| /* -*- Mode: C; c-file-style: "python" -*- */ | 
 |  | 
 | #include <Python.h> | 
 | #include <locale.h> | 
 |  | 
 | /* Case-insensitive string match used for nan and inf detection; t should be | 
 |    lower-case.  Returns 1 for a successful match, 0 otherwise. */ | 
 |  | 
 | static int | 
 | case_insensitive_match(const char *s, const char *t) | 
 | { | 
 | 	while(*t && Py_TOLOWER(*s) == *t) { | 
 | 		s++; | 
 | 		t++; | 
 | 	} | 
 | 	return *t ? 0 : 1; | 
 | } | 
 |  | 
 | /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or | 
 |    "infinity", with an optional leading sign of "+" or "-".  On success, | 
 |    return the NaN or Infinity as a double and set *endptr to point just beyond | 
 |    the successfully parsed portion of the string.  On failure, return -1.0 and | 
 |    set *endptr to point to the start of the string. */ | 
 |  | 
 | double | 
 | _Py_parse_inf_or_nan(const char *p, char **endptr) | 
 | { | 
 | 	double retval; | 
 | 	const char *s; | 
 | 	int negate = 0; | 
 |  | 
 | 	s = p; | 
 | 	if (*s == '-') { | 
 | 		negate = 1; | 
 | 		s++; | 
 | 	} | 
 | 	else if (*s == '+') { | 
 | 		s++; | 
 | 	} | 
 | 	if (case_insensitive_match(s, "inf")) { | 
 | 		s += 3; | 
 | 		if (case_insensitive_match(s, "inity")) | 
 | 			s += 5; | 
 | 		retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL; | 
 | 	} | 
 | #ifdef Py_NAN | 
 | 	else if (case_insensitive_match(s, "nan")) { | 
 | 		s += 3; | 
 | 		retval = negate ? -Py_NAN : Py_NAN; | 
 | 	} | 
 | #endif | 
 | 	else { | 
 | 		s = p; | 
 | 		retval = -1.0; | 
 | 	} | 
 | 	*endptr = (char *)s; | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * PyOS_ascii_strtod: | 
 |  * @nptr:    the string to convert to a numeric value. | 
 |  * @endptr:  if non-%NULL, it returns the character after | 
 |  *           the last character used in the conversion. | 
 |  *  | 
 |  * Converts a string to a #gdouble value. | 
 |  * This function behaves like the standard strtod() function | 
 |  * does in the C locale. It does this without actually | 
 |  * changing the current locale, since that would not be | 
 |  * thread-safe. | 
 |  * | 
 |  * This function is typically used when reading configuration | 
 |  * files or other non-user input that should be locale independent. | 
 |  * To handle input from the user you should normally use the | 
 |  * locale-sensitive system strtod() function. | 
 |  * | 
 |  * If the correct value would cause overflow, plus or minus %HUGE_VAL | 
 |  * is returned (according to the sign of the value), and %ERANGE is | 
 |  * stored in %errno. If the correct value would cause underflow, | 
 |  * zero is returned and %ERANGE is stored in %errno. | 
 |  * If memory allocation fails, %ENOMEM is stored in %errno. | 
 |  *  | 
 |  * This function resets %errno before calling strtod() so that | 
 |  * you can reliably detect overflow and underflow. | 
 |  * | 
 |  * Return value: the #gdouble value. | 
 |  **/ | 
 |  | 
 | #ifndef PY_NO_SHORT_FLOAT_REPR | 
 |  | 
 | double | 
 | _PyOS_ascii_strtod(const char *nptr, char **endptr) | 
 | { | 
 | 	double result; | 
 | 	_Py_SET_53BIT_PRECISION_HEADER; | 
 |  | 
 | 	assert(nptr != NULL); | 
