Whitespace normalization, via reindent.py.
diff --git a/Lib/lib-old/zmod.py b/Lib/lib-old/zmod.py
index 7259bf8..55f49df 100644
--- a/Lib/lib-old/zmod.py
+++ b/Lib/lib-old/zmod.py
@@ -1,7 +1,7 @@
 # module 'zmod'
 
 # Compute properties of mathematical "fields" formed by taking
-# Z/n (the whole numbers modulo some whole number n) and an 
+# Z/n (the whole numbers modulo some whole number n) and an
 # irreducible polynomial (i.e., a polynomial with only complex zeros),
 # e.g., Z/5 and X**2 + 2.
 #
@@ -30,65 +30,65 @@
 # Return x modulo y.  Returns >= 0 even if x < 0.
 
 def mod(x, y):
-	return divmod(x, y)[1]
+    return divmod(x, y)[1]
 
 
 # Normalize a polynomial modulo n and modulo p.
 
 def norm(a, n, p):
-	a = poly.modulo(a, p)
-	a = a[:]
-	for i in range(len(a)): a[i] = mod(a[i], n)
-	a = poly.normalize(a)
-	return a
+    a = poly.modulo(a, p)
+    a = a[:]
+    for i in range(len(a)): a[i] = mod(a[i], n)
+    a = poly.normalize(a)
+    return a
 
 
 # Make a list of all n^d elements of the proposed field.
 
 def make_all(mat):
-	all = []
-	for row in mat:
-		for a in row:
-			all.append(a)
-	return all
+    all = []
+    for row in mat:
+        for a in row:
+            all.append(a)
+    return all
 
 def make_elements(n, d):
-	if d == 0: return [poly.one(0, 0)]
-	sub = make_elements(n, d-1)
-	all = []
-	for a in sub:
-		for i in range(n):
-			all.append(poly.plus(a, poly.one(d-1, i)))
-	return all
+    if d == 0: return [poly.one(0, 0)]
+    sub = make_elements(n, d-1)
+    all = []
+    for a in sub:
+        for i in range(n):
+            all.append(poly.plus(a, poly.one(d-1, i)))
+    return all
 
 def make_inv(all, n, p):
-	x = poly.one(1, 1)
-	inv = []
-	for a in all:
-		inv.append(norm(poly.times(a, x), n, p))
-	return inv
+    x = poly.one(1, 1)
+    inv = []
+    for a in all:
+        inv.append(norm(poly.times(a, x), n, p))
+    return inv
 
 def checkfield(n, p):
-	all = make_elements(n, len(p)-1)
-	inv = make_inv(all, n, p)
-	all1 = all[:]
-	inv1 = inv[:]
-	all1.sort()
-	inv1.sort()
-	if all1 == inv1: print 'BINGO!'
-	else:
-		print 'Sorry:', n, p
-		print all
-		print inv
+    all = make_elements(n, len(p)-1)
+    inv = make_inv(all, n, p)
+    all1 = all[:]
+    inv1 = inv[:]
+    all1.sort()
+    inv1.sort()
+    if all1 == inv1: print 'BINGO!'
+    else:
+        print 'Sorry:', n, p
+        print all
+        print inv
 
 def rj(s, width):
-	if type(s) is not type(''): s = `s`
-	n = len(s)
-	if n >= width: return s
-	return ' '*(width - n) + s
+    if type(s) is not type(''): s = `s`
+    n = len(s)
+    if n >= width: return s
+    return ' '*(width - n) + s
 
 def lj(s, width):
-	if type(s) is not type(''): s = `s`
-	n = len(s)
-	if n >= width: return s
-	return s + ' '*(width - n)
+    if type(s) is not type(''): s = `s`
+    n = len(s)
+    if n >= width: return s
+    return s + ' '*(width - n)