blob: a6dc7c9fb4cae8ca8bcd603bf338428aeb4a38bf [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000088 // We always build a machine code representation for the function
89 return true;
Chris Lattner72614082002-10-25 22:55:53 +000090 }
91
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000092 virtual const char *getPassName() const {
93 return "X86 Simple Instruction Selection";
94 }
95
Chris Lattner72614082002-10-25 22:55:53 +000096 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000097 /// block. This simply creates a new MachineBasicBlock to emit code into
98 /// and adds it to the current MachineFunction. Subsequent visit* for
99 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000100 ///
101 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000103 }
104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
106 /// from the stack into virtual registers.
107 ///
108 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109
110 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
111 /// because we have to generate our sources into the source basic blocks,
112 /// not the current one.
113 ///
114 void SelectPHINodes();
115
Chris Lattner72614082002-10-25 22:55:53 +0000116 // Visitation methods for various instructions. These methods simply emit
117 // fixed X86 code for each instruction.
118 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000119
120 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000121 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000122 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000123
124 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000125 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000126 unsigned Reg;
127 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000128 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
129 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000130 };
131 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
132 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000133 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000134 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000135
136 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000137 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000138 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
139 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000140 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000141 unsigned DestReg, const Type *DestTy,
142 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000143 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000144
Chris Lattnerf01729e2002-11-02 20:54:46 +0000145 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
146 void visitRem(BinaryOperator &B) { visitDivRem(B); }
147 void visitDivRem(BinaryOperator &B);
148
Chris Lattnere2954c82002-11-02 20:04:26 +0000149 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000150 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
151 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
152 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000153
Chris Lattner6d40c192003-01-16 16:43:00 +0000154 // Comparison operators...
155 void visitSetCondInst(SetCondInst &I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000156 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
157 MachineBasicBlock *MBB,
158 MachineBasicBlock::iterator &MBBI);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000159
160 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
162 MachineBasicBlock::iterator &MBBI,
163 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000164 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000165 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000166 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000167 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000168 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000169 void visitMallocInst(MallocInst &I);
170 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000171
Chris Lattnere2954c82002-11-02 20:04:26 +0000172 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000173 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000174 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000175 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000176 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000177
178 void visitInstruction(Instruction &I) {
179 std::cerr << "Cannot instruction select: " << I;
180 abort();
181 }
182
Brian Gaeke95780cc2002-12-13 07:56:18 +0000183 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000184 ///
185 void promote32(unsigned targetReg, const ValueRecord &VR);
186
187 /// EmitByteSwap - Byteswap SrcReg into DestReg.
188 ///
189 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000190
Chris Lattner3e130a22003-01-13 00:32:26 +0000191 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
192 /// constant expression GEP support.
193 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000194 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000195 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000196 User::op_iterator IdxEnd, unsigned TargetReg);
197
Chris Lattner548f61d2003-04-23 17:22:12 +0000198 /// emitCastOperation - Common code shared between visitCastInst and
199 /// constant expression cast support.
200 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
201 Value *Src, const Type *DestTy, unsigned TargetReg);
202
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000203 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
204 /// and constant expression support.
205 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
206 MachineBasicBlock::iterator &IP,
207 Value *Op0, Value *Op1,
208 unsigned OperatorClass, unsigned TargetReg);
209
Chris Lattner58c41fe2003-08-24 19:19:47 +0000210 /// emitSetCCOperation - Common code shared between visitSetCondInst and
211 /// constant expression support.
212 void emitSetCCOperation(MachineBasicBlock *BB,
213 MachineBasicBlock::iterator &IP,
214 Value *Op0, Value *Op1, unsigned Opcode,
215 unsigned TargetReg);
216
217
Chris Lattnerc5291f52002-10-27 21:16:59 +0000218 /// copyConstantToRegister - Output the instructions required to put the
219 /// specified constant into the specified register.
220 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000221 void copyConstantToRegister(MachineBasicBlock *MBB,
222 MachineBasicBlock::iterator &MBBI,
223 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000224
Chris Lattner3e130a22003-01-13 00:32:26 +0000225 /// makeAnotherReg - This method returns the next register number we haven't
226 /// yet used.
227 ///
228 /// Long values are handled somewhat specially. They are always allocated
229 /// as pairs of 32 bit integer values. The register number returned is the
230 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
231 /// of the long value.
232 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000233 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000234 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
235 "Current target doesn't have X86 reg info??");
236 const X86RegisterInfo *MRI =
237 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000238 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000239 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000240 // Create the lower part
241 F->getSSARegMap()->createVirtualRegister(RC);
242 // Create the upper part.
243 return F->getSSARegMap()->createVirtualRegister(RC)-1;
244 }
245
Chris Lattnerc0812d82002-12-13 06:56:29 +0000246 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000247 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000248 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000249 }
250
Chris Lattner72614082002-10-25 22:55:53 +0000251 /// getReg - This method turns an LLVM value into a register number. This
252 /// is guaranteed to produce the same register number for a particular value
253 /// every time it is queried.
254 ///
255 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000256 unsigned getReg(Value *V) {
257 // Just append to the end of the current bb.
258 MachineBasicBlock::iterator It = BB->end();
259 return getReg(V, BB, It);
260 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000261 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000262 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000263 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000264 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000265 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000266 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000267 }
Chris Lattner72614082002-10-25 22:55:53 +0000268
Chris Lattner6f8fd252002-10-27 21:23:43 +0000269 // If this operand is a constant, emit the code to copy the constant into
270 // the register here...
271 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000272 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000273 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000274 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000275 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000277 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000278 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000279 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000280
Chris Lattner72614082002-10-25 22:55:53 +0000281 return Reg;
282 }
Chris Lattner72614082002-10-25 22:55:53 +0000283 };
284}
285
Chris Lattner43189d12002-11-17 20:07:45 +0000286/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
287/// Representation.
288///
289enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000290 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000291};
292
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000293/// getClass - Turn a primitive type into a "class" number which is based on the
294/// size of the type, and whether or not it is floating point.
295///
Chris Lattner43189d12002-11-17 20:07:45 +0000296static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000297 switch (Ty->getPrimitiveID()) {
298 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000299 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000300 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000301 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000302 case Type::IntTyID:
303 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000304 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000305
Chris Lattner94af4142002-12-25 05:13:53 +0000306 case Type::FloatTyID:
307 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000308
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000309 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000310 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000311 default:
312 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000313 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000314 }
315}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000316
Chris Lattner6b993cc2002-12-15 08:02:15 +0000317// getClassB - Just like getClass, but treat boolean values as bytes.
318static inline TypeClass getClassB(const Type *Ty) {
319 if (Ty == Type::BoolTy) return cByte;
320 return getClass(Ty);
321}
322
Chris Lattner06925362002-11-17 21:56:38 +0000323
Chris Lattnerc5291f52002-10-27 21:16:59 +0000324/// copyConstantToRegister - Output the instructions required to put the
325/// specified constant into the specified register.
