="doc_subsection">
3026 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3027</div>
3028
3029<div class="doc_text">
3030
3031<p><tt>#include "<a
3032href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3033doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3034Class</a><br>
3035Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3036<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3037
3038<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3039href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3040visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3041Because they are visible at global scope, they are also subject to linking with
3042other globals defined in different translation units. To control the linking
3043process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3044<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3045defined by the <tt>LinkageTypes</tt> enumeration.</p>
3046
3047<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3048<tt>static</tt> in C), it is not visible to code outside the current translation
3049unit, and does not participate in linking. If it has external linkage, it is
3050visible to external code, and does participate in linking. In addition to
3051linkage information, <tt>GlobalValue</tt>s keep track of which <a
3052href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3053
3054<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3055by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3056global is always a pointer to its contents. It is important to remember this
3057when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3058be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3059subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3060i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3061the address of the first element of this array and the value of the
3062<tt>GlobalVariable</tt> are the same, they have different types. The
3063<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3064is <tt>i32.</tt> Because of this, accessing a global value requires you to
3065dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3066can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3067Language Reference Manual</a>.</p>
3068
3069</div>
3070
3071<!-- _______________________________________________________________________ -->
3072<div class="doc_subsubsection">
3073 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
3074 class</a>
3075</div>
3076
3077<div class="doc_text">
3078
3079<ul>
3080 <li><tt>bool hasInternalLinkage() const</tt><br>
3081 <tt>bool hasExternalLinkage() const</tt><br>
3082 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3083 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3084 <p> </p>
3085 </li>
3086 <li><tt><a href="#Module">Module</a> *getParent()</tt>
3087 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3088GlobalValue is currently embedded into.</p></li>
3089</ul>
3090
3091</div>
3092
3093<!-- ======================================================================= -->
3094<div class="doc_subsection">
3095 <a name="Function">The <tt>Function</tt> class</a>
3096</div>
3097
3098<div class="doc_text">
3099
3100<p><tt>#include "<a
3101href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3102info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3103Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3104<a href="#Constant"><tt>Constant</tt></a>,
3105<a href="#User"><tt>User</tt></a>,
3106<a href="#Value"><tt>Value</tt></a></p>
3107
3108<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
3109actually one of the more complex classes in the LLVM heirarchy because it must
3110keep track of a large amount of data. The <tt>Function</tt> class keeps track
3111of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3112<a href="#Argument"><tt>Argument</tt></a>s, and a
3113<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3114
3115<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3116commonly used part of <tt>Function</tt> objects. The list imposes an implicit
3117ordering of the blocks in the function, which indicate how the code will be
3118layed out by the backend. Additionally, the first <a
3119href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3120<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
3121block. There are no implicit exit nodes, and in fact there may be multiple exit
3122nodes from a single <tt>Function</tt>. If the <a
3123href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3124the <tt>Function</tt> is actually a function declaration: the actual body of the
3125function hasn't been linked in yet.</p>
3126
3127<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3128<tt>Function</tt> class also keeps track of the list of formal <a
3129href="#Argument"><tt>Argument</tt></a>s that the function receives. This
3130container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3131nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3132the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3133
3134<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3135LLVM feature that is only used when you have to look up a value by name. Aside
3136from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3137internally to make sure that there are not conflicts between the names of <a
3138href="#Instruction"><tt>Instruction</tt></a>s, <a
3139href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3140href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3141
3142<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3143and therefore also a <a href="#Constant">Constant</a>. The value of the function
3144is its address (after linking) which is guaranteed to be constant.</p>
3145</div>
3146
3147<!-- _______________________________________________________________________ -->
3148<div class="doc_subsubsection">
3149 <a name="m_Function">Important Public Members of the <tt>Function</tt>
3150 class</a>
3151</div>
3152
3153<div class="doc_text">
3154
3155<ul>
3156 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3157 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3158
3159 <p>Constructor used when you need to create new <tt>Function</tt>s to add
3160 the the program. The constructor must specify the type of the function to
3161 create and what type of linkage the function should have. The <a
3162 href="#FunctionType"><tt>FunctionType</tt></a> argument
3163 specifies the formal arguments and return value for the function. The same
3164 <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3165 create multiple functions. The <tt>Parent</tt> argument specifies the Module
3166 in which the function is defined. If this argument is provided, the function
3167 will automatically be inserted into that module's list of
3168 functions.</p></li>
3169
3170 <li><tt>bool isExternal()</tt>
3171
3172 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
3173 function is "external", it does not have a body, and thus must be resolved
3174 by linking with a function defined in a different translation unit.</p></li>
3175
3176 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3177 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3178
3179 <tt>begin()</tt>, <tt>end()</tt>
3180 <tt>size()</tt>, <tt>empty()</tt>
3181
3182 <p>These are forwarding methods that make it easy to access the contents of
3183 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3184 list.</p></li>
3185
3186 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3187
3188 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
3189 is necessary to use when you need to update the list or perform a complex
3190 action that doesn't have a forwarding method.</p></li>
3191
3192 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3193iterator<br>
3194 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3195
3196 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3197 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3198
3199 <p>These are forwarding methods that make it easy to access the contents of
3200 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3201 list.</p></li>
3202
3203 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3204
3205 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
3206 necessary to use when you need to update the list or perform a complex
3207 action that doesn't have a forwarding method.</p></li>
3208
3209 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3210
3211 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3212 function. Because the entry block for the function is always the first
