darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 1 | /* |
ohair | 2283b9d | 2010-05-25 15:58:33 -0700 | [diff] [blame] | 2 | * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
ohair | 2283b9d | 2010-05-25 15:58:33 -0700 | [diff] [blame] | 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 22 | */ |
| 23 | |
| 24 | /* |
| 25 | * @test |
| 26 | * @bug 4347132 4939441 |
| 27 | * @summary Tests for {Math, StrictMath}.cbrt |
| 28 | * @author Joseph D. Darcy |
| 29 | */ |
| 30 | |
| 31 | import sun.misc.FpUtils; |
| 32 | import sun.misc.DoubleConsts; |
| 33 | |
| 34 | public class CubeRootTests { |
| 35 | private CubeRootTests(){} |
| 36 | |
| 37 | static final double infinityD = Double.POSITIVE_INFINITY; |
| 38 | static final double NaNd = Double.NaN; |
| 39 | |
| 40 | // Initialize shared random number generator |
| 41 | static java.util.Random rand = new java.util.Random(); |
| 42 | |
| 43 | static int testCubeRootCase(double input, double expected) { |
| 44 | int failures=0; |
| 45 | |
| 46 | double minus_input = -input; |
| 47 | double minus_expected = -expected; |
| 48 | |
| 49 | failures+=Tests.test("Math.cbrt(double)", input, |
| 50 | Math.cbrt(input), expected); |
| 51 | failures+=Tests.test("Math.cbrt(double)", minus_input, |
| 52 | Math.cbrt(minus_input), minus_expected); |
| 53 | failures+=Tests.test("StrictMath.cbrt(double)", input, |
| 54 | StrictMath.cbrt(input), expected); |
| 55 | failures+=Tests.test("StrictMath.cbrt(double)", minus_input, |
| 56 | StrictMath.cbrt(minus_input), minus_expected); |
| 57 | |
| 58 | return failures; |
| 59 | } |
| 60 | |
| 61 | static int testCubeRoot() { |
| 62 | int failures = 0; |
| 63 | double [][] testCases = { |
| 64 | {NaNd, NaNd}, |
| 65 | {Double.longBitsToDouble(0x7FF0000000000001L), NaNd}, |
| 66 | {Double.longBitsToDouble(0xFFF0000000000001L), NaNd}, |
| 67 | {Double.longBitsToDouble(0x7FF8555555555555L), NaNd}, |
| 68 | {Double.longBitsToDouble(0xFFF8555555555555L), NaNd}, |
| 69 | {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd}, |
| 70 | {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd}, |
| 71 | {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd}, |
| 72 | {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd}, |
| 73 | {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd}, |
| 74 | {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd}, |
| 75 | {Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY}, |
| 76 | {Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY}, |
| 77 | {+0.0, +0.0}, |
| 78 | {-0.0, -0.0}, |
| 79 | {+1.0, +1.0}, |
| 80 | {-1.0, -1.0}, |
| 81 | {+8.0, +2.0}, |
| 82 | {-8.0, -2.0} |
| 83 | }; |
| 84 | |
| 85 | for(int i = 0; i < testCases.length; i++) { |
| 86 | failures += testCubeRootCase(testCases[i][0], |
| 87 | testCases[i][1]); |
| 88 | } |
| 89 | |
| 90 | // Test integer perfect cubes less than 2^53. |
| 91 | for(int i = 0; i <= 208063; i++) { |
| 92 | double d = i; |
| 93 | failures += testCubeRootCase(d*d*d, (double)i); |
| 94 | } |
| 95 | |
| 96 | // Test cbrt(2^(3n)) = 2^n. |
| 97 | for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) { |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 98 | failures += testCubeRootCase(Math.scalb(1.0, 3*i), |
| 99 | Math.scalb(1.0, i) ); |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 100 | } |
| 101 | |
| 102 | // Test cbrt(2^(-3n)) = 2^-n. |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 103 | for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) { |
| 104 | failures += testCubeRootCase(Math.scalb(1.0, 3*i), |
| 105 | Math.scalb(1.0, i) ); |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 106 | } |
| 107 | |
| 108 | // Test random perfect cubes. Create double values with |
| 109 | // modest exponents but only have at most the 17 most |
| 110 | // significant bits in the significand set; 17*3 = 51, which |
| 111 | // is less than the number of bits in a double's significand. |
| 112 | long exponentBits1 = |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 113 | Double.doubleToLongBits(Math.scalb(1.0, 55)) & |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 114 | DoubleConsts.EXP_BIT_MASK; |
| 115 | long exponentBits2= |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 116 | Double.doubleToLongBits(Math.scalb(1.0, -55)) & |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 117 | DoubleConsts.EXP_BIT_MASK; |
| 118 | for(int i = 0; i < 100; i++) { |
| 119 | // Take 16 bits since the 17th bit is implicit in the |
| 120 | // exponent |
| 121 | double input1 = |