326///
Chris Lattner8a307e82002-12-16 19:32:50 +0000327void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
328 MachineBasicBlock::iterator &IP,
329 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000330 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000331 unsigned Class = 0;
332 switch (CE->getOpcode()) {
333 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000334 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000335 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000336 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000337 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000338 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000339 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000340
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000341 case Instruction::Xor: ++Class; // FALL THROUGH
342 case Instruction::Or: ++Class; // FALL THROUGH
343 case Instruction::And: ++Class; // FALL THROUGH
344 case Instruction::Sub: ++Class; // FALL THROUGH
345 case Instruction::Add:
346 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
347 Class, R);
348 return;
349
Chris Lattner58c41fe2003-08-24 19:19:47 +0000350 case Instruction::SetNE:
351 case Instruction::SetEQ:
352 case Instruction::SetLT:
353 case Instruction::SetGT:
354 case Instruction::SetLE:
355 case Instruction::SetGE:
356 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
357 CE->getOpcode(), R);
358 return;
359
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000360 default:
361 std::cerr << "Offending expr: " << C << "\n";
362 assert(0 && "Constant expressions not yet handled!\n");
363 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000364 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000365
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000366 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000367 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000368
369 if (Class == cLong) {
370 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000371 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000372 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
373 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
374 return;
375 }
376
Chris Lattner94af4142002-12-25 05:13:53 +0000377 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000378
379 static const unsigned IntegralOpcodeTab[] = {
380 X86::MOVir8, X86::MOVir16, X86::MOVir32
381 };
382
Chris Lattner6b993cc2002-12-15 08:02:15 +0000383 if (C->getType() == Type::BoolTy) {
384 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000385 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000386 ConstantInt *CI = cast<ConstantInt>(C);
387 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000388 }
Chris Lattner94af4142002-12-25 05:13:53 +0000389 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
390 double Value = CFP->getValue();
391 if (Value == +0.0)
392 BMI(MBB, IP, X86::FLD0, 0, R);
393 else if (Value == +1.0)
394 BMI(MBB, IP, X86::FLD1, 0, R);
395 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000396 // Otherwise we need to spill the constant to memory...
397 MachineConstantPool *CP = F->getConstantPool();
398 unsigned CPI = CP->getConstantPoolIndex(CFP);
399 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000400 }
401
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000402 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000403 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000404 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000405 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000406 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000407 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000408 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000409 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000410 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000411 }
412}
413
Chris Lattner065faeb2002-12-28 20:24:02 +0000414/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
415/// the stack into virtual registers.
416///
417void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
418 // Emit instructions to load the arguments... On entry to a function on the
419 // X86, the stack frame looks like this:
420 //
421 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000422 // [ESP + 4] -- first argument (leftmost lexically)
423 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000424 // ...
425 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000426 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000427 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000428
429 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
430 unsigned Reg = getReg(*I);
431
Chris Lattner065faeb2002-12-28 20:24:02 +0000432 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000433 switch (getClassB(I->getType())) {
434 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000435 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000436 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
437 break;
438 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000439 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000440 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
441 break;
442 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000443 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000444 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
445 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000446 case cLong:
447 FI = MFI->CreateFixedObject(8, ArgOffset);
448 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
449 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
450 ArgOffset += 4; // longs require 4 additional bytes
451 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000452 case cFP:
453 unsigned Opcode;
454 if (I->getType() == Type::FloatTy) {
455 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000456 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000457 } else {
458 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000459 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000460 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000461 }
462 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
463 break;
464 default:
465 assert(0 && "Unhandled argument type!");
466 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000467 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000468 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000469
470 // If the function takes variable number of arguments, add a frame offset for
471 // the start of the first vararg value... this is used to expand
472 // llvm.va_start.
473 if (Fn.getFunctionType()->isVarArg())
474 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000475}
476
477
Chris Lattner333b2fa2002-12-13 10:09:43 +0000478/// SelectPHINodes - Insert machine code to generate phis. This is tricky
479/// because we have to generate our sources into the source basic blocks, not
480/// the current one.
481///
482void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000483 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000484 const Function &LF = *F->getFunction(); // The LLVM function...
485 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
486 const BasicBlock *BB = I;
487 MachineBasicBlock *MBB = MBBMap[I];
488
489 // Loop over all of the PHI nodes in the LLVM basic block...
490 unsigned NumPHIs = 0;
491 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000492 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000493
Chris Lattner333b2fa2002-12-13 10:09:43 +0000494 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000495 unsigned PHIReg = getReg(*PN);
496 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
497 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
498
499 MachineInstr *LongPhiMI = 0;
500 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
501 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
502 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
503 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000504
Chris Lattnera6e73f12003-05-12 14:22:21 +0000505 // PHIValues - Map of blocks to incoming virtual registers. We use this
506 // so that we only initialize one incoming value for a particular block,
507 // even if the block has multiple entries in the PHI node.
508 //
509 std::map<MachineBasicBlock*, unsigned> PHIValues;
510
Chris Lattner333b2fa2002-12-13 10:09:43 +0000511 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
512 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000513 unsigned ValReg;
514 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
515 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000516
Chris Lattnera6e73f12003-05-12 14:22:21 +0000517 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
518 // We already inserted an initialization of the register for this
519 // predecessor. Recycle it.
520 ValReg = EntryIt->second;
521
522 } else {
523 // Get the incoming value into a virtual register. If it is not
524 // already available in a virtual register, insert the computation
525 // code into PredMBB
526 //
527 MachineBasicBlock::iterator PI = PredMBB->end();
528 while (PI != PredMBB->begin() &&
529 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
530 --PI;
531 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
532
533 // Remember that we inserted a value for this PHI for this predecessor
534 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
535 }
536
Chris Lattner3e130a22003-01-13 00:32:26 +0000537 PhiMI->addRegOperand(ValReg);
538 PhiMI->addMachineBasicBlockOperand(PredMBB);
539 if (LongPhiMI) {
540 LongPhiMI->addRegOperand(ValReg+1);
541 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
542 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000543 }
544 }
545 }
546}
547
Chris Lattner6d40c192003-01-16 16:43:00 +0000548// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
549// the conditional branch instruction which is the only user of the cc
550// instruction. This is the case if the conditional branch is the only user of
551// the setcc, and if the setcc is in the same basic block as the conditional
552// branch. We also don't handle long arguments below, so we reject them here as
553// well.
554//
555static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
556 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000557 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000558 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
559 const Type *Ty = SCI->getOperand(0)->getType();
560 if (Ty != Type::LongTy && Ty != Type::ULongTy)
561 return SCI;
562 }
563 return 0;
564}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000565
Chris Lattner6d40c192003-01-16 16:43:00 +0000566// Return a fixed numbering for setcc instructions which does not depend on the
567// order of the opcodes.
568//
569static unsigned getSetCCNumber(unsigned Opcode) {
570 switch(Opcode) {
571 default: assert(0 && "Unknown setcc instruction!");
572 case Instruction::SetEQ: return 0;
573 case Instruction::SetNE: return 1;
574 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000575 case Instruction::SetGE: return 3;
576 case Instruction::SetGT: return 4;
577 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000578 }
579}
Chris Lattner06925362002-11-17 21:56:38 +0000580
Chris Lattner6d40c192003-01-16 16:43:00 +0000581// LLVM -> X86 signed X86 unsigned
582// ----- ---------- ------------
583// seteq -> sete sete
584// setne -> setne setne
585// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000586// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000587// setgt -> setg seta
588// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000589static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000590 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
591 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000592};
593
Chris Lattner58c41fe2003-08-24 19:19:47 +0000594bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
595 MachineBasicBlock *MBB,
596 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000597 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000598 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000599 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000600 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000601 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000602
603 // Special case handling of: cmp R, i
604 if (Class == cByte || Class == cShort || Class == cInt)
605 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000606 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
607
Chris Lattner333864d2003-06-05 19:30:30 +0000608 // Mask off any upper bits of the constant, if there are any...
609 Op1v &= (1ULL << (8 << Class)) - 1;
610
611 switch (Class) {
Chris Lattner58c41fe2003-08-24 19:19:47 +0000612 case cByte: BMI(MBB,IP, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
613 case cShort: BMI(MBB,IP, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
614 case cInt: BMI(MBB,IP, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
Chris Lattner333864d2003-06-05 19:30:30 +0000615 default:
616 assert(0 && "Invalid class!");
617 }
618 return isSigned;
619 }
620
Chris Lattner58c41fe2003-08-24 19:19:47 +0000621 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000622 switch (Class) {
623 default: assert(0 && "Unknown type class!");
624 // Emit: cmp <var1>, <var2> (do the comparison). We can
625 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
626 // 32-bit.
627 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000628 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000629 break;
630 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000631 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000632 break;
633 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000634 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000635 break;
636 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000637 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
638 BMI(MBB, IP, X86::FNSTSWr8, 0);
639 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000640 isSigned = false; // Compare with unsigned operators
641 break;
642
643 case cLong:
644 if (OpNum < 2) { // seteq, setne
645 unsigned LoTmp = makeAnotherReg(Type::IntTy);
646 unsigned HiTmp = makeAnotherReg(Type::IntTy);
647 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000648 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
649 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
650 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000651 break; // Allow the sete or setne to be generated from flags set by OR
652 } else {
653 // Emit a sequence of code which compares the high and low parts once
654 // each, then uses a conditional move to handle the overflow case. For
655 // example, a setlt for long would generate code like this:
656 //
657 // AL = lo(op1) < lo(op2) // Signedness depends on operands
658 // BL = hi(op1) < hi(op2) // Always unsigned comparison
659 // dest = hi(op1) == hi(op2) ? AL : BL;
660 //
661
Chris Lattner6d40c192003-01-16 16:43:00 +0000662 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000663 // classes! Until then, hardcode registers so that we can deal with their
664 // aliases (because we don't have conditional byte moves).
665 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000666 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
667 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
668 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
669 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
670 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
671 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
672 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000673 // NOTE: visitSetCondInst knows that the value is dumped into the BL
674 // register at this point for long values...
675 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000676 }
677 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000678 return isSigned;
679}
Chris Lattner3e130a22003-01-13 00:32:26 +0000680
Chris Lattner6d40c192003-01-16 16:43:00 +0000681
682/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
683/// register, then move it to wherever the result should be.
684///
685void ISel::visitSetCondInst(SetCondInst &I) {
686 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
687
Chris Lattner6d40c192003-01-16 16:43:00 +0000688 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000689 MachineBasicBlock::iterator MII = BB->end();
690 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
691 DestReg);
692}
Chris Lattner6d40c192003-01-16 16:43:00 +0000693
Chris Lattner58c41fe2003-08-24 19:19:47 +0000694/// emitSetCCOperation - Common code shared between visitSetCondInst and
695/// constant expression support.
696void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
697 MachineBasicBlock::iterator &IP,
698 Value *Op0, Value *Op1, unsigned Opcode,
699 unsigned TargetReg) {
700 unsigned OpNum = getSetCCNumber(Opcode);
701 bool isSigned = EmitComparisonGetSignedness(OpNum, Op0, Op1, MBB, IP);
702
703 if (getClassB(Op0->getType()) != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000704 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000705 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000706 } else {
707 // Handle long comparisons by copying the value which is already in BL into
708 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000709 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000710 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000711}
Chris Lattner51b49a92002-11-02 19:45:49 +0000712
Chris Lattner58c41fe2003-08-24 19:19:47 +0000713
714
715
Brian Gaekec2505982002-11-30 11:57:28 +0000716/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
717/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000718void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
719 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000720
721 // Make sure we have the register number for this value...
722 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
723
Chris Lattner3e130a22003-01-13 00:32:26 +0000724 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000725 case cByte:
726 // Extend value into target register (8->32)
727 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000728 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000729 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000730 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000731 break;
732 case cShort:
733 // Extend value into target register (16->32)
734 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000735 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000736 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000737 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000738 break;
739 case cInt:
740 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000741 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000742 break;
743 default:
744 assert(0 && "Unpromotable operand class in promote32");
745 }
Brian Gaekec2505982002-11-30 11:57:28 +0000746}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000747
Chris Lattner72614082002-10-25 22:55:53 +0000748/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
749/// we have the following possibilities:
750///
751/// ret void: No return value, simply emit a 'ret' instruction
752/// ret sbyte, ubyte : Extend value into EAX and return
753/// ret short, ushort: Extend value into EAX and return
754/// ret int, uint : Move value into EAX and return
755/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000756/// ret long, ulong : Move value into EAX/EDX and return
757/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000758///
Chris Lattner3e130a22003-01-13 00:32:26 +0000759void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000760 if (I.getNumOperands() == 0) {
761 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
762 return;
763 }
764
765 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000766 unsigned RetReg = getReg(RetVal);
767 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000768 case cByte: // integral return values: extend or move into EAX and return
769 case cShort:
770 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000771 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000772 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000773 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000774 break;
775 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000776 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000777 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000778 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000779 break;
780 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000781 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
782 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000783 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000784 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000785 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000786 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000787 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000788 }
Chris Lattner43189d12002-11-17 20:07:45 +0000789 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000790 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000791}
792
Chris Lattner55f6fab2003-01-16 18:07:23 +0000793// getBlockAfter - Return the basic block which occurs lexically after the
794// specified one.
795static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
796 Function::iterator I = BB; ++I; // Get iterator to next block
797 return I != BB->getParent()->end() ? &*I : 0;
798}
799
Chris Lattner51b49a92002-11-02 19:45:49 +0000800/// visitBranchInst - Handle conditional and unconditional branches here. Note
801/// that since code layout is frozen at this point, that if we are trying to
802/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000803/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000804///
Chris Lattner94af4142002-12-25 05:13:53 +0000805void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000806 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
807
808 if (!BI.isConditional()) { // Unconditional branch?
809 if (BI.getSuccessor(0) != NextBB)
810 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000811 return;
812 }
813
814 // See if we can fold the setcc into the branch itself...
815 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
816 if (SCI == 0) {
817 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
818 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000819 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000820 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000821 if (BI.getSuccessor(1) == NextBB) {
822 if (BI.getSuccessor(0) != NextBB)
823 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
824 } else {
825 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
826
827 if (BI.getSuccessor(0) != NextBB)
828 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
829 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000830 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000831 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000832
833 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000834 MachineBasicBlock::iterator MII = BB->end();
Chris Lattner6d40c192003-01-16 16:43:00 +0000835 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
Chris Lattner58c41fe2003-08-24 19:19:47 +0000836 SCI->getOperand(1), BB, MII);
Chris Lattner6d40c192003-01-16 16:43:00 +0000837
838 // LLVM -> X86 signed X86 unsigned
839 // ----- ---------- ------------
840 // seteq -> je je
841 // setne -> jne jne
842 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000843 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000844 // setgt -> jg ja
845 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000846 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000847 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
848 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000849 };
850
Chris Lattner55f6fab2003-01-16 18:07:23 +0000851 if (BI.getSuccessor(0) != NextBB) {
852 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
853 if (BI.getSuccessor(1) != NextBB)
854 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
855 } else {
856 // Change to the inverse condition...
