blob: 31aeea5724a3147fd1af76b21ac1032f4e88f886 [file] [log] [blame]
Chris Lattnerc4ce73f2008-01-04 07:36:53 +00001//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "machine-sink"
15#include "llvm/CodeGen/Passes.h"
16#include "llvm/CodeGen/MachineRegisterInfo.h"
17#include "llvm/CodeGen/MachineDominators.h"
18#include "llvm/Target/MRegisterInfo.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25using namespace llvm;
26
27STATISTIC(NumSunk, "Number of machine instructions sunk");
28
29namespace {
30 class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
31 const TargetMachine *TM;
32 const TargetInstrInfo *TII;
33 MachineFunction *CurMF; // Current MachineFunction
34 MachineRegisterInfo *RegInfo; // Machine register information
35 MachineDominatorTree *DT; // Machine dominator tree for the current Loop
36
37 public:
38 static char ID; // Pass identification
39 MachineSinking() : MachineFunctionPass((intptr_t)&ID) {}
40
41 virtual bool runOnMachineFunction(MachineFunction &MF);
42
43 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
44 MachineFunctionPass::getAnalysisUsage(AU);
45 AU.addRequired<MachineDominatorTree>();
46 AU.addPreserved<MachineDominatorTree>();
47 }
48 private:
49 bool ProcessBlock(MachineBasicBlock &MBB);
50 bool SinkInstruction(MachineInstr *MI);
51 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
52 };
53
54 char MachineSinking::ID = 0;
55 RegisterPass<MachineSinking> X("machine-sink", "Machine code sinking");
56} // end anonymous namespace
57
58FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
59
60/// AllUsesDominatedByBlock - Return true if all uses of the specified register
61/// occur in blocks dominated by the specified block.
62bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
63 MachineBasicBlock *MBB) const {
64 assert(MRegisterInfo::isVirtualRegister(Reg) && "Only makes sense for vregs");
65 for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
66 E = RegInfo->reg_end(); I != E; ++I) {
67 if (I.getOperand().isDef()) continue; // ignore def.
68
69 // Determine the block of the use.
70 MachineInstr *UseInst = &*I;
71 MachineBasicBlock *UseBlock = UseInst->getParent();
72 if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
73 // PHI nodes use the operand in the predecessor block, not the block with
74 // the PHI.
75 UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
76 }
77 // Check that it dominates.
78 if (!DT->dominates(MBB, UseBlock))
79 return false;
80 }
81 return true;
82}
83
84
85
86bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
87 DOUT << "******** Machine Sinking ********\n";
88
89 CurMF = &MF;
90 TM = &CurMF->getTarget();
91 TII = TM->getInstrInfo();
92 RegInfo = &CurMF->getRegInfo();
93 DT = &getAnalysis<MachineDominatorTree>();
94
95 bool EverMadeChange = false;
96
97 while (1) {
98 bool MadeChange = false;
99
100 // Process all basic blocks.
101 for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end();
102 I != E; ++I)
103 MadeChange |= ProcessBlock(*I);
104
105 // If this iteration over the code changed anything, keep iterating.
106 if (!MadeChange) break;
107 EverMadeChange = true;
108 }
109 return EverMadeChange;
110}
111
112bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
113 bool MadeChange = false;
114
115 // Can't sink anything out of a block that has less than two successors.
116 if (MBB.succ_size() <= 1) return false;
117
118 // Walk the basic block bottom-up
119 for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ){
120 MachineBasicBlock::iterator LastIt = I;
121 if (SinkInstruction(--I)) {
122 I = LastIt;
123 ++NumSunk;
124 }
125 }
126
127 return MadeChange;
128}
129
130/// SinkInstruction - Determine whether it is safe to sink the specified machine
131/// instruction out of its current block into a successor.
132bool MachineSinking::SinkInstruction(MachineInstr *MI) {
Chris Lattnerba84ed72008-01-05 02:33:22 +0000133 // Don't sink things with side-effects we don't understand.
134 if (TII->hasUnmodelledSideEffects(MI))
135 return false;
136
Chris Lattnerc4ce73f2008-01-04 07:36:53 +0000137 // Loop over all the operands of the specified instruction. If there is
138 // anything we can't handle, bail out.
139 MachineBasicBlock *ParentBlock = MI->getParent();
140
141 // SuccToSinkTo - This is the successor to sink this instruction to, once we
142 // decide.
143 MachineBasicBlock *SuccToSinkTo = 0;
144
145 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
146 const MachineOperand &MO = MI->getOperand(i);
147 if (!MO.isReg()) continue; // Ignore non-register operands.
148
149 unsigned Reg = MO.getReg();
150 if (Reg == 0) continue;
151
152 if (MRegisterInfo::isPhysicalRegister(Reg)) {
153 // If this is a physical register use, we can't move it. If it is a def,
154 // we can move it, but only if the def is dead.
155 if (MO.isUse() || !MO.isDead())
156 return false;
157 } else {
158 // Virtual register uses are always safe to sink.
159 if (MO.isUse()) continue;
160
161 // Virtual register defs can only be sunk if all their uses are in blocks
162 // dominated by one of the successors.
163 if (SuccToSinkTo) {
164 // If a previous operand picked a block to sink to, then this operand
165 // must be sinkable to the same block.
166 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
167 return false;
168 continue;
169 }
170
171 // Otherwise, we should look at all the successors and decide which one
172 // we should sink to.
173 for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
174 E = ParentBlock->succ_end(); SI != E; ++SI) {
175 if (AllUsesDominatedByBlock(Reg, *SI)) {
176 SuccToSinkTo = *SI;
177 break;
178 }
179 }
180
181 // If we couldn't find a block to sink to, ignore this instruction.
182 if (SuccToSinkTo == 0)
183 return false;
184 }
185 }
186
Chris Lattner9bb459b2008-01-05 01:39:17 +0000187 // If there are no outputs, it must have side-effects.
188 if (SuccToSinkTo == 0)
189 return false;
190
Chris Lattnerc4ce73f2008-01-04 07:36:53 +0000191 // FIXME: Check that the instr doesn't have side effects etc.
192
193 DEBUG(cerr << "Sink instr " << *MI);
194 DEBUG(cerr << "to block " << *SuccToSinkTo);
195
196 // If the block has multiple predecessors, this would introduce computation on
197 // a path that it doesn't already exist. We could split the critical edge,
198 // but for now we just punt.
199 if (SuccToSinkTo->pred_size() > 1) {
200 DEBUG(cerr << " *** PUNTING: Critical edge found\n");
201 return false;
202 }
203
204 // Determine where to insert into. Skip phi nodes.
205 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
206 while (InsertPos != SuccToSinkTo->end() &&
207 InsertPos->getOpcode() == TargetInstrInfo::PHI)
208 ++InsertPos;
209
210 // Move the instruction.
211 SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
212 ++MachineBasicBlock::iterator(MI));
213 return true;
214}