| 122 | Double.longBitsToDouble(exponentBits1 | |
| 123 | // Significand bits |
| 124 | ((long) (rand.nextInt() & 0xFFFF))<< |
| 125 | (DoubleConsts.SIGNIFICAND_WIDTH-1-16)); |
| 126 | failures += testCubeRootCase(input1*input1*input1, input1); |
| 127 | |
| 128 | double input2 = |
| 129 | Double.longBitsToDouble(exponentBits2 | |
| 130 | // Significand bits |
| 131 | ((long) (rand.nextInt() & 0xFFFF))<< |
| 132 | (DoubleConsts.SIGNIFICAND_WIDTH-1-16)); |
| 133 | failures += testCubeRootCase(input2*input2*input2, input2); |
| 134 | } |
| 135 | |
| 136 | // Directly test quality of implementation properties of cbrt |
| 137 | // for values that aren't perfect cubes. Verify returned |
| 138 | // result meets the 1 ulp test. That is, we want to verify |
| 139 | // that for positive x > 1, |
| 140 | // y = cbrt(x), |
| 141 | // |
| 142 | // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1 |
| 143 | // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1 |
| 144 | // |
| 145 | // where y_mm and y_pp are the next smaller and next larger |
| 146 | // floating-point value to y. In other words, if y^3 is too |
| 147 | // big, making y larger does not improve the result; likewise, |
| 148 | // if y^3 is too small, making y smaller does not improve the |
| 149 | // result. |
| 150 | // |
| 151 | // ...-----|--?--|--?--|-----... Where is the true result? |
| 152 | // y_mm y y_pp |
| 153 | // |
| 154 | // The returned value y should be one of the floating-point |
| 155 | // values braketing the true result. However, given y, a |
| 156 | // priori we don't know if the true result falls in [y_mm, y] |
| 157 | // or [y, y_pp]. The above test looks at the error in x-y^3 |
| 158 | // to determine which region the true result is in; e.g. if |
| 159 | // y^3 is smaller than x, the true result should be in [y, |
| 160 | // y_pp]. Therefore, it would be an error for y_mm to be a |
| 161 | // closer approximation to x^(1/3). In this case, it is |
| 162 | // permissible, although not ideal, for y_pp^3 to be a closer |
| 163 | // approximation to x^(1/3) than y^3. |
| 164 | // |
| 165 | // We will use pow(y,3) to compute y^3. Although pow is not |
| 166 | // correctly rounded, StrictMath.pow should have at most 1 ulp |
| 167 | // error. For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ |
| 168 | // from pow(y,3) by more than one ulp so the comparision of |
| 169 | // errors should still be valid. |
| 170 | |
| 171 | for(int i = 0; i < 1000; i++) { |
| 172 | double d = 1.0 + rand.nextDouble(); |
| 173 | double err, err_adjacent; |
| 174 | |
| 175 | double y1 = Math.cbrt(d); |
| 176 | double y2 = StrictMath.cbrt(d); |
| 177 | |
| 178 | err = d - StrictMath.pow(y1, 3); |
| 179 | if (err != 0.0) { |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 180 | if(Double.isNaN(err)) { |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 181 | failures++; |
| 182 | System.err.println("Encountered unexpected NaN value: d = " + d + |
| 183 | "\tcbrt(d) = " + y1); |
| 184 | } else { |
| 185 | if (err < 0.0) { |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 186 | err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d; |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 187 | } |
| 188 | else { // (err > 0.0) |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 189 | err_adjacent = StrictMath.pow(Math.nextAfter(y1,0.0), 3) - d; |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 190 | } |
| 191 | |
| 192 | if (Math.abs(err) > Math.abs(err_adjacent)) { |
| 193 | failures++; |
| 194 | System.err.println("For Math.cbrt(" + d + "), returned result " + |
| 195 | y1 + "is not as good as adjacent value."); |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | |
| 201 | err = d - StrictMath.pow(y2, 3); |
| 202 | if (err != 0.0) { |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 203 | if(Double.isNaN(err)) { |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 204 | failures++; |
| 205 | System.err.println("Encountered unexpected NaN value: d = " + d + |
| 206 | "\tcbrt(d) = " + y2); |
| 207 | } else { |
| 208 | if (err < 0.0) { |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 209 | err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d; |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 210 | } |
| 211 | else { // (err > 0.0) |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 212 | err_adjacent = StrictMath.pow(Math.nextAfter(y2,0.0), 3) - d; |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 213 | } |
| 214 | |
| 215 | if (Math.abs(err) > Math.abs(err_adjacent)) { |