857 if (BI.getSuccessor(1) != NextBB) {
858 OpNum ^= 1;
859 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
860 }
861 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000862}
863
Chris Lattner3e130a22003-01-13 00:32:26 +0000864
865/// doCall - This emits an abstract call instruction, setting up the arguments
866/// and the return value as appropriate. For the actual function call itself,
867/// it inserts the specified CallMI instruction into the stream.
868///
869void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
870 const std::vector<ValueRecord> &Args) {
871
Chris Lattner065faeb2002-12-28 20:24:02 +0000872 // Count how many bytes are to be pushed on the stack...
873 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000874
Chris Lattner3e130a22003-01-13 00:32:26 +0000875 if (!Args.empty()) {
876 for (unsigned i = 0, e = Args.size(); i != e; ++i)
877 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000878 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000879 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000880 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000881 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000882 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 break;
885 default: assert(0 && "Unknown class!");
886 }
887
888 // Adjust the stack pointer for the new arguments...
889 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
890
891 // Arguments go on the stack in reverse order, as specified by the ABI.
892 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000893 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000894 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000895 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000896 case cByte:
897 case cShort: {
898 // Promote arg to 32 bits wide into a temporary register...
899 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000900 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000901 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
902 X86::ESP, ArgOffset).addReg(R);
903 break;
904 }
905 case cInt:
906 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000907 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000908 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000909 case cLong:
910 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
911 X86::ESP, ArgOffset).addReg(ArgReg);
912 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
913 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
914 ArgOffset += 4; // 8 byte entry, not 4.
915 break;
916
Chris Lattner065faeb2002-12-28 20:24:02 +0000917 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000918 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000919 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000920 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000921 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000922 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
923 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
924 X86::ESP, ArgOffset).addReg(ArgReg);
925 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000926 }
927 break;
928
Chris Lattner3e130a22003-01-13 00:32:26 +0000929 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000930 }
931 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000932 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000933 } else {
934 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000935 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000936
Chris Lattner3e130a22003-01-13 00:32:26 +0000937 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000938
Chris Lattner065faeb2002-12-28 20:24:02 +0000939 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000940
941 // If there is a return value, scavenge the result from the location the call
942 // leaves it in...
943 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000944 if (Ret.Ty != Type::VoidTy) {
945 unsigned DestClass = getClassB(Ret.Ty);
946 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000947 case cByte:
948 case cShort:
949 case cInt: {
950 // Integral results are in %eax, or the appropriate portion
951 // thereof.
952 static const unsigned regRegMove[] = {
953 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
954 };
955 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000956 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000957 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000958 }
Chris Lattner94af4142002-12-25 05:13:53 +0000959 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000960 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000961 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000962 case cLong: // Long values are left in EDX:EAX
963 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
964 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
965 break;
966 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000967 }
Chris Lattnera3243642002-12-04 23:45:28 +0000968 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000969}
Chris Lattner2df035b2002-11-02 19:27:56 +0000970
Chris Lattner3e130a22003-01-13 00:32:26 +0000971
972/// visitCallInst - Push args on stack and do a procedure call instruction.
973void ISel::visitCallInst(CallInst &CI) {
974 MachineInstr *TheCall;
975 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000976 // Is it an intrinsic function call?
977 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
978 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
979 return;
980 }
981
Chris Lattner3e130a22003-01-13 00:32:26 +0000982 // Emit a CALL instruction with PC-relative displacement.
983 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
984 } else { // Emit an indirect call...
985 unsigned Reg = getReg(CI.getCalledValue());
986 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
987 }
988
989 std::vector<ValueRecord> Args;
990 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000991 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +0000992
993 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
994 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
995}
996
Chris Lattneraeb54b82003-08-28 21:23:43 +0000997
Chris Lattnereca195e2003-05-08 19:44:13 +0000998void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
999 unsigned TmpReg1, TmpReg2;
1000 switch (ID) {
1001 case LLVMIntrinsic::va_start:
1002 // Get the address of the first vararg value...
1003 TmpReg1 = makeAnotherReg(Type::UIntTy);
1004 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
1005 TmpReg2 = getReg(CI.getOperand(1));
1006 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
1007 return;
1008
1009 case LLVMIntrinsic::va_end: return; // Noop on X86
1010 case LLVMIntrinsic::va_copy:
1011 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
1012 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
1013 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
1014 return;
1015
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001016 case LLVMIntrinsic::longjmp:
Chris Lattner72af6b82003-08-18 16:06:09 +00001017 case LLVMIntrinsic::siglongjmp:
Chris Lattneraeb54b82003-08-28 21:23:43 +00001018 BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +00001019 return;
1020
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001021 case LLVMIntrinsic::setjmp:
Chris Lattner72af6b82003-08-18 16:06:09 +00001022 case LLVMIntrinsic::sigsetjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +00001023 // Setjmp always returns zero...
1024 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001025 return;
Chris Lattnereca195e2003-05-08 19:44:13 +00001026 default: assert(0 && "Unknown intrinsic for X86!");
1027 }
1028}
1029
1030
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001031/// visitSimpleBinary - Implement simple binary operators for integral types...
1032/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1033/// Xor.
1034void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1035 unsigned DestReg = getReg(B);
1036 MachineBasicBlock::iterator MI = BB->end();
1037 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1038 OperatorClass, DestReg);
1039}
Chris Lattner3e130a22003-01-13 00:32:26 +00001040
Chris Lattner68aad932002-11-02 20:13:22 +00001041/// visitSimpleBinary - Implement simple binary operators for integral types...
1042/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
1043/// 4 for Xor.
1044///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001045/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1046/// and constant expression support.
1047void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1048 MachineBasicBlock::iterator &IP,
1049 Value *Op0, Value *Op1,
1050 unsigned OperatorClass,unsigned TargetReg){
1051 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001052 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1053 static const unsigned OpcodeTab[][4] = {
1054 // Arithmetic operators
1055 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1056 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1057
1058 // Bitwise operators
1059 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1060 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1061 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001062 };
Chris Lattner35333e12003-06-05 18:28:55 +00001063
1064 bool isLong = false;
1065 if (Class == cLong) {
1066 isLong = true;
1067 Class = cInt; // Bottom 32 bits are handled just like ints
1068 }
1069
1070 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1071 assert(Opcode && "Floating point arguments to logical inst?");
1072 unsigned Op0r = getReg(Op0, BB, IP);
1073 unsigned Op1r = getReg(Op1, BB, IP);
1074 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1075
1076 if (isLong) { // Handle the upper 32 bits of long values...
1077 static const unsigned TopTab[] = {
1078 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1079 };
1080 BMI(BB, IP, TopTab[OperatorClass], 2,
1081 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1082 }
1083 } else {
1084 // Special case: op Reg, <const>
1085 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1086
1087 static const unsigned OpcodeTab[][3] = {
1088 // Arithmetic operators
1089 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1090 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1091
1092 // Bitwise operators
1093 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1094 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1095 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1096 };
1097
1098 assert(Class < 3 && "General code handles 64-bit integer types!");
1099 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1100 unsigned Op0r = getReg(Op0, BB, IP);
Chris Lattnerc07736a2003-07-23 15:22:26 +00001101 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner35333e12003-06-05 18:28:55 +00001102
1103 // Mask off any upper bits of the constant, if there are any...