3213 block, this returns the first block of the <tt>Function</tt>.</p></li>
3214
3215 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3216 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3217
3218 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3219 <tt>Function</tt> and returns the return type of the function, or the <a
3220 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3221 function.</p></li>
3222
3223 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3224
3225 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3226 for this <tt>Function</tt>.</p></li>
3227</ul>
3228
3229</div>
3230
3231<!-- ======================================================================= -->
3232<div class="doc_subsection">
3233 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3234</div>
3235
3236<div class="doc_text">
3237
3238<p><tt>#include "<a
3239href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3240<br>
3241doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3242 Class</a><br>
3243Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3244<a href="#Constant"><tt>Constant</tt></a>,
3245<a href="#User"><tt>User</tt></a>,
3246<a href="#Value"><tt>Value</tt></a></p>
3247
3248<p>Global variables are represented with the (suprise suprise)
3249<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3250subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3251always referenced by their address (global values must live in memory, so their
3252"name" refers to their constant address). See
3253<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
3254variables may have an initial value (which must be a
3255<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3256they may be marked as "constant" themselves (indicating that their contents
3257never change at runtime).</p>
3258</div>
3259
3260<!-- _______________________________________________________________________ -->
3261<div class="doc_subsubsection">
3262 <a name="m_GlobalVariable">Important Public Members of the
3263 <tt>GlobalVariable</tt> class</a>
3264</div>
3265
3266<div class="doc_text">
3267
3268<ul>
3269 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3270 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3271 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3272
3273 <p>Create a new global variable of the specified type. If
3274 <tt>isConstant</tt> is true then the global variable will be marked as
3275 unchanging for the program. The Linkage parameter specifies the type of
3276 linkage (internal, external, weak, linkonce, appending) for the variable. If
3277 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
3278 the resultant global variable will have internal linkage. AppendingLinkage
3279 concatenates together all instances (in different translation units) of the
3280 variable into a single variable but is only applicable to arrays. &nbsp;See
3281 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3282 further details on linkage types. Optionally an initializer, a name, and the
3283 module to put the variable into may be specified for the global variable as
3284 well.</p></li>
3285
3286 <li><tt>bool isConstant() const</tt>
3287
3288 <p>Returns true if this is a global variable that is known not to
3289 be modified at runtime.</p></li>
3290
3291 <li><tt>bool hasInitializer()</tt>
3292
3293 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3294
3295 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3296
3297 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
3298 to call this method if there is no initializer.</p></li>
3299</ul>
3300
3301</div>
3302
3303
3304<!-- ======================================================================= -->
3305<div class="doc_subsection">
3306 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3307</div>
3308
3309<div class="doc_text">
3310
3311<p><tt>#include "<a
3312href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3313doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
3314Class</a><br>
3315Superclass: <a href="#Value"><tt>Value</tt></a></p>
3316
3317<p>This class represents a single entry multiple exit section of the code,
3318commonly known as a basic block by the compiler community. The
3319<tt>BasicBlock</tt> class maintains a list of <a
3320href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3321Matching the language definition, the last element of this list of instructions
3322is always a terminator instruction (a subclass of the <a
3323href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3324
3325<p>In addition to tracking the list of instructions that make up the block, the
3326<tt>BasicBlock</tt> class also keeps track of the <a
3327href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3328
3329<p>Note that <tt>BasicBlock</tt>s themselves are <a
3330href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3331like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3332<tt>label</tt>.</p>
3333
3334</div>
3335
3336<!-- _______________________________________________________________________ -->
3337<div class="doc_subsubsection">
3338 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3339 class</a>
3340</div>
3341
3342<div class="doc_text">
3343<ul>
3344
3345<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3346 href="#Function">Function</a> *Parent = 0)</tt>
3347
3348<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3349insertion into a function. The constructor optionally takes a name for the new
3350block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
3351the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3352automatically inserted at the end of the specified <a
3353href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3354manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3355
3356<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3357<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3358<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3359<tt>size()</tt>, <tt>empty()</tt>
3360STL-style functions for accessing the instruction list.
3361
3362<p>These methods and typedefs are forwarding functions that have the same
3363semantics as the standard library methods of the same names. These methods
3364expose the underlying instruction list of a basic block in a way that is easy to
3365manipulate. To get the full complement of container operations (including
3366operations to update the list), you must use the <tt>getInstList()</tt>
3367method.</p></li>
3368
3369<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3370
3371<p>This method is used to get access to the underlying container that actually
3372holds the Instructions. This method must be used when there isn't a forwarding
3373function in the <tt>BasicBlock</tt> class for the operation that you would like
3374to perform. Because there are no forwarding functions for "updating"
3375operations, you need to use this if you want to update the contents of a
3376<tt>BasicBlock</tt>.</p></li>
3377
3378<li><tt><a href="#Function">Function</a> *getParent()</tt>
3379
3380<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3381embedded into, or a null pointer if it is homeless.</p></li>
3382
3383<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3384
3385<p> Returns a pointer to the terminator instruction that appears at the end of
3386the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
3387instruction in the block is not a terminator, then a null pointer is
3388returned.</p></li>
3389
3390</ul>
3391
3392</div>
3393
3394
3395<!-- ======================================================================= -->
3396<div class="doc_subsection">
3397 <a name="Argument">The <tt>Argument</tt> class</a>
3398</div>
3399
3400<div class="doc_text">
3401
3402<p>This subclass of Value defines the interface for incoming formal
3403arguments to a function. A Function maintains a list of its formal
3404arguments. An argument has a pointer to the parent Function.</p>
3405
3406</div>
3407
3408<!-- *********************************************************************** -->
3409<hr>
3410<address>
3411 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
3412 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
3413 <a href="http://validator.w3.org/check/referer"><img
Gabor Greif7dabe382008-06-18 14:05:31 +00003414 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003415
3416 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3417 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3418 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3419 Last modified: $Date$
3420</address>
3421
3422</body>
3423</html>