 | 	/* Set errno to zero, so that we can distinguish zero results | 
 | 	   and underflows */ | 
 | 	errno = 0; | 
 |  | 
 | 	_Py_SET_53BIT_PRECISION_START; | 
 | 	result = _Py_dg_strtod(nptr, endptr); | 
 | 	_Py_SET_53BIT_PRECISION_END; | 
 |  | 
 | 	if (*endptr == nptr) | 
 | 		/* string might represent an inf or nan */ | 
 | 		result = _Py_parse_inf_or_nan(nptr, endptr); | 
 |  | 
 | 	return result; | 
 |  | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |    Use system strtod;  since strtod is locale aware, we may | 
 |    have to first fix the decimal separator. | 
 |  | 
 |    Note that unlike _Py_dg_strtod, the system strtod may not always give | 
 |    correctly rounded results. | 
 | */ | 
 |  | 
 | double | 
 | _PyOS_ascii_strtod(const char *nptr, char **endptr) | 
 | { | 
 | 	char *fail_pos; | 
 | 	double val = -1.0; | 
 | 	struct lconv *locale_data; | 
 | 	const char *decimal_point; | 
 | 	size_t decimal_point_len; | 
 | 	const char *p, *decimal_point_pos; | 
 | 	const char *end = NULL; /* Silence gcc */ | 
 | 	const char *digits_pos = NULL; | 
 | 	int negate = 0; | 
 |  | 
 | 	assert(nptr != NULL); | 
 |  | 
 | 	fail_pos = NULL; | 
 |  | 
 | 	locale_data = localeconv(); | 
 | 	decimal_point = locale_data->decimal_point; | 
 | 	decimal_point_len = strlen(decimal_point); | 
 |  | 
 | 	assert(decimal_point_len != 0); | 
 |  | 
 | 	decimal_point_pos = NULL; | 
 |  | 
 | 	/* Parse infinities and nans */ | 
 | 	val = _Py_parse_inf_or_nan(nptr, endptr); | 
 | 	if (*endptr != nptr) | 
 | 		return val; | 
 |  | 
 | 	/* Set errno to zero, so that we can distinguish zero results | 
 | 	   and underflows */ | 
 | 	errno = 0; | 
 |  | 
 | 	/* We process the optional sign manually, then pass the remainder to | 
 | 	   the system strtod.  This ensures that the result of an underflow | 
 | 	   has the correct sign. (bug #1725)  */ | 
 | 	p = nptr; | 
 | 	/* Process leading sign, if present */ | 
 | 	if (*p == '-') { | 
 | 		negate = 1; | 
 | 		p++; | 
 | 	} | 
 | 	else if (*p == '+') { | 
 | 		p++; | 
 | 	} | 
 |  | 
 | 	/* Some platform strtods accept hex floats; Python shouldn't (at the | 
 | 	   moment), so we check explicitly for strings starting with '0x'. */ | 
 | 	if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X')) | 
 | 		goto invalid_string; | 
 |  | 
 | 	/* Check that what's left begins with a digit or decimal point */ | 
 | 	if (!Py_ISDIGIT(*p) && *p != '.') | 
 | 		goto invalid_string; | 
 |  | 
 | 	digits_pos = p; | 
 | 	if (decimal_point[0] != '.' || | 
 | 	    decimal_point[1] != 0) | 
 | 	{ | 
 | 		/* Look for a '.' in the input; if present, it'll need to be | 
 | 		   swapped for the current locale's decimal point before we | 
 | 		   call strtod.  On the other hand, if we find the current | 
 | 		   locale's decimal point then the input is invalid. */ | 
 | 		while (Py_ISDIGIT(*p)) | 
 | 			p++; | 
 |  | 
 | 		if (*p == '.') | 
 | 		{ | 
 | 			decimal_point_pos = p++; | 
 |  | 
 | 			/* locate end of number */ | 
 | 			while (Py_ISDIGIT(*p)) | 
 | 				p++; | 
 |  | 
 | 			if (*p == 'e' || *p == 'E') | 
 | 				p++; | 
 | 			if (*p == '+' || *p == '-') | 
 | 				p++; | 
 | 			while (Py_ISDIGIT(*p)) | 
 | 				p++; | 
 | 			end = p; | 
 | 		} | 
 | 		else if (strncmp(p, decimal_point, decimal_point_len) == 0) | 
 | 			/* Python bug #1417699 */ | 
 | 			goto invalid_string; | 
 | 		/* For the other cases, we need not convert the decimal | 
 | 		   point */ | 
 | 	} | 
 |  | 
 | 	if (decimal_point_pos) { | 
 | 		char *copy, *c; | 
 | 		/* Create a copy of the input, with the '.' converted to the | 
 | 		   locale-specific decimal point */ | 
 | 		copy = (char *)PyMem_MALLOC(end - digits_pos + | 
 | 					    1 + decimal_point_len); | 
 | 		if (copy == NULL) { | 
 | 			*endptr = (char *)nptr; | 
 | 			errno = ENOMEM; | 
 | 			return val; | 
 | 		} | 
 |  | 
 | 		c = copy; | 
 | 		memcpy(c, digits_pos, decimal_point_pos - digits_pos); | 
 | 		c += decimal_point_pos - digits_pos; | 
 | 		memcpy(c, decimal_point, decimal_point_len); | 
 | 		c += decimal_point_len; | 
 | 		memcpy(c, decimal_point_pos + 1, | 
 | 		       end - (decimal_point_pos + 1)); | 
 | 		c += end - (decimal_point_pos + 1); | 
 | 		*c = 0; | 
 |  | 
 | 		val = strtod(copy, &fail_pos); | 
 |  | 
 | 		if (fail_pos) | 
 | 		{ | 
 | 			if (fail_pos > decimal_point_pos) | 
 | 				fail_pos = (char *)digits_pos + | 
 | 					(fail_pos - copy) - | 
 | 					(decimal_point_len - 1); | 
 | 			else | 
 | 				fail_pos = (char *)digits_pos + | 
 | 					(fail_pos - copy); | 
 | 		} | 
 |  | 
 | 		PyMem_FREE(copy); | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		val = strtod(digits_pos, &fail_pos); | 
 | 	} | 
 |  | 
 | 	if (fail_pos == digits_pos) | 
 | 		goto invalid_string; | 
 |  | 
 | 	if (negate && fail_pos != nptr) | 
 | 		val = -val; | 
 | 	*endptr = fail_pos; | 
 |  | 
 | 	return val; | 
 |  | 
 |   invalid_string: | 
 | 	*endptr = (char*)nptr; | 
 | 	errno = EINVAL; | 
 | 	return -1.0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */ | 
 |  | 
 | double | 
 | PyOS_ascii_strtod(const char *nptr, char **endptr) | 
 | { | 
 | 	char *fail_pos; | 
 | 	const char *p; | 
 | 	double x; | 
 |  | 
 | 	if (PyErr_WarnEx(PyExc_DeprecationWarning, | 
 | 			 "PyOS_ascii_strtod and PyOS_ascii_atof are " | 
 | 			 "deprecated.  Use PyOS_string_to_double " | 
 | 			 "instead.", 1) < 0) | 
 | 		return -1.0; | 
 |  | 
 | 	/* _PyOS_ascii_strtod already does everything that we want, | 
 | 	   except that it doesn't parse leading whitespace */ | 
 | 	p = nptr; | 
 | 	while (Py_ISSPACE(*p)) | 
 | 		p++; | 
 | 	x = _PyOS_ascii_strtod(p, &fail_pos); | 
 | 	if (fail_pos == p) | 
 | 		fail_pos = (char *)nptr; | 
 | 	if (endptr) | 
 | 		*endptr = (char *)fail_pos; | 
 | 	return x; | 
 | } | 
 |  | 
 | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */ | 
 |  | 
 | double | 
 | PyOS_ascii_atof(const char *nptr) | 
 | { | 
 | 	return PyOS_ascii_strtod(nptr, NULL); | 
 | } | 
 |  | 
 | /* PyOS_string_to_double is the recommended replacement for the deprecated | 
 |    PyOS_ascii_strtod and PyOS_ascii_atof functions.  It converts a | 
 |    null-terminated byte string s (interpreted as a string of ASCII characters) | 
 |    to a float.  The string should not have leading or trailing whitespace (in | 
 |    contrast, PyOS_ascii_strtod allows leading whitespace but not trailing | 
 |    whitespace).  The conversion is independent of the current locale. | 
 |  | 
 |    If endptr is NULL, try to convert the whole string.  Raise ValueError and | 
 |    return -1.0 if the string is not a valid representation of a floating-point | 
 |    number. | 
 |  | 
 |    If endptr is non-NULL, try to convert as much of the string as possible. | 
 |    If no initial segment of the string is the valid representation of a | 
 |    floating-point number then *endptr is set to point to the beginning of the | 
 |    string, -1.0 is returned and again ValueError is raised. | 
 |  | 
 |    On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine), | 
 |    if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python | 
 |    exception is raised.  Otherwise, overflow_exception should point to a | 
 |    a Python exception, this exception will be raised, -1.0 will be returned, | 
 |    and *endptr will point just past the end of the converted value. | 
 |  | 
 |    If any other failure occurs (for example lack of memory), -1.0 is returned | 
 |    and the appropriate Python exception will have been set. | 
 | */ | 
 |  | 
 | double | 
 | PyOS_string_to_double(const char *s, | 
 | 		      char **endptr, | 
 | 		      PyObject *overflow_exception) | 
 | { | 
 | 	double x, result=-1.0; | 
 | 	char *fail_pos; | 
 |  | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0) | 
 | 	x = _PyOS_ascii_strtod(s, &fail_pos); | 
 | 	PyFPE_END_PROTECT(x) | 
 |  | 
 | 	if (errno == ENOMEM) { | 
 | 		PyErr_NoMemory(); | 
 | 		fail_pos = (char *)s; | 
 | 	} | 
 | 	else if (!endptr && (fail_pos == s || *fail_pos != '\0')) | 
 | 		PyErr_Format(PyExc_ValueError, | 
 | 			      "could not convert string to float: " | 
 | 			      "%.200s", s); | 
 | 	else if (fail_pos == s) | 
 | 		PyErr_Format(PyExc_ValueError, | 
 | 			      "could not convert string to float: " | 
 | 			      "%.200s", s); | 
 | 	else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception) | 
 | 		PyErr_Format(overflow_exception, | 
 | 			      "value too large to convert to float: " | 
 | 			      "%.200s", s); | 
 | 	else | 
 | 		result = x; | 
 |  | 
 | 	if (endptr != NULL) | 
 | 		*endptr = fail_pos; | 
 | 	return result; | 
 | } | 
 |  | 
 | /* Given a string that may have a decimal point in the current | 
 |    locale, change it back to a dot.  Since the string cannot get | 
 |    longer, no need for a maximum buffer size parameter. */ | 
 | Py_LOCAL_INLINE(void) | 
 | change_decimal_from_locale_to_dot(char* buffer) | 
 | { | 
 | 	struct lconv *locale_data = localeconv(); | 
 | 	const char *decimal_point = locale_data->decimal_point; | 
 |  | 
 | 	if (decimal_point[0] != '.' || decimal_point[1] != 0) { | 
 | 		size_t decimal_point_len = strlen(decimal_point); | 
 |  | 
 | 		if (*buffer == '+' || *buffer == '-') | 
 | 			buffer++; | 
 | 		while (Py_ISDIGIT(*buffer)) | 
 | 			buffer++; | 
 | 		if (strncmp(buffer, decimal_point, decimal_point_len) == 0) { | 
 | 			*buffer = '.'; | 
 | 			buffer++; | 
 | 			if (decimal_point_len > 1) { | 
 | 				/* buffer needs to get smaller */ | 
 | 				size_t rest_len = strlen(buffer + | 
