processed by indent to improve readability
diff --git a/src/mesa/math/m_eval.c b/src/mesa/math/m_eval.c
index adf5b19..9316625 100644
--- a/src/mesa/math/m_eval.c
+++ b/src/mesa/math/m_eval.c
@@ -1,4 +1,4 @@
-/* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */
+/* $Id: m_eval.c,v 1.4 2001/03/08 17:17:28 brianp Exp $ */
 
 /*
  * Mesa 3-D graphics library
@@ -72,32 +72,31 @@
 
 
 void
-_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
+_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t,
 			  GLuint dim, GLuint order)
 {
    GLfloat s, powert, bincoeff;
    GLuint i, k;
 
-   if(order >= 2)
-   {
+   if (order >= 2) {
       bincoeff = (GLfloat) (order - 1);
-      s = 1.0-t;
+      s = 1.0 - t;
 
-      for(k=0; k<dim; k++)
-	 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
+      for (k = 0; k < dim; k++)
+	 out[k] = s * cp[k] + bincoeff * t * cp[dim + k];
 
-      for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
-      {
+      for (i = 2, cp += 2 * dim, powert = t * t; i < order;
+	   i++, powert *= t, cp += dim) {
 	 bincoeff *= (GLfloat) (order - i);
 	 bincoeff *= inv_tab[i];
 
-	 for(k=0; k<dim; k++)
-	    out[k] = s*out[k] + bincoeff*powert*cp[k];
+	 for (k = 0; k < dim; k++)
+	    out[k] = s * out[k] + bincoeff * powert * cp[k];
       }
    }
-   else /* order=1 -> constant curve */
-   {
-      for(k=0; k<dim; k++)
+   else {			/* order=1 -> constant curve */
+
+      for (k = 0; k < dim; k++)
 	 out[k] = cp[k];
    }
 }
@@ -117,69 +116,64 @@
  */
 
 void
-_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
+_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v,
 			 GLuint dim, GLuint uorder, GLuint vorder)
 {
-   GLfloat *cp = cn + uorder*vorder*dim;
-   GLuint i, uinc = vorder*dim;
+   GLfloat *cp = cn + uorder * vorder * dim;
+   GLuint i, uinc = vorder * dim;
 
-   if(vorder > uorder)
-   {
-      if(uorder >= 2)
-      {
+   if (vorder > uorder) {
+      if (uorder >= 2) {
 	 GLfloat s, poweru, bincoeff;
 	 GLuint j, k;
 
 	 /* Compute the control polygon for the surface-curve in u-direction */
-	 for(j=0; j<vorder; j++)
-	 {
-	    GLfloat *ucp = &cn[j*dim];
+	 for (j = 0; j < vorder; j++) {
+	    GLfloat *ucp = &cn[j * dim];
 
 	    /* Each control point is the point for parameter u on a */
 	    /* curve defined by the control polygons in u-direction */
 	    bincoeff = (GLfloat) (uorder - 1);
-	    s = 1.0-u;
+	    s = 1.0 - u;
 
-	    for(k=0; k<dim; k++)
-	       cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
+	    for (k = 0; k < dim; k++)
+	       cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k];
 
-	    for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
-		i++, poweru*=u, ucp +=uinc)
-	    {
+	    for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder;
+		 i++, poweru *= u, ucp += uinc) {
 	       bincoeff *= (GLfloat) (uorder - i);
 	       bincoeff *= inv_tab[i];
 
-	       for(k=0; k<dim; k++)
-		  cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
+	       for (k = 0; k < dim; k++)
+		  cp[j * dim + k] =
+		     s * cp[j * dim + k] + bincoeff * poweru * ucp[k];
 	    }
 	 }
 
 	 /* Evaluate curve point in v */
 	 _math_horner_bezier_curve(cp, out, v, dim, vorder);
       }
-      else /* uorder=1 -> cn defines a curve in v */
+      else			/* uorder=1 -> cn defines a curve in v */
 	 _math_horner_bezier_curve(cn, out, v, dim, vorder);
    }
-   else /* vorder <= uorder */
-   {
-      if(vorder > 1)
-      {
+   else {			/* vorder <= uorder */
+
+      if (vorder > 1) {
 	 GLuint i;
 
 	 /* Compute the control polygon for the surface-curve in u-direction */
-	 for(i=0; i<uorder; i++, cn += uinc)
-	 {
+	 for (i = 0; i < uorder; i++, cn += uinc) {
 	    /* For constant i all cn[i][j] (j=0..vorder) are located */
 	    /* on consecutive memory locations, so we can use        */
 	    /* horner_bezier_curve to compute the control points     */
 
-	    _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
+	    _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder);
 	 }
 