| 216 | failures++; |
| 217 | System.err.println("For StrictMath.cbrt(" + d + "), returned result " + |
| 218 | y2 + "is not as good as adjacent value."); |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | |
| 224 | } |
| 225 | |
| 226 | // Test monotonicity properites near perfect cubes; test two |
| 227 | // numbers before and two numbers after; i.e. for |
| 228 | // |
| 229 | // pcNeighbors[] = |
| 230 | // {nextDown(nextDown(pc)), |
| 231 | // nextDown(pc), |
| 232 | // pc, |
| 233 | // nextUp(pc), |
| 234 | // nextUp(nextUp(pc))} |
| 235 | // |
| 236 | // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1]) |
| 237 | { |
| 238 | |
| 239 | double pcNeighbors[] = new double[5]; |
| 240 | double pcNeighborsCbrt[] = new double[5]; |
| 241 | double pcNeighborsStrictCbrt[] = new double[5]; |
| 242 | |
| 243 | // Test near cbrt(2^(3n)) = 2^n. |
| 244 | for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) { |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 245 | double pc = Math.scalb(1.0, 3*i); |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 246 | |
| 247 | pcNeighbors[2] = pc; |
| 248 | pcNeighbors[1] = FpUtils.nextDown(pc); |
| 249 | pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]); |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 250 | pcNeighbors[3] = Math.nextUp(pc); |
| 251 | pcNeighbors[4] = Math.nextUp(pcNeighbors[3]); |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 252 | |
| 253 | for(int j = 0; j < pcNeighbors.length; j++) { |
| 254 | pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]); |
| 255 | pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]); |
| 256 | } |
| 257 | |
| 258 | for(int j = 0; j < pcNeighborsCbrt.length-1; j++) { |
| 259 | if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) { |
| 260 | failures++; |
| 261 | System.err.println("Monotonicity failure for Math.cbrt on " + |
| 262 | pcNeighbors[j] + " and " + |
| 263 | pcNeighbors[j+1] + "\n\treturned " + |
| 264 | pcNeighborsCbrt[j] + " and " + |
| 265 | pcNeighborsCbrt[j+1] ); |
| 266 | } |
| 267 | |
| 268 | if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) { |
| 269 | failures++; |
| 270 | System.err.println("Monotonicity failure for StrictMath.cbrt on " + |
| 271 | pcNeighbors[j] + " and " + |
| 272 | pcNeighbors[j+1] + "\n\treturned " + |
| 273 | pcNeighborsStrictCbrt[j] + " and " + |
| 274 | pcNeighborsStrictCbrt[j+1] ); |
| 275 | } |
| 276 | |
| 277 | |
| 278 | } |
| 279 | |
| 280 | } |
| 281 | |
| 282 | // Test near cbrt(2^(-3n)) = 2^-n. |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 283 | for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) { |
| 284 | double pc = Math.scalb(1.0, 3*i); |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 285 | |
| 286 | pcNeighbors[2] = pc; |
| 287 | pcNeighbors[1] = FpUtils.nextDown(pc); |
| 288 | pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]); |
darcy | a27a011 | 2011-09-18 18:14:07 -0700 | [diff] [blame] | 289 | pcNeighbors[3] = Math.nextUp(pc); |
| 290 | pcNeighbors[4] = Math.nextUp(pcNeighbors[3]); |
darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 291 | |
| 292 | for(int j = 0; j < pcNeighbors.length; j++) { |
| 293 | pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]); |
| 294 | pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]); |
| 295 | } |
| 296 | |
| 297 | for(int j = 0; j < pcNeighborsCbrt.length-1; j++) { |
| 298 | if(pcNeighborsCbrt[j] > pcNeighborsCbrt[j+1] ) { |
| 299 | failures++; |
| 300 | System.err.println("Monotonicity failure for Math.cbrt on " + |
| 301 | pcNeighbors[j] + " and " + |
| 302 | pcNeighbors[j+1] + "\n\treturned " + |
| 303 | pcNeighborsCbrt[j] + " and " + |
| 304 | pcNeighborsCbrt[j+1] ); |
| 305 | } |
| 306 | |
| 307 | if(pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j+1] ) { |
| 308 | failures++; |
| 309 | System.err.println("Monotonicity failure for StrictMath.cbrt on " + |
| 310 | pcNeighbors[j] + " and " + |
| 311 | pcNeighbors[j+1] + "\n\treturned " + |
| 312 | pcNeighborsStrictCbrt[j] + " and " + |
| 313 | pcNeighborsStrictCbrt[j+1] ); |
| 314 | } |
| 315 | |
| 316 | |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | return failures; |
| 322 | } |
| 323 | |
| 324 | public static void main(String argv[]) { |
| 325 | int failures = 0; |
| 326 | |
| 327 | failures += testCubeRoot(); |
| 328 | |
| 329 | if (failures > 0) { |
| 330 | System.err.println("Testing cbrt incurred " |
| 331 | + failures + " failures."); |
| 332 | throw new RuntimeException(); |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | } |