Removing this -- complex numbers are now builtin,
and there is already a similar demo in Demo/classes/Complex.py.
diff --git a/Lib/Complex.py b/Lib/Complex.py
deleted file mode 100644
index f4892f3..0000000
--- a/Lib/Complex.py
+++ /dev/null
@@ -1,275 +0,0 @@
-# Complex numbers
-# ---------------
-
-# This module represents complex numbers as instances of the class Complex.
-# A Complex instance z has two data attribues, z.re (the real part) and z.im
-# (the imaginary part).  In fact, z.re and z.im can have any value -- all
-# arithmetic operators work regardless of the type of z.re and z.im (as long
-# as they support numerical operations).
-#
-# The following functions exist (Complex is actually a class):
-# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
-# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
-# Polar([r [,phi [,fullcircle]]]) ->
-#	the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
-#	(r and phi default to 0)
-#
-# Complex numbers have the following methods:
-# z.abs() -> absolute value of z
-# z.radius() == z.abs()
-# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
-# z.phi([fullcircle]) == z.angle(fullcircle)
-#
-# These standard functions and unary operators accept complex arguments:
-# abs(z)
-# -z
-# +z
-# not z
-# repr(z) == `z`
-# str(z)
-# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
-#            the result equals hash(z.re)
-# Note that hex(z) and oct(z) are not defined.
-#
-# These conversions accept complex arguments only if their imaginary part is zero:
-# int(z)
-# long(z)
-# float(z)
-#
-# The following operators accept two complex numbers, or one complex number
-# and one real number (int, long or float):
-# z1 + z2
-# z1 - z2
-# z1 * z2
-# z1 / z2
-# pow(z1, z2)
-# cmp(z1, z2)
-# Note that z1 % z2 and divmod(z1, z2) are not defined,
-# nor are shift and mask operations.
-#
-# The standard module math does not support complex numbers.
-# (I suppose it would be easy to implement a cmath module.)
-#
-# Idea:
-# add a class Polar(r, phi) and mixed-mode arithmetic which
-# chooses the most appropriate type for the result:
-# Complex for +,-,cmp
-# Polar   for *,/,pow
-
-
-import types, math
-
-if not hasattr(math, 'hypot'):
-	def hypot(x, y):
-		# XXX I know there's a way to compute this without possibly causing
-		# overflow, but I can't remember what it is right now...
-		return math.sqrt(x*x + y*y)
-	math.hypot = hypot
-
-twopi = math.pi*2.0
-halfpi = math.pi/2.0
-
-def IsComplex(obj):
-	return hasattr(obj, 're') and hasattr(obj, 'im')
-
-def Polar(r = 0, phi = 0, fullcircle = twopi):
-	phi = phi * (twopi / fullcircle)
-	return Complex(math.cos(phi)*r, math.sin(phi)*r)
-
-class Complex:
-
-	def __init__(self, re=0, im=0):
-		if IsComplex(re):
-			im = im + re.im
-			re = re.re
-		if IsComplex(im):
-			re = re - im.im
-			im = im.re
-		self.re = re
-		self.im = im
-
-	def __setattr__(self, name, value):
-		if hasattr(self, name):
-			raise TypeError, "Complex numbers have set-once attributes"
-		self.__dict__[name] = value
-
-	def __repr__(self):
-		if not self.im:
-			return 'Complex(%s)' % `self.re`
-		else:
-			return 'Complex(%s, %s)' % (`self.re`, `self.im`)
-
-	def __str__(self):
-		if not self.im:
-			return `self.re`
-		else:
-			return 'Complex(%s, %s)' % (`self.re`, `self.im`)
-
-	def __coerce__(self, other):
-		if IsComplex(other):
-			return self, other
-		return self, Complex(other)	# May fail
-
-	def __cmp__(self, other):
-		return cmp(self.re, other.re) or cmp(self.im, other.im)
-
-	def __hash__(self):
-		if not self.im: return hash(self.re)
-		mod = sys.maxint + 1L
-		return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
-
-	def __neg__(self):
-		return Complex(-self.re, -self.im)
-
-	def __pos__(self):
-		return self
-
-	def __abs__(self):
-		return math.hypot(self.re, self.im)
-		##return math.sqrt(self.re*self.re + self.im*self.im)
-
-
