Whitespace normalization, via reindent.py.
diff --git a/Demo/tkinter/guido/hanoi.py b/Demo/tkinter/guido/hanoi.py
index 9e566c4..078c246 100755
--- a/Demo/tkinter/guido/hanoi.py
+++ b/Demo/tkinter/guido/hanoi.py
@@ -16,139 +16,139 @@
 # Basic Towers-of-Hanoi algorithm: move n pieces from a to b, using c
 # as temporary.  For each move, call report()
 def hanoi(n, a, b, c, report):
-	if n <= 0: return
-	hanoi(n-1, a, c, b, report)
-	report(n, a, b)
-	hanoi(n-1, c, b, a, report)
+    if n <= 0: return
+    hanoi(n-1, a, c, b, report)
+    report(n, a, b)
+    hanoi(n-1, c, b, a, report)
 
 
 # The graphical interface
 class Tkhanoi:
 
-	# Create our objects
-	def __init__(self, n, bitmap = None):
-		self.n = n
-		self.tk = tk = Tk()
-		self.canvas = c = Canvas(tk)
-		c.pack()
-		width, height = tk.getint(c['width']), tk.getint(c['height'])
+    # Create our objects
+    def __init__(self, n, bitmap = None):
+        self.n = n
+        self.tk = tk = Tk()
+        self.canvas = c = Canvas(tk)
+        c.pack()
+        width, height = tk.getint(c['width']), tk.getint(c['height'])
 
-		# Add background bitmap
-		if bitmap:
-			self.bitmap = c.create_bitmap(width/2, height/2,
-						      bitmap=bitmap,
-						      foreground='blue')
+        # Add background bitmap
+        if bitmap:
+            self.bitmap = c.create_bitmap(width/2, height/2,
+                                          bitmap=bitmap,
+                                          foreground='blue')
 
-		# Generate pegs
-		pegwidth = 10
-		pegheight = height/2
-		pegdist = width/3
-		x1, y1 = (pegdist-pegwidth)/2, height*1/3
-		x2, y2 = x1+pegwidth, y1+pegheight
-		self.pegs = []
-		p = c.create_rectangle(x1, y1, x2, y2, fill='black')
-		self.pegs.append(p)
-		x1, x2 = x1+pegdist, x2+pegdist
-		p = c.create_rectangle(x1, y1, x2, y2, fill='black')
-		self.pegs.append(p)
-		x1, x2 = x1+pegdist, x2+pegdist
-		p = c.create_rectangle(x1, y1, x2, y2, fill='black')
-		self.pegs.append(p)
-		self.tk.update()
+        # Generate pegs
+        pegwidth = 10
+        pegheight = height/2
+        pegdist = width/3
+        x1, y1 = (pegdist-pegwidth)/2, height*1/3
+        x2, y2 = x1+pegwidth, y1+pegheight
+        self.pegs = []
+        p = c.create_rectangle(x1, y1, x2, y2, fill='black')
+        self.pegs.append(p)
+        x1, x2 = x1+pegdist, x2+pegdist
+        p = c.create_rectangle(x1, y1, x2, y2, fill='black')
+        self.pegs.append(p)
+        x1, x2 = x1+pegdist, x2+pegdist
+        p = c.create_rectangle(x1, y1, x2, y2, fill='black')
+        self.pegs.append(p)
+        self.tk.update()
 
-		# Generate pieces
-		pieceheight = pegheight/16
-		maxpiecewidth = pegdist*2/3
-		minpiecewidth = 2*pegwidth
-		self.pegstate = [[], [], []]
-		self.pieces = {}
-		x1, y1 = (pegdist-maxpiecewidth)/2, y2-pieceheight-2
-		x2, y2 = x1+maxpiecewidth, y1+pieceheight
-		dx = (maxpiecewidth-minpiecewidth) / (2*max(1, n-1))
-		for i in range(n, 0, -1):
-			p = c.create_rectangle(x1, y1, x2, y2, fill='red')
-			self.pieces[i] = p
-			self.pegstate[0].append(i)
-			x1, x2 = x1 + dx, x2-dx
-			y1, y2 = y1 - pieceheight-2, y2-pieceheight-2
-			self.tk.update()
-			self.tk.after(25)
+        # Generate pieces
+        pieceheight = pegheight/16
+        maxpiecewidth = pegdist*2/3
+        minpiecewidth = 2*pegwidth
+        self.pegstate = [[], [], []]
+        self.pieces = {}
+        x1, y1 = (pegdist-maxpiecewidth)/2, y2-pieceheight-2
+        x2, y2 = x1+maxpiecewidth, y1+pieceheight
+        dx = (maxpiecewidth-minpiecewidth) / (2*max(1, n-1))
+        for i in range(n, 0, -1):
+            p = c.create_rectangle(x1, y1, x2, y2, fill='red')
+            self.pieces[i] = p
+            self.pegstate[0].append(i)
+            x1, x2 = x1 + dx, x2-dx
+            y1, y2 = y1 - pieceheight-2, y2-pieceheight-2
+            self.tk.update()
+            self.tk.after(25)
 
-	# Run -- never returns
-	def run(self):
-		while 1:
-			hanoi(self.n, 0, 1, 2, self.report)
-			hanoi(self.n, 1, 2, 0, self.report)
-			hanoi(self.n, 2, 0, 1, self.report)
-			hanoi(self.n, 0, 2, 1, self.report)
-			hanoi(self.n, 2, 1, 0, self.report)
-			hanoi(self.n, 1, 0, 2, self.report)
+    # Run -- never returns
+    def run(self):
+        while 1:
+            hanoi(self.n, 0, 1, 2, self.report)
+            hanoi(self.n, 1, 2, 0, self.report)
+            hanoi(self.n, 2, 0, 1, self.report)
+            hanoi(self.n, 0, 2, 1, self.report)
+            hanoi(self.n, 2, 1, 0, self.report)
+            hanoi(self.n, 1, 0, 2, self.report)
 
-	# Reporting callback for the actual hanoi function
-	def report(self, i, a, b):
-		if self.pegstate[a][-1] != i: raise RuntimeError # Assertion
-		del self.pegstate[a][-1]
-		p = self.pieces[i]
-		c = self.canvas
+    # Reporting callback for the actual hanoi function
+    def report(self, i, a, b):
+        if self.pegstate[a][-1] != i: raise RuntimeError # Assertion
+        del self.pegstate[a][-1]
+        p = self.pieces[i]
+        c = self.canvas
 
-		# Lift the piece above peg a
-		ax1, ay1, ax2, ay2 = c.bbox(self.pegs[a])
-		while 1:
-			x1, y1, x2, y2 = c.bbox(p)
-			if y2 < ay1: break
-			c.move(p, 0, -1)
-			self.tk.update()
+        # Lift the piece above peg a
+        ax1, ay1, ax2, ay2 = c.bbox(self.pegs[a])
+        while 1:
+            x1, y1, x2, y2 = c.bbox(p)
+            if y2 < ay1: break
+            c.move(p, 0, -1)
+            self.tk.update()
 
-		# Move it towards peg b
-		bx1, by1, bx2, by2 = c.bbox(self.pegs[b])
-		newcenter = (bx1+bx2)/2
-		while 1:
-			x1, y1, x2, y2 = c.bbox(p)
-			center = (x1+x2)/2
-			if center == newcenter: break
-			if center > newcenter: c.move(p, -1, 0)
-			else: c.move(p, 1, 0)
-			self.tk.update()
+        # Move it towards peg b
+        bx1, by1, bx2, by2 = c.bbox(self.pegs[b])
+        newcenter = (bx1+bx2)/2
+        while 1:
+            x1, y1, x2, y2 = c.bbox(p)
+            center = (x1+x2)/2
+            if center == newcenter: break
+            if center > newcenter: c.move(p, -1, 0)
+            else: c.move(p, 1, 0)
+            self.tk.update()
 
-		# Move it down on top of the previous piece
-		pieceheight = y2-y1
-		newbottom = by2 - pieceheight*len(self.pegstate[b]) - 2
-		while 1:
-			x1, y1, x2, y2 = c.bbox(p)
-			if y2 >= newbottom: break
-			c.move(p, 0, 1)
-			self.tk.update()
+        # Move it down on top of the previous piece
+        pieceheight = y2-y1
+        newbottom = by2 - pieceheight*len(self.pegstate[b]) - 2
+        while 1:
+            x1, y1, x2, y2 = c.bbox(p)
+            if y2 >= newbottom: break
+            c.move(p, 0, 1)
+            self.tk.update()
 
-		# Update peg state
-		self.pegstate[b].append(i)
+        # Update peg state
+        self.pegstate[b].append(i)
 
 
 # Main program
 def main():
-	import sys, string
+    import sys, string
 
-	# First argument is number of pegs, default 4
-	if sys.argv[1:]:
-		n = string.atoi(sys.argv[1])
-	else:
-		n = 4
+    # First argument is number of pegs, default 4
+    if sys.argv[1:]:
+        n = string.atoi(sys.argv[1])
+    else:
+        n = 4
 
-	# Second argument is bitmap file, default none
-	if sys.argv[2:]:
-		bitmap = sys.argv[2]
-		# Reverse meaning of leading '@' compared to Tk
-		if bitmap[0] == '@': bitmap = bitmap[1:]
-		else: bitmap = '@' + bitmap
-	else:
-		bitmap = None
+    # Second argument is bitmap file, default none
+    if sys.argv[2:]:
+        bitmap = sys.argv[2]
+        # Reverse meaning of leading '@' compared to Tk
+        if bitmap[0] == '@': bitmap = bitmap[1:]
+        else: bitmap = '@' + bitmap
+    else:
+        bitmap = None
 
-	# Create the graphical objects...
-	h = Tkhanoi(n, bitmap)
+    # Create the graphical objects...
+    h = Tkhanoi(n, bitmap)
 
-	# ...and run!
-	h.run()
+    # ...and run!
+    h.run()
 
 
 # Call main when run as script
 if __name__ == '__main__':
-	main()
+    main()