1104 Op1v &= (1ULL << (8 << Class)) - 1;
1105 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001106 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001107}
1108
Chris Lattner3e130a22003-01-13 00:32:26 +00001109/// doMultiply - Emit appropriate instructions to multiply together the
1110/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1111/// result should be given as DestTy.
1112///
Chris Lattner8a307e82002-12-16 19:32:50 +00001113void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001114 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001115 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001116 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001117 switch (Class) {
1118 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001119 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001120 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001121 case cInt:
1122 case cShort:
1123 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1124 .addReg(op0Reg).addReg(op1Reg);
1125 return;
1126 case cByte:
1127 // Must use the MUL instruction, which forces use of AL...
1128 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1129 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1130 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1131 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001132 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001133 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001134 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001135}
1136
Chris Lattnerca9671d2002-11-02 20:28:58 +00001137/// visitMul - Multiplies are not simple binary operators because they must deal
1138/// with the EAX register explicitly.
1139///
1140void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001141 unsigned Op0Reg = getReg(I.getOperand(0));
1142 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001143 unsigned DestReg = getReg(I);
1144
1145 // Simple scalar multiply?
1146 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1147 MachineBasicBlock::iterator MBBI = BB->end();
1148 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1149 } else {
1150 // Long value. We have to do things the hard way...
1151 // Multiply the two low parts... capturing carry into EDX
1152 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1153 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1154
1155 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1156 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1157 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1158
1159 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001160 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1161 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001162
1163 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1164 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1165 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1166
1167 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001168 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1169 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001170
1171 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1172 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1173 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001174}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001175
Chris Lattner06925362002-11-17 21:56:38 +00001176
Chris Lattnerf01729e2002-11-02 20:54:46 +00001177/// visitDivRem - Handle division and remainder instructions... these
1178/// instruction both require the same instructions to be generated, they just
1179/// select the result from a different register. Note that both of these
1180/// instructions work differently for signed and unsigned operands.
1181///
1182void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001183 unsigned Class = getClass(I.getType());
1184 unsigned Op0Reg, Op1Reg, ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001185
1186 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001187 case cFP: // Floating point divide
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001188 if (I.getOpcode() == Instruction::Div) {
1189 Op0Reg = getReg(I.getOperand(0));
1190 Op1Reg = getReg(I.getOperand(1));
Chris Lattner94af4142002-12-25 05:13:53 +00001191 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001192 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001193 MachineInstr *TheCall =
1194 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1195 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001196 Args.push_back(ValueRecord(I.getOperand(0)));
1197 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001198 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1199 }
Chris Lattner94af4142002-12-25 05:13:53 +00001200 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001201 case cLong: {
1202 static const char *FnName[] =
1203 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1204
1205 unsigned NameIdx = I.getType()->isUnsigned()*2;
1206 NameIdx += I.getOpcode() == Instruction::Div;
1207 MachineInstr *TheCall =
1208 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1209
1210 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001211 Args.push_back(ValueRecord(I.getOperand(0)));
1212 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001213 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1214 return;
1215 }
1216 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001217 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001218 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001219 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001220
1221 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1222 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001223 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001224 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1225 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1226
1227 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001228 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1229 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001230 };
1231
1232 bool isSigned = I.getType()->isSigned();
1233 unsigned Reg = Regs[Class];
1234 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001235
1236 // Put the first operand into one of the A registers...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001237 Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001238 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1239
1240 if (isSigned) {
1241 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001242 unsigned ShiftResult = makeAnotherReg(I.getType());
1243 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1244 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001245 } else {
1246 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1247 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1248 }
1249
Chris Lattner06925362002-11-17 21:56:38 +00001250 // Emit the appropriate divide or remainder instruction...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001251 Op1Reg = getReg(I.getOperand(1));
Chris Lattner92845e32002-11-21 18:54:29 +00001252 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001253
Chris Lattnerf01729e2002-11-02 20:54:46 +00001254 // Figure out which register we want to pick the result out of...
1255 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1256
Chris Lattnerf01729e2002-11-02 20:54:46 +00001257 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001258 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001259}
Chris Lattnere2954c82002-11-02 20:04:26 +00001260
Chris Lattner06925362002-11-17 21:56:38 +00001261
Brian Gaekea1719c92002-10-31 23:03:59 +00001262/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1263/// for constant immediate shift values, and for constant immediate
1264/// shift values equal to 1. Even the general case is sort of special,
1265/// because the shift amount has to be in CL, not just any old register.
1266///
Chris Lattner3e130a22003-01-13 00:32:26 +00001267void ISel::visitShiftInst(ShiftInst &I) {
1268 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001269 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001270 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001271 bool isSigned = I.getType()->isSigned();
1272 unsigned Class = getClass(I.getType());
1273
1274 static const unsigned ConstantOperand[][4] = {
1275 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1276 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1277 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1278 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1279 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001280
Chris Lattner3e130a22003-01-13 00:32:26 +00001281 static const unsigned NonConstantOperand[][4] = {
1282 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1283 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1284 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1285 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1286 };
Chris Lattner796df732002-11-02 00:44:25 +00001287
Chris Lattner3e130a22003-01-13 00:32:26 +00001288 // Longs, as usual, are handled specially...
1289 if (Class == cLong) {
1290 // If we have a constant shift, we can generate much more efficient code
1291 // than otherwise...
1292 //
1293 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1294 unsigned Amount = CUI->getValue();
1295 if (Amount < 32) {
1296 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1297 if (isLeftShift) {
1298 BuildMI(BB, Opc[3], 3,
1299 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1300 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1301 } else {
1302 BuildMI(BB, Opc[3], 3,
1303 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1304 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1305 }
1306 } else { // Shifting more than 32 bits
1307 Amount -= 32;
1308 if (isLeftShift) {
1309 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1310 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1311 } else {
1312 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1313 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1314 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1315 }
1316 }
1317 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001318 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1319
1320 if (!isLeftShift && isSigned) {
1321 // If this is a SHR of a Long, then we need to do funny sign extension
1322 // stuff. TmpReg gets the value to use as the high-part if we are
1323 // shifting more than 32 bits.
1324 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1325 } else {
1326 // Other shifts use a fixed zero value if the shift is more than 32
1327 // bits.
1328 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1329 }
1330
1331 // Initialize CL with the shift amount...
1332 unsigned ShiftAmount = getReg(I.getOperand(1));
1333 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1334
1335 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1336 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1337 if (isLeftShift) {
1338 // TmpReg2 = shld inHi, inLo
1339 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1340 // TmpReg3 = shl inLo, CL
1341 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1342
1343 // Set the flags to indicate whether the shift was by more than 32 bits.
1344 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1345
1346 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1347 BuildMI(BB, X86::CMOVNErr32, 2,
1348 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1349 // DestLo = (>32) ? TmpReg : TmpReg3;
1350 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1351 } else {
1352 // TmpReg2 = shrd inLo, inHi
1353 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1354 // TmpReg3 = s[ah]r inHi, CL
1355 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1356 .addReg(SrcReg+1);
1357
1358 // Set the flags to indicate whether the shift was by more than 32 bits.