-	def __int__(self):
-		if self.im:
-			raise ValueError, "can't convert Complex with nonzero im to int"
-		return int(self.re)
-
-	def __long__(self):
-		if self.im:
-			raise ValueError, "can't convert Complex with nonzero im to long"
-		return long(self.re)
-
-	def __float__(self):
-		if self.im:
-			raise ValueError, "can't convert Complex with nonzero im to float"
-		return float(self.re)
-
-	def __nonzero__(self):
-		return not (self.re == self.im == 0)
-
-	abs = radius = __abs__
-
-	def angle(self, fullcircle = twopi):
-		return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
-
-	phi = angle
-
-	def __add__(self, other):
-		return Complex(self.re + other.re, self.im + other.im)
-
-	__radd__ = __add__
-
-	def __sub__(self, other):
-		return Complex(self.re - other.re, self.im - other.im)
-
-	def __rsub__(self, other):
-		return Complex(other.re - self.re, other.im - self.im)
-
-	def __mul__(self, other):
-		return Complex(self.re*other.re - self.im*other.im,
-		               self.re*other.im + self.im*other.re)
-
-	__rmul__ = __mul__
-
-	def __div__(self, other):
-		# Deviating from the general principle of not forcing re or im
-		# to be floats, we cast to float here, otherwise division
-		# of Complex numbers with integer re and im parts would use
-		# the (truncating) integer division
-		d = float(other.re*other.re + other.im*other.im)
-		if not d: raise ZeroDivisionError, 'Complex division'
-		return Complex((self.re*other.re + self.im*other.im) / d,
-		               (self.im*other.re - self.re*other.im) / d)
-
-	def __rdiv__(self, other):
-		return other / self
-
-	def __pow__(self, n, z=None):
-		if z is not None:
-			raise TypeError, 'Complex does not support ternary pow()'
-		if IsComplex(n):
-			if n.im: raise TypeError, 'Complex to the Complex power'
-			n = n.re
-		r = pow(self.abs(), n)
-		phi = n*self.angle()
-		return Complex(math.cos(phi)*r, math.sin(phi)*r)
-	
-	def __rpow__(self, base):
-		return pow(base, self)
-
-
-# Everything below this point is part of the test suite
-
-def checkop(expr, a, b, value, fuzz = 1e-6):
-	import sys
-	print '       ', a, 'and', b,
-	try:
-		result = eval(expr)
-	except:
-		result = sys.exc_type
-	print '->', result
-	if (type(result) == type('') or type(value) == type('')):
-		ok = result == value
-	else:
-		ok = abs(result - value) <= fuzz
-	if not ok:
-		print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
-
-
-def test():
-	testsuite = {
-		'a+b': [
-			(1, 10, 11),
-			(1, Complex(0,10), Complex(1,10)),
-			(Complex(0,10), 1, Complex(1,10)),
-			(Complex(0,10), Complex(1), Complex(1,10)),
-			(Complex(1), Complex(0,10), Complex(1,10)),
-		],
-		'a-b': [
-			(1, 10, -9),
-			(1, Complex(0,10), Complex(1,-10)),
-			(Complex(0,10), 1, Complex(-1,10)),
-			(Complex(0,10), Complex(1), Complex(-1,10)),
-			(Complex(1), Complex(0,10), Complex(1,-10)),
-		],
-		'a*b': [
-			(1, 10, 10),
-			(1, Complex(0,10), Complex(0, 10)),
-			(Complex(0,10), 1, Complex(0,10)),
-			(Complex(0,10), Complex(1), Complex(0,10)),
-			(Complex(1), Complex(0,10), Complex(0,10)),
-		],
-		'a/b': [
-			(1., 10, 0.1),
-			(1, Complex(0,10), Complex(0, -0.1)),
-			(Complex(0, 10), 1, Complex(0, 10)),
-			(Complex(0, 10), Complex(1), Complex(0, 10)),
-			(Complex(1), Complex(0,10), Complex(0, -0.1)),
-		],
-		'pow(a,b)': [
-			(1, 10, 1),
-			(1, Complex(0,10), 'TypeError'),
-			(Complex(0,10), 1, Complex(0,10)),
-			(Complex(0,10), Complex(1), Complex(0,10)),
-			(Complex(1), Complex(0,10), 'TypeError'),
-			(2, Complex(4,0), 16),
-		],
-		'cmp(a,b)': [
-			(1, 10, -1),
-			(1, Complex(0,10), 1),
-			(Complex(0,10), 1, -1),
-			(Complex(0,10), Complex(1), -1),
-			(Complex(1), Complex(0,10), 1),
-		],
-	}
-	exprs = testsuite.keys()
-	exprs.sort()
-	for expr in exprs:
-		print expr + ':'
-		t = (expr,)
-		for item in testsuite[expr]:
-			apply(checkop, t+item)
-	
-
-if __name__ == '__main__':
-	test()