 | 						     (decimal_point_len - 1)); | 
 | 				memmove(buffer, | 
 | 					buffer + (decimal_point_len - 1), | 
 | 					rest_len); | 
 | 				buffer[rest_len] = 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* From the C99 standard, section 7.19.6: | 
 | The exponent always contains at least two digits, and only as many more digits | 
 | as necessary to represent the exponent. | 
 | */ | 
 | #define MIN_EXPONENT_DIGITS 2 | 
 |  | 
 | /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS | 
 |    in length. */ | 
 | Py_LOCAL_INLINE(void) | 
 | ensure_minimum_exponent_length(char* buffer, size_t buf_size) | 
 | { | 
 | 	char *p = strpbrk(buffer, "eE"); | 
 | 	if (p && (*(p + 1) == '-' || *(p + 1) == '+')) { | 
 | 		char *start = p + 2; | 
 | 		int exponent_digit_cnt = 0; | 
 | 		int leading_zero_cnt = 0; | 
 | 		int in_leading_zeros = 1; | 
 | 		int significant_digit_cnt; | 
 |  | 
 | 		/* Skip over the exponent and the sign. */ | 
 | 		p += 2; | 
 |  | 
 | 		/* Find the end of the exponent, keeping track of leading | 
 | 		   zeros. */ | 
 | 		while (*p && Py_ISDIGIT(*p)) { | 
 | 			if (in_leading_zeros && *p == '0') | 
 | 				++leading_zero_cnt; | 
 | 			if (*p != '0') | 
 | 				in_leading_zeros = 0; | 
 | 			++p; | 
 | 			++exponent_digit_cnt; | 
 | 		} | 
 |  | 
 | 		significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt; | 
 | 		if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) { | 
 | 			/* If there are 2 exactly digits, we're done, | 
 | 			   regardless of what they contain */ | 
 | 		} | 
 | 		else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) { | 
 | 			int extra_zeros_cnt; | 
 |  | 
 | 			/* There are more than 2 digits in the exponent.  See | 
 | 			   if we can delete some of the leading zeros */ | 
 | 			if (significant_digit_cnt < MIN_EXPONENT_DIGITS) | 
 | 				significant_digit_cnt = MIN_EXPONENT_DIGITS; | 
 | 			extra_zeros_cnt = exponent_digit_cnt - | 
 | 				significant_digit_cnt; | 
 |  | 
 | 			/* Delete extra_zeros_cnt worth of characters from the | 
 | 			   front of the exponent */ | 
 | 			assert(extra_zeros_cnt >= 0); | 
 |  | 
 | 			/* Add one to significant_digit_cnt to copy the | 
 | 			   trailing 0 byte, thus setting the length */ | 
 | 			memmove(start, | 
 | 				start + extra_zeros_cnt, | 
 | 				significant_digit_cnt + 1); | 
 | 		} | 
 | 		else { | 
 | 			/* If there are fewer than 2 digits, add zeros | 
 | 			   until there are 2, if there's enough room */ | 
 | 			int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt; | 
 | 			if (start + zeros + exponent_digit_cnt + 1 | 
 | 			      < buffer + buf_size) { | 
 | 				memmove(start + zeros, start, | 
 | 					exponent_digit_cnt + 1); | 
 | 				memset(start, '0', zeros); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Remove trailing zeros after the decimal point from a numeric string; also | 
 |    remove the decimal point if all digits following it are zero.  The numeric | 
 |    string must end in '\0', and should not have any leading or trailing | 
 |    whitespace.  Assumes that the decimal point is '.'. */ | 
 | Py_LOCAL_INLINE(void) | 
 | remove_trailing_zeros(char *buffer) | 