1359 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1360
1361 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1362 BuildMI(BB, X86::CMOVNErr32, 2,
1363 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1364
1365 // DestHi = (>32) ? TmpReg : TmpReg3;
1366 BuildMI(BB, X86::CMOVNErr32, 2,
1367 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1368 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001369 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001370 return;
1371 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001372
Chris Lattner3e130a22003-01-13 00:32:26 +00001373 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1374 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1375 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001376
Chris Lattner3e130a22003-01-13 00:32:26 +00001377 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1378 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1379 } else { // The shift amount is non-constant.
1380 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001381
Chris Lattner3e130a22003-01-13 00:32:26 +00001382 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1383 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1384 }
1385}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001386
Chris Lattner3e130a22003-01-13 00:32:26 +00001387
1388/// doFPLoad - This method is used to load an FP value from memory using the
1389/// current endianness. NOTE: This method returns a partially constructed load
1390/// instruction which needs to have the memory source filled in still.
1391///
1392MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1393 MachineBasicBlock::iterator &MBBI,
1394 const Type *Ty, unsigned DestReg) {
1395 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1396 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1397
1398 if (TM.getTargetData().isLittleEndian()) // fast path...
1399 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1400
1401 // If we are big-endian, start by creating an LEA instruction to represent the
1402 // address of the memory location to load from...
1403 //
1404 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1405 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1406
1407 // Allocate a temporary stack slot to transform the value into...
1408 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1409
1410 // Perform the bswaps 32 bits at a time...
1411 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1412 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1413 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1414 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1415 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1416 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1417 FrameIdx, Offset).addReg(TmpReg2);
1418
1419 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1420 TmpReg1 = makeAnotherReg(Type::UIntTy);
1421 TmpReg2 = makeAnotherReg(Type::UIntTy);
1422
1423 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1424 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1425 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1426 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1427 }
1428
1429 // Now we can reload the final byteswapped result into the final destination.
1430 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1431 return Result;
1432}
1433
1434/// EmitByteSwap - Byteswap SrcReg into DestReg.
1435///
1436void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1437 // Emit the byte swap instruction...
1438 switch (Class) {
1439 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001440 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001441 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1442 break;
1443 case cInt:
1444 // Use the 32 bit bswap instruction to do a 32 bit swap...
1445 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1446 break;
1447
1448 case cShort:
1449 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001450 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001451 // into AX to do the xchg.
1452 //
1453 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1454 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1455 .addReg(X86::AH, MOTy::UseAndDef);
1456 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1457 break;
1458 default: assert(0 && "Cannot byteswap this class!");
1459 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001460}
1461
Chris Lattner06925362002-11-17 21:56:38 +00001462
Chris Lattner6fc3c522002-11-17 21:11:55 +00001463/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001464/// instruction. The load and store instructions are the only place where we
1465/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001466///
1467void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001468 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1469 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001470 unsigned SrcAddrReg = getReg(I.getOperand(0));
1471 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001472
Brian Gaekebfedb912003-07-17 21:30:06 +00001473 unsigned Class = getClassB(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001474 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001475 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001476 MachineBasicBlock::iterator MBBI = BB->end();
1477 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001478 return;
1479 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001480 case cLong: case cInt: case cShort: case cByte:
1481 break; // Integers of various sizes handled below
1482 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001483 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001484
Chris Lattnere8f0d922002-12-24 00:03:11 +00001485 // We need to adjust the input pointer if we are emulating a big-endian
1486 // long-pointer target. On these systems, the pointer that we are interested
1487 // in is in the upper part of the eight byte memory image of the pointer. It
1488 // also happens to be byte-swapped, but this will be handled later.
1489 //
1490 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1491 unsigned R = makeAnotherReg(Type::UIntTy);
1492 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1493 SrcAddrReg = R;
1494 }
Chris Lattner94af4142002-12-25 05:13:53 +00001495
Chris Lattnere8f0d922002-12-24 00:03:11 +00001496 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001497 if (!isLittleEndian) // If big endian we need an intermediate stage
1498 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001499
Chris Lattner3e130a22003-01-13 00:32:26 +00001500 static const unsigned Opcode[] = {
1501 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1502 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001503 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1504
Chris Lattner3e130a22003-01-13 00:32:26 +00001505 // Handle long values now...
1506 if (Class == cLong) {
1507 if (isLittleEndian) {
1508 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1509 } else {
1510 EmitByteSwap(IReg+1, DestReg, cInt);
1511 unsigned TempReg = makeAnotherReg(Type::IntTy);
1512 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1513 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001514 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001515 return;
1516 }
1517
1518 if (!isLittleEndian)
1519 EmitByteSwap(IReg, DestReg, Class);
1520}
1521
1522
1523/// doFPStore - This method is used to store an FP value to memory using the
1524/// current endianness.
1525///
1526void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1527 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1528 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1529
1530 if (TM.getTargetData().isLittleEndian()) { // fast path...
1531 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1532 return;
1533 }
1534
1535 // Allocate a temporary stack slot to transform the value into...
1536 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1537 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1538 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1539
1540 // Store the value into a temporary stack slot...
1541 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1542
1543 // Perform the bswaps 32 bits at a time...
1544 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1545 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1546 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1547 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1548 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1549 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1550 DestAddrReg, Offset).addReg(TmpReg2);
1551
1552 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1553 TmpReg1 = makeAnotherReg(Type::UIntTy);
1554 TmpReg2 = makeAnotherReg(Type::UIntTy);
1555
1556 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1557 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1558 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1559 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001560 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001561}
1562
Chris Lattner06925362002-11-17 21:56:38 +00001563
Chris Lattner6fc3c522002-11-17 21:11:55 +00001564/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1565/// instruction.
1566///
1567void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001568 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1569 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001570 unsigned ValReg = getReg(I.getOperand(0));
1571 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001572
Brian Gaekebfedb912003-07-17 21:30:06 +00001573 unsigned Class = getClassB(I.getOperand(0)->getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001574 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001575 case cLong:
1576 if (isLittleEndian) {
1577 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1578 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1579 AddressReg, 4).addReg(ValReg+1);
1580 } else {
1581 unsigned T1 = makeAnotherReg(Type::IntTy);
1582 unsigned T2 = makeAnotherReg(Type::IntTy);
1583 EmitByteSwap(T1, ValReg , cInt);
1584 EmitByteSwap(T2, ValReg+1, cInt);
1585 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1586 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1587 }
Chris Lattner94af4142002-12-25 05:13:53 +00001588 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001589 case cFP:
1590 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1591 return;
1592 case cInt: case cShort: case cByte:
1593 break; // Integers of various sizes handled below
1594 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001595 }
1596
1597 if (!isLittleEndian && hasLongPointers &&
1598 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001599 unsigned R = makeAnotherReg(Type::UIntTy);
1600 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1601 AddressReg = R;
1602 }
1603
Chris Lattner94af4142002-12-25 05:13:53 +00001604 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001605 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1606 EmitByteSwap(R, ValReg, Class);
1607 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001608 }
1609
Chris Lattner94af4142002-12-25 05:13:53 +00001610 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001611 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1612}
1613
1614
Brian Gaekec11232a2002-11-26 10:43:30 +00001615/// visitCastInst - Here we have various kinds of copying with or without
1616/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001617void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001618 Value *Op = CI.getOperand(0);
1619 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1620 // of the case are GEP instructions, then the cast does not need to be
1621 // generated explicitly, it will be folded into the GEP.