 	 /* Evaluate curve point in u */
 	 _math_horner_bezier_curve(cp, out, u, dim, uorder);
       }
-      else  /* vorder=1 -> cn defines a curve in u */
+      else			/* vorder=1 -> cn defines a curve in u */
 	 _math_horner_bezier_curve(cn, out, u, dim, uorder);
    }
 }
@@ -199,15 +193,15 @@
  */
 
 void
-_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
-			GLfloat u, GLfloat v, GLuint dim,
+_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du,
+			GLfloat * dv, GLfloat u, GLfloat v, GLuint dim,
 			GLuint uorder, GLuint vorder)
 {
-   GLfloat *dcn = cn + uorder*vorder*dim;
-   GLfloat us = 1.0-u, vs = 1.0-v;
+   GLfloat *dcn = cn + uorder * vorder * dim;
+   GLfloat us = 1.0 - u, vs = 1.0 - v;
    GLuint h, i, j, k;
    GLuint minorder = uorder < vorder ? uorder : vorder;
-   GLuint uinc = vorder*dim;
+   GLuint uinc = vorder * dim;
    GLuint dcuinc = vorder;
 
    /* Each component is evaluated separately to save buffer space  */
@@ -218,267 +212,234 @@
 
 #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
 #define DCN(I, J) dcn[(I)*dcuinc+(J)]
-   if(minorder < 3)
-   {
-      if(uorder==vorder)
-      {
-	 for(k=0; k<dim; k++)
-	 {
+   if (minorder < 3) {
+      if (uorder == vorder) {
+	 for (k = 0; k < dim; k++) {
 	    /* Derivative direction in u */
-	    du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
-	       v*(CN(1,1,k) - CN(0,1,k));
+	    du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) +
+	       v * (CN(1, 1, k) - CN(0, 1, k));
 
 	    /* Derivative direction in v */
-	    dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
-	       u*(CN(1,1,k) - CN(1,0,k));
+	    dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) +
+	       u * (CN(1, 1, k) - CN(1, 0, k));
 
 	    /* bilinear de Casteljau step */
-	    out[k] =  us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
-	       u*(vs*CN(1,0,k) + v*CN(1,1,k));
+	    out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) +
+	       u * (vs * CN(1, 0, k) + v * CN(1, 1, k));
 	 }
       }
-      else if(minorder == uorder)
-      {
-	 for(k=0; k<dim; k++)
-	 {
+      else if (minorder == uorder) {
+	 for (k = 0; k < dim; k++) {
 	    /* bilinear de Casteljau step */
-	    DCN(1,0) =    CN(1,0,k) -   CN(0,0,k);
-	    DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
+	    DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k);
+	    DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k);
 
-	    for(j=0; j<vorder-1; j++)
-	    {
+	    for (j = 0; j < vorder - 1; j++) {
 	       /* for the derivative in u */
-	       DCN(1,j+1) =    CN(1,j+1,k) -   CN(0,j+1,k);
-	       DCN(1,j)   = vs*DCN(1,j)    + v*DCN(1,j+1);
+	       DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k);
+	       DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
 
 	       /* for the `point' */
-	       DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
-	       DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
+	       DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k);
+	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
 	    }
 
 	    /* remaining linear de Casteljau steps until the second last step */
-	    for(h=minorder; h<vorder-1; h++)
-	       for(j=0; j<vorder-h; j++)
-	       {
+	    for (h = minorder; h < vorder - 1; h++)
+	       for (j = 0; j < vorder - h; j++) {
 		  /* for the derivative in u */
-		  DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
+		  DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
 
 		  /* for the `point' */
-		  DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+		  DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
 	       }
 
 	    /* derivative direction in v */
-	    dv[k] = DCN(0,1) - DCN(0,0);
+	    dv[k] = DCN(0, 1) - DCN(0, 0);
 
 	    /* derivative direction in u */
-	    du[k] =   vs*DCN(1,0) + v*DCN(1,1);
+	    du[k] = vs * DCN(1, 0) + v * DCN(1, 1);
 
 	    /* last linear de Casteljau step */
-	    out[k] =  vs*DCN(0,0) + v*DCN(0,1);
+	    out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
 	 }
       }
-      else /* minorder == vorder */
-      {
-	 for(k=0; k<dim; k++)
-	 {
+      else {			/* minorder == vorder */
+
+	 for (k = 0; k < dim; k++) {
 	    /* bilinear de Casteljau step */
-	    DCN(0,1) =    CN(0,1,k) -   CN(0,0,k);
-	    DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
-	    for(i=0; i<uorder-1; i++)
-	    {
+	    DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k);
+	    DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k);
+	    for (i = 0; i < uorder - 1; i++) {
 	       /* for the derivative in v */
-	       DCN(i+1,1) =    CN(i+1,1,k) -   CN(i+1,0,k);
-	       DCN(i,1)   = us*DCN(i,1)    + u*DCN(i+1,1);
+	       DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k);
+	       DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
 