 | { | 
 | 	char *old_fraction_end, *new_fraction_end, *end, *p; | 
 |  | 
 | 	p = buffer; | 
 | 	if (*p == '-' || *p == '+') | 
 | 		/* Skip leading sign, if present */ | 
 | 		++p; | 
 | 	while (Py_ISDIGIT(*p)) | 
 | 		++p; | 
 |  | 
 | 	/* if there's no decimal point there's nothing to do */ | 
 | 	if (*p++ != '.') | 
 | 		return; | 
 |  | 
 | 	/* scan any digits after the point */ | 
 | 	while (Py_ISDIGIT(*p)) | 
 | 		++p; | 
 | 	old_fraction_end = p; | 
 |  | 
 | 	/* scan up to ending '\0' */ | 
 | 	while (*p != '\0') | 
 | 		p++; | 
 | 	/* +1 to make sure that we move the null byte as well */ | 
 | 	end = p+1; | 
 |  | 
 | 	/* scan back from fraction_end, looking for removable zeros */ | 
 | 	p = old_fraction_end; | 
 | 	while (*(p-1) == '0') | 
 | 		--p; | 
 | 	/* and remove point if we've got that far */ | 
 | 	if (*(p-1) == '.') | 
 | 		--p; | 
 | 	new_fraction_end = p; | 
 |  | 
 | 	memmove(new_fraction_end, old_fraction_end, end-old_fraction_end); | 
 | } | 
 |  | 
 | /* Ensure that buffer has a decimal point in it.  The decimal point will not | 
 |    be in the current locale, it will always be '.'. Don't add a decimal point | 
 |    if an exponent is present.  Also, convert to exponential notation where | 
 |    adding a '.0' would produce too many significant digits (see issue 5864). | 
 |  | 
 |    Returns a pointer to the fixed buffer, or NULL on failure. | 
 | */ | 
 | Py_LOCAL_INLINE(char *) | 
 | ensure_decimal_point(char* buffer, size_t buf_size, int precision) | 
 | { | 
 | 	int digit_count, insert_count = 0, convert_to_exp = 0; | 
 | 	char *chars_to_insert, *digits_start; | 
 |  | 
 | 	/* search for the first non-digit character */ | 
 | 	char *p = buffer; | 
 | 	if (*p == '-' || *p == '+') | 
 | 		/* Skip leading sign, if present.  I think this could only | 
 | 		   ever be '-', but it can't hurt to check for both. */ | 
 | 		++p; | 
 | 	digits_start = p; | 
 | 	while (*p && Py_ISDIGIT(*p)) | 
 | 		++p; | 
 | 	digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int); | 
 |  | 
 | 	if (*p == '.') { | 
 | 		if (Py_ISDIGIT(*(p+1))) { | 
 | 			/* Nothing to do, we already have a decimal | 
 | 			   point and a digit after it */ | 
 | 		} | 
 | 		else { | 
 | 			/* We have a decimal point, but no following | 
 | 			   digit.  Insert a zero after the decimal. */ | 
 | 			/* can't ever get here via PyOS_double_to_string */ | 
 | 			assert(precision == -1); | 
 | 			++p; | 
 | 			chars_to_insert = "0"; | 
 | 			insert_count = 1; | 
 | 		} | 
 | 	} | 
 | 	else if (!(*p == 'e' || *p == 'E')) { | 
 | 		/* Don't add ".0" if we have an exponent. */ | 
 | 		if (digit_count == precision) { | 
 | 			/* issue 5864: don't add a trailing .0 in the case | 
 | 			   where the '%g'-formatted result already has as many | 
 | 			   significant digits as were requested.  Switch to | 
 | 			   exponential notation instead. */ | 
 | 			convert_to_exp = 1; | 
 | 			/* no exponent, no point, and we shouldn't land here | 
 | 			   for infs and nans, so we must be at the end of the | 
 | 			   string. */ | 
 | 			assert(*p == '\0'); | 
 | 		} | 
 | 		else { | 
 | 			assert(precision == -1 || digit_count < precision); | 