1622 if (CI.getType() == Type::LongTy &&
1623 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1624 bool AllUsesAreGEPs = true;
1625 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1626 if (!isa<GetElementPtrInst>(*I)) {
1627 AllUsesAreGEPs = false;
1628 break;
1629 }
1630
1631 // No need to codegen this cast if all users are getelementptr instrs...
1632 if (AllUsesAreGEPs) return;
1633 }
1634
Chris Lattner548f61d2003-04-23 17:22:12 +00001635 unsigned DestReg = getReg(CI);
1636 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001637 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001638}
1639
1640/// emitCastOperation - Common code shared between visitCastInst and
1641/// constant expression cast support.
1642void ISel::emitCastOperation(MachineBasicBlock *BB,
1643 MachineBasicBlock::iterator &IP,
1644 Value *Src, const Type *DestTy,
1645 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001646 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001647 const Type *SrcTy = Src->getType();
1648 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001649 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001650
Chris Lattner3e130a22003-01-13 00:32:26 +00001651 // Implement casts to bool by using compare on the operand followed by set if
1652 // not zero on the result.
1653 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001654 switch (SrcClass) {
1655 case cByte:
1656 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1657 break;
1658 case cShort:
1659 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1660 break;
1661 case cInt:
1662 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1663 break;
1664 case cLong: {
1665 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1666 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1667 break;
1668 }
1669 case cFP:
1670 assert(0 && "FIXME: implement cast FP to bool");
1671 abort();
1672 }
1673
1674 // If the zero flag is not set, then the value is true, set the byte to
1675 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001676 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001677 return;
1678 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001679
1680 static const unsigned RegRegMove[] = {
1681 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1682 };
1683
1684 // Implement casts between values of the same type class (as determined by
1685 // getClass) by using a register-to-register move.
1686 if (SrcClass == DestClass) {
1687 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001688 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001689 } else if (SrcClass == cFP) {
1690 if (SrcTy == Type::FloatTy) { // double -> float
1691 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001692 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001693 } else { // float -> double
1694 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1695 "Unknown cFP member!");
1696 // Truncate from double to float by storing to memory as short, then
1697 // reading it back.
1698 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1699 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001700 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1701 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001702 }
1703 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001704 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1705 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001706 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001707 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001708 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001709 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001710 return;
1711 }
1712
1713 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1714 // or zero extension, depending on whether the source type was signed.
1715 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1716 SrcClass < DestClass) {
1717 bool isLong = DestClass == cLong;
1718 if (isLong) DestClass = cInt;
1719
1720 static const unsigned Opc[][4] = {
1721 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1722 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1723 };
1724
1725 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001726 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1727 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001728
1729 if (isLong) { // Handle upper 32 bits as appropriate...
1730 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001731 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001732 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001733 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001734 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001735 return;
1736 }
1737
1738 // Special case long -> int ...
1739 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001740 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001741 return;
1742 }
1743
1744 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1745 // move out of AX or AL.
1746 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1747 && SrcClass > DestClass) {
1748 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001749 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1750 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001751 return;
1752 }
1753
1754 // Handle casts from integer to floating point now...
1755 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001756 // Promote the integer to a type supported by FLD. We do this because there
1757 // are no unsigned FLD instructions, so we must promote an unsigned value to
1758 // a larger signed value, then use FLD on the larger value.
1759 //
1760 const Type *PromoteType = 0;
1761 unsigned PromoteOpcode;
1762 switch (SrcTy->getPrimitiveID()) {
1763 case Type::BoolTyID:
1764 case Type::SByteTyID:
1765 // We don't have the facilities for directly loading byte sized data from
1766 // memory (even signed). Promote it to 16 bits.
1767 PromoteType = Type::ShortTy;
1768 PromoteOpcode = X86::MOVSXr16r8;
1769 break;
1770 case Type::UByteTyID:
1771 PromoteType = Type::ShortTy;
1772 PromoteOpcode = X86::MOVZXr16r8;
1773 break;
1774 case Type::UShortTyID:
1775 PromoteType = Type::IntTy;
1776 PromoteOpcode = X86::MOVZXr32r16;
1777 break;
1778 case Type::UIntTyID: {
1779 // Make a 64 bit temporary... and zero out the top of it...
1780 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1781 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1782 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1783 SrcTy = Type::LongTy;
1784 SrcClass = cLong;
1785 SrcReg = TmpReg;
1786 break;
1787 }
1788 case Type::ULongTyID:
1789 assert("FIXME: not implemented: cast ulong X to fp type!");
1790 default: // No promotion needed...
1791 break;
1792 }
1793
1794 if (PromoteType) {
1795 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001796 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1797 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001798 SrcTy = PromoteType;
1799 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001800 SrcReg = TmpReg;
1801 }
1802
1803 // Spill the integer to memory and reload it from there...
1804 int FrameIdx =
1805 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1806
1807 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001808 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1809 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001810 FrameIdx, 4).addReg(SrcReg+1);
1811 } else {
1812 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001813 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001814 }
1815
1816 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001817 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001818 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001819 return;
1820 }
1821
1822 // Handle casts from floating point to integer now...
1823 if (SrcClass == cFP) {
1824 // Change the floating point control register to use "round towards zero"
1825 // mode when truncating to an integer value.
1826 //
1827 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001828 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001829
1830 // Load the old value of the high byte of the control word...
1831 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001832 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001833
1834 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001835 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001836
1837 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001838 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001839
1840 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001841 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001842 CWFrameIdx, 1).addReg(HighPartOfCW);
1843
1844 // We don't have the facilities for directly storing byte sized data to
1845 // memory. Promote it to 16 bits. We also must promote unsigned values to
1846 // larger classes because we only have signed FP stores.
1847 unsigned StoreClass = DestClass;
1848 const Type *StoreTy = DestTy;
1849 if (StoreClass == cByte || DestTy->isUnsigned())
1850 switch (StoreClass) {
1851 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1852 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1853 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001854 // The following treatment of cLong may not be perfectly right,
1855 // but it survives chains of casts of the form
1856 // double->ulong->double.
1857 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001858 default: assert(0 && "Unknown store class!");
1859 }
1860
1861 // Spill the integer to memory and reload it from there...
1862 int FrameIdx =
1863 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1864
1865 static const unsigned Op1[] =
1866 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001867 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001868
1869 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001870 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1871 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001872 } else {
1873 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001874 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001875 }
1876
1877 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001878 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001879 return;
1880 }
1881
Brian Gaeked474e9c2002-12-06 10:49:33 +00001882 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001883 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001884 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001885}
Brian Gaekea1719c92002-10-31 23:03:59 +00001886
Chris Lattnereca195e2003-05-08 19:44:13 +00001887/// visitVarArgInst - Implement the va_arg instruction...
1888///
1889void ISel::visitVarArgInst(VarArgInst &I) {
1890 unsigned SrcReg = getReg(I.getOperand(0));
1891 unsigned DestReg = getReg(I);
1892
1893 // Load the va_list into a register...