 	       /* for the `point' */
-	       DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
-	       DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
+	       DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k);
+	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
 	    }
 
 	    /* remaining linear de Casteljau steps until the second last step */
-	    for(h=minorder; h<uorder-1; h++)
-	       for(i=0; i<uorder-h; i++)
-	       {
+	    for (h = minorder; h < uorder - 1; h++)
+	       for (i = 0; i < uorder - h; i++) {
 		  /* for the derivative in v */
-		  DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
+		  DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
 
 		  /* for the `point' */
-		  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+		  DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
 	       }
 
 	    /* derivative direction in u */
-	    du[k] = DCN(1,0) - DCN(0,0);
+	    du[k] = DCN(1, 0) - DCN(0, 0);
 
 	    /* derivative direction in v */
-	    dv[k] =   us*DCN(0,1) + u*DCN(1,1);
+	    dv[k] = us * DCN(0, 1) + u * DCN(1, 1);
 
 	    /* last linear de Casteljau step */
-	    out[k] =  us*DCN(0,0) + u*DCN(1,0);
+	    out[k] = us * DCN(0, 0) + u * DCN(1, 0);
 	 }
       }
    }
-   else if(uorder == vorder)
-   {
-      for(k=0; k<dim; k++)
-      {
+   else if (uorder == vorder) {
+      for (k = 0; k < dim; k++) {
 	 /* first bilinear de Casteljau step */
-	 for(i=0; i<uorder-1; i++)
-	 {
-	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
-	    for(j=0; j<vorder-1; j++)
-	    {
-	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
-	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
+	 for (i = 0; i < uorder - 1; i++) {
+	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
+	    for (j = 0; j < vorder - 1; j++) {
+	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
+	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
 	    }
 	 }
 
 	 /* remaining bilinear de Casteljau steps until the second last step */
-	 for(h=2; h<minorder-1; h++)
-	    for(i=0; i<uorder-h; i++)
-	    {
-	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
-	       for(j=0; j<vorder-h; j++)
-	       {
-		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
-		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
+	 for (h = 2; h < minorder - 1; h++)
+	    for (i = 0; i < uorder - h; i++) {
+	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
+	       for (j = 0; j < vorder - h; j++) {
+		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
+		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
 	       }
 	    }
 
 	 /* derivative direction in u */
-	 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
-	    v*(DCN(1,1) - DCN(0,1));
+	 du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1));
 
 	 /* derivative direction in v */
-	 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
-	    u*(DCN(1,1) - DCN(1,0));
+	 dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0));
 
 	 /* last bilinear de Casteljau step */
-	 out[k] =  us*(vs*DCN(0,0) + v*DCN(0,1)) +
-	    u*(vs*DCN(1,0) + v*DCN(1,1));
+	 out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) +
+	    u * (vs * DCN(1, 0) + v * DCN(1, 1));
       }
    }
-   else if(minorder == uorder)
-   {
-      for(k=0; k<dim; k++)
-      {
+   else if (minorder == uorder) {
+      for (k = 0; k < dim; k++) {
 	 /* first bilinear de Casteljau step */
-	 for(i=0; i<uorder-1; i++)
-	 {
-	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
-	    for(j=0; j<vorder-1; j++)
-	    {
-	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
-	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
+	 for (i = 0; i < uorder - 1; i++) {
+	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
+	    for (j = 0; j < vorder - 1; j++) {
+	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
+	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
 	    }
 	 }
 
 	 /* remaining bilinear de Casteljau steps until the second last step */
-	 for(h=2; h<minorder-1; h++)
-	    for(i=0; i<uorder-h; i++)
-	    {
-	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
-	       for(j=0; j<vorder-h; j++)
-	       {
-		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
-		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
+	 for (h = 2; h < minorder - 1; h++)
+	    for (i = 0; i < uorder - h; i++) {
+	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
+	       for (j = 0; j < vorder - h; j++) {
+		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
+		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
 	       }
 	    }
 
 	 /* last bilinear de Casteljau step */
-	 DCN(2,0) =    DCN(1,0) -   DCN(0,0);
-	 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
-	 for(j=0; j<vorder-1; j++)
-	 {
+	 DCN(2, 0) = DCN(1, 0) - DCN(0, 0);
+	 DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0);
+	 for (j = 0; j < vorder - 1; j++) {
 	    /* for the derivative in u */
-	    DCN(2,j+1) =    DCN(1,j+1) -    DCN(0,j+1);
-	    DCN(2,j)   = vs*DCN(2,j)    + v*DCN(2,j+1);
-	
+	    DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1);
+	    DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
+
 	    /* for the `point' */
-	    DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
-	    DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
+	    DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1);
+	    DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
 	 }
 