 | 			chars_to_insert = ".0"; | 
 | 			insert_count = 2; | 
 | 		} | 
 | 	} | 
 | 	if (insert_count) { | 
 | 		size_t buf_len = strlen(buffer); | 
 | 		if (buf_len + insert_count + 1 >= buf_size) { | 
 | 			/* If there is not enough room in the buffer | 
 | 			   for the additional text, just skip it.  It's | 
 | 			   not worth generating an error over. */ | 
 | 		} | 
 | 		else { | 
 | 			memmove(p + insert_count, p, | 
 | 				buffer + strlen(buffer) - p + 1); | 
 | 			memcpy(p, chars_to_insert, insert_count); | 
 | 		} | 
 | 	} | 
 | 	if (convert_to_exp) { | 
 | 		int written; | 
 | 		size_t buf_avail; | 
 | 		p = digits_start; | 
 | 		/* insert decimal point */ | 
 | 		assert(digit_count >= 1); | 
 | 		memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */ | 
 | 		p[1] = '.'; | 
 | 		p += digit_count+1; | 
 | 		assert(p <= buf_size+buffer); | 
 | 		buf_avail = buf_size+buffer-p; | 
 | 		if (buf_avail == 0) | 
 | 			return NULL; | 
 | 		/* Add exponent.  It's okay to use lower case 'e': we only | 
 | 		   arrive here as a result of using the empty format code or | 
 | 		   repr/str builtins and those never want an upper case 'E' */ | 
 | 		written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1); | 
 | 		if (!(0 <= written && | 
 | 		      written < Py_SAFE_DOWNCAST(buf_avail, size_t, int))) | 
 | 			/* output truncated, or something else bad happened */ | 
 | 			return NULL; | 
 | 		remove_trailing_zeros(buffer); | 
 | 	} | 
 | 	return buffer; | 
 | } | 
 |  | 
 | /* see FORMATBUFLEN in unicodeobject.c */ | 
 | #define FLOAT_FORMATBUFLEN 120 | 
 |  | 
 | /** | 
 |  * PyOS_ascii_formatd: | 
 |  * @buffer: A buffer to place the resulting string in | 
 |  * @buf_size: The length of the buffer. | 
 |  * @format: The printf()-style format to use for the | 
 |  *          code to use for converting.  | 
 |  * @d: The #gdouble to convert | 
 |  * | 
 |  * Converts a #gdouble to a string, using the '.' as | 
 |  * decimal point. To format the number you pass in | 
 |  * a printf()-style format string. Allowed conversion | 
 |  * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'. | 
 |  *  | 
 |  * 'Z' is the same as 'g', except it always has a decimal and | 
 |  *     at least one digit after the decimal. | 
 |  * | 
 |  * Return value: The pointer to the buffer with the converted string. | 
 |  * On failure returns NULL but does not set any Python exception. | 
 |  **/ | 
 | char * | 
 | _PyOS_ascii_formatd(char       *buffer,  | 
 | 		   size_t      buf_size,  | 
 | 		   const char *format,  | 
 | 		   double      d,  | 
 | 		   int         precision) | 
 | { | 
 | 	char format_char; | 
 | 	size_t format_len = strlen(format); | 
 |  | 
 | 	/* Issue 2264: code 'Z' requires copying the format.  'Z' is 'g', but | 
 | 	   also with at least one character past the decimal. */ | 
 | 	char tmp_format[FLOAT_FORMATBUFLEN]; | 
 |  | 
 | 	/* The last character in the format string must be the format char */ | 
 | 	format_char = format[format_len - 1]; | 
 |  | 
 | 	if (format[0] != '%') | 
 | 		return NULL; | 
 |  | 
 | 	/* I'm not sure why this test is here.  It's ensuring that the format | 