1894 unsigned VAList = makeAnotherReg(Type::UIntTy);
1895 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1896
1897 unsigned Size;
1898 switch (I.getType()->getPrimitiveID()) {
1899 default:
1900 std::cerr << I;
1901 assert(0 && "Error: bad type for va_arg instruction!");
1902 return;
1903 case Type::PointerTyID:
1904 case Type::UIntTyID:
1905 case Type::IntTyID:
1906 Size = 4;
1907 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1908 break;
1909 case Type::ULongTyID:
1910 case Type::LongTyID:
1911 Size = 8;
1912 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1913 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1914 break;
1915 case Type::DoubleTyID:
1916 Size = 8;
1917 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1918 break;
1919 }
1920
1921 // Increment the VAList pointer...
1922 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1923 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1924
1925 // Update the VAList in memory...
1926 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1927}
1928
1929
Chris Lattner8a307e82002-12-16 19:32:50 +00001930// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1931// returns zero when the input is not exactly a power of two.
1932static unsigned ExactLog2(unsigned Val) {
1933 if (Val == 0) return 0;
1934 unsigned Count = 0;
1935 while (Val != 1) {
1936 if (Val & 1) return 0;
1937 Val >>= 1;
1938 ++Count;
1939 }
1940 return Count+1;
1941}
1942
Chris Lattner3e130a22003-01-13 00:32:26 +00001943void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1944 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001945 MachineBasicBlock::iterator MI = BB->end();
1946 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001947 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001948}
1949
Brian Gaeke71794c02002-12-13 11:22:48 +00001950void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001951 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001952 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001953 User::op_iterator IdxEnd, unsigned TargetReg) {
1954 const TargetData &TD = TM.getTargetData();
1955 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001956 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001957
Brian Gaeke20244b72002-12-12 15:33:40 +00001958 // GEPs have zero or more indices; we must perform a struct access
1959 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001960 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1961 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001962 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001963 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001964 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001965 // It's a struct access. idx is the index into the structure,
1966 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001967 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1968 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001969 && "Funny-looking structure index in GEP");
1970 // Use the TargetData structure to pick out what the layout of
1971 // the structure is in memory. Since the structure index must
1972 // be constant, we can get its value and use it to find the
1973 // right byte offset from the StructLayout class's list of
1974 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001975 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001976 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1977 if (FieldOff) {
1978 NextReg = makeAnotherReg(Type::UIntTy);
1979 // Emit an ADD to add FieldOff to the basePtr.
1980 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1981 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001982 // The next type is the member of the structure selected by the
1983 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001984 Ty = StTy->getElementTypes()[idxValue];
1985 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001986 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001987
Brian Gaeke20244b72002-12-12 15:33:40 +00001988 // idx is the index into the array. Unlike with structure
1989 // indices, we may not know its actual value at code-generation
1990 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001991 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1992
Chris Lattnerf5854472003-06-21 16:01:24 +00001993 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1994 // operand on X86. Handle this case directly now...
1995 if (CastInst *CI = dyn_cast<CastInst>(idx))
1996 if (CI->getOperand(0)->getType() == Type::IntTy ||
1997 CI->getOperand(0)->getType() == Type::UIntTy)
1998 idx = CI->getOperand(0);
1999
Chris Lattner3e130a22003-01-13 00:32:26 +00002000 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002001 // must find the size of the pointed-to type (Not coincidentally, the next
2002 // type is the type of the elements in the array).
2003 Ty = SqTy->getElementType();
2004 unsigned elementSize = TD.getTypeSize(Ty);
2005
2006 // If idxReg is a constant, we don't need to perform the multiply!
2007 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002008 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002009 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002010 NextReg = makeAnotherReg(Type::UIntTy);
2011 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002012 }
2013 } else if (elementSize == 1) {
2014 // If the element size is 1, we don't have to multiply, just add
2015 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002016 NextReg = makeAnotherReg(Type::UIntTy);
2017 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002018 } else {
2019 unsigned idxReg = getReg(idx, MBB, IP);
2020 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2021 if (unsigned Shift = ExactLog2(elementSize)) {
2022 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00002023 BMI(MBB, IP, X86::SHLir32, 2,
2024 OffsetReg).addReg(idxReg).addZImm(Shift-1);
2025 } else {
2026 // Most general case, emit a multiply...
2027 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
2028 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
2029
2030 // Emit a MUL to multiply the register holding the index by
2031 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00002032 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002033 }
2034 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00002035 NextReg = makeAnotherReg(Type::UIntTy);
2036 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002037 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002038 }
2039 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002040 // one, so we don't need to worry about BaseReg itself, anymore.
2041 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002042 }
2043 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002044 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002045 // put the answer. A 32-bit move should do it, because we are in
2046 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002047 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002048}
2049
2050
Chris Lattner065faeb2002-12-28 20:24:02 +00002051/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2052/// frame manager, otherwise do it the hard way.
2053///
2054void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002055 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002056 const Type *Ty = I.getAllocatedType();
2057 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2058
2059 // If this is a fixed size alloca in the entry block for the function,
2060 // statically stack allocate the space.
2061 //
2062 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2063 if (I.getParent() == I.getParent()->getParent()->begin()) {
2064 TySize *= CUI->getValue(); // Get total allocated size...
2065 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2066
2067 // Create a new stack object using the frame manager...
2068 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2069 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2070 return;
2071 }
2072 }
2073
2074 // Create a register to hold the temporary result of multiplying the type size
2075 // constant by the variable amount.
2076 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2077 unsigned SrcReg1 = getReg(I.getArraySize());
2078 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2079 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2080
2081 // TotalSizeReg = mul <numelements>, <TypeSize>
2082 MachineBasicBlock::iterator MBBI = BB->end();
2083 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2084
2085 // AddedSize = add <TotalSizeReg>, 15
2086 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2087 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2088
2089 // AlignedSize = and <AddedSize>, ~15
2090 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2091 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2092
Brian Gaekee48ec012002-12-13 06:46:31 +00002093 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002094 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002095
Brian Gaekee48ec012002-12-13 06:46:31 +00002096 // Put a pointer to the space into the result register, by copying
2097 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002098 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2099
Misha Brukman48196b32003-05-03 02:18:17 +00002100 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002101 // object.
2102 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002103}
Chris Lattner3e130a22003-01-13 00:32:26 +00002104
2105/// visitMallocInst - Malloc instructions are code generated into direct calls
2106/// to the library malloc.
2107///
2108void ISel::visitMallocInst(MallocInst &I) {
2109 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2110 unsigned Arg;
2111
2112 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2113 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2114 } else {
2115 Arg = makeAnotherReg(Type::UIntTy);
2116 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2117 unsigned Op1Reg = getReg(I.getOperand(0));
2118 MachineBasicBlock::iterator MBBI = BB->end();
2119 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002120 }
2121
2122 std::vector<ValueRecord> Args;
2123 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2124 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2125 1).addExternalSymbol("malloc", true);
2126 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2127}
2128
2129
2130/// visitFreeInst - Free instructions are code gen'd to call the free libc
2131/// function.
2132///
2133void ISel::visitFreeInst(FreeInst &I) {
2134 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002135 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002136 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2137 1).addExternalSymbol("free", true);
2138 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2139}
2140
Brian Gaeke20244b72002-12-12 15:33:40 +00002141
Chris Lattnerd281de22003-07-26 23:49:58 +00002142/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002143/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002144/// generated code sucks but the implementation is nice and simple.
2145///
Brian Gaeke19df3872003-08-13 18:18:15 +00002146FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002147 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002148}