 	 /* remaining linear de Casteljau steps until the second last step */
-	 for(h=minorder; h<vorder-1; h++)
-	    for(j=0; j<vorder-h; j++)
-	    {
+	 for (h = minorder; h < vorder - 1; h++)
+	    for (j = 0; j < vorder - h; j++) {
 	       /* for the derivative in u */
-	       DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
-	
+	       DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
+
 	       /* for the `point' */
-	       DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
+	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
 	    }
 
 	 /* derivative direction in v */
-	 dv[k] = DCN(0,1) - DCN(0,0);
+	 dv[k] = DCN(0, 1) - DCN(0, 0);
 
 	 /* derivative direction in u */
-	 du[k] =   vs*DCN(2,0) + v*DCN(2,1);
+	 du[k] = vs * DCN(2, 0) + v * DCN(2, 1);
 
 	 /* last linear de Casteljau step */
-	 out[k] =  vs*DCN(0,0) + v*DCN(0,1);
+	 out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
       }
    }
-   else /* minorder == vorder */
-   {
-      for(k=0; k<dim; k++)
-      {
+   else {			/* minorder == vorder */
+
+      for (k = 0; k < dim; k++) {
 	 /* first bilinear de Casteljau step */
-	 for(i=0; i<uorder-1; i++)
-	 {
-	    DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
-	    for(j=0; j<vorder-1; j++)
-	    {
-	       DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
-	       DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
+	 for (i = 0; i < uorder - 1; i++) {
+	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
+	    for (j = 0; j < vorder - 1; j++) {
+	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
+	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
 	    }
 	 }
 
 	 /* remaining bilinear de Casteljau steps until the second last step */
-	 for(h=2; h<minorder-1; h++)
-	    for(i=0; i<uorder-h; i++)
-	    {
-	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
-	       for(j=0; j<vorder-h; j++)
-	       {
-		  DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
-		  DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
+	 for (h = 2; h < minorder - 1; h++)
+	    for (i = 0; i < uorder - h; i++) {
+	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
+	       for (j = 0; j < vorder - h; j++) {
+		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
+		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
 	       }
 	    }
 
 	 /* last bilinear de Casteljau step */
-	 DCN(0,2) =    DCN(0,1) -   DCN(0,0);
-	 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
-	 for(i=0; i<uorder-1; i++)
-	 {
+	 DCN(0, 2) = DCN(0, 1) - DCN(0, 0);
+	 DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1);
+	 for (i = 0; i < uorder - 1; i++) {
 	    /* for the derivative in v */
-	    DCN(i+1,2) =    DCN(i+1,1)  -   DCN(i+1,0);
-	    DCN(i,2)   = us*DCN(i,2)    + u*DCN(i+1,2);
-	
+	    DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0);
+	    DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
+
 	    /* for the `point' */
-	    DCN(i+1,0) = vs*DCN(i+1,0)  + v*DCN(i+1,1);
-	    DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
+	    DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1);
+	    DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
 	 }
 
 	 /* remaining linear de Casteljau steps until the second last step */
-	 for(h=minorder; h<uorder-1; h++)
-	    for(i=0; i<uorder-h; i++)
-	    {
+	 for (h = minorder; h < uorder - 1; h++)
+	    for (i = 0; i < uorder - h; i++) {
 	       /* for the derivative in v */
-	       DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
-	
+	       DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
+
 	       /* for the `point' */
-	       DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
+	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
 	    }
 
 	 /* derivative direction in u */
-	 du[k] = DCN(1,0) - DCN(0,0);
+	 du[k] = DCN(1, 0) - DCN(0, 0);
 
 	 /* derivative direction in v */
-	 dv[k] =   us*DCN(0,2) + u*DCN(1,2);
+	 dv[k] = us * DCN(0, 2) + u * DCN(1, 2);
 
 	 /* last linear de Casteljau step */
-	 out[k] =  us*DCN(0,0) + u*DCN(1,0);
+	 out[k] = us * DCN(0, 0) + u * DCN(1, 0);
       }
    }
 #undef DCN
@@ -489,13 +450,13 @@
 /*
  * Do one-time initialization for evaluators.
  */
-void _math_init_eval( void )
+void
+_math_init_eval(void)
 {
    GLuint i;
 
    /* KW: precompute 1/x for useful x.
     */
-   for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
+   for (i = 1; i < MAX_EVAL_ORDER; i++)
       inv_tab[i] = 1.0 / i;
 }
-