 | 	   string after the first character doesn't have a single quote, a | 
 | 	   lowercase l, or a percent. This is the reverse of the commented-out | 
 | 	   test about 10 lines ago. */ | 
 | 	if (strpbrk(format + 1, "'l%")) | 
 | 		return NULL; | 
 |  | 
 | 	/* Also curious about this function is that it accepts format strings | 
 | 	   like "%xg", which are invalid for floats.  In general, the | 
 | 	   interface to this function is not very good, but changing it is | 
 | 	   difficult because it's a public API. */ | 
 |  | 
 | 	if (!(format_char == 'e' || format_char == 'E' ||  | 
 | 	      format_char == 'f' || format_char == 'F' ||  | 
 | 	      format_char == 'g' || format_char == 'G' || | 
 | 	      format_char == 'Z')) | 
 | 		return NULL; | 
 |  | 
 | 	/* Map 'Z' format_char to 'g', by copying the format string and | 
 | 	   replacing the final char with a 'g' */ | 
 | 	if (format_char == 'Z') { | 
 | 		if (format_len + 1 >= sizeof(tmp_format)) { | 
 | 			/* The format won't fit in our copy.  Error out.  In | 
 | 			   practice, this will never happen and will be | 
 | 			   detected by returning NULL */ | 
 | 			return NULL; | 
 | 		} | 
 | 		strcpy(tmp_format, format); | 
 | 		tmp_format[format_len - 1] = 'g'; | 
 | 		format = tmp_format; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Have PyOS_snprintf do the hard work */ | 
 | 	PyOS_snprintf(buffer, buf_size, format, d); | 
 |  | 
 | 	/* Do various fixups on the return string */ | 
 |  | 
 | 	/* Get the current locale, and find the decimal point string. | 
 | 	   Convert that string back to a dot. */ | 
 | 	change_decimal_from_locale_to_dot(buffer); | 
 |  | 
 | 	/* If an exponent exists, ensure that the exponent is at least | 
 | 	   MIN_EXPONENT_DIGITS digits, providing the buffer is large enough | 
 | 	   for the extra zeros.  Also, if there are more than | 
 | 	   MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get | 
 | 	   back to MIN_EXPONENT_DIGITS */ | 
 | 	ensure_minimum_exponent_length(buffer, buf_size); | 
 |  | 
 | 	/* If format_char is 'Z', make sure we have at least one character | 
 | 	   after the decimal point (and make sure we have a decimal point); | 
 | 	   also switch to exponential notation in some edge cases where the | 
 | 	   extra character would produce more significant digits that we | 
 | 	   really want. */ | 
 | 	if (format_char == 'Z') | 
 | 		buffer = ensure_decimal_point(buffer, buf_size, precision); | 
 |  | 
 | 	return buffer; | 
 | } | 
 |  | 
 | char * | 
 | PyOS_ascii_formatd(char       *buffer,  | 
 | 		   size_t      buf_size,  | 
 | 		   const char *format,  | 
 | 		   double      d) | 
 | { | 
 | 	if (PyErr_WarnEx(PyExc_DeprecationWarning, | 
 | 			 "PyOS_ascii_formatd is deprecated, " | 
 | 			 "use PyOS_double_to_string instead", 1) < 0) | 
 | 		return NULL; | 
 |  | 
 | 	return _PyOS_ascii_formatd(buffer, buf_size, format, d, -1); | 
 | } | 
 |  | 
 | #ifdef PY_NO_SHORT_FLOAT_REPR | 
 |  | 
 | /* The fallback code to use if _Py_dg_dtoa is not available. */ | 
 |  | 
 | PyAPI_FUNC(char *) PyOS_double_to_string(double val, | 
 |                                          char format_code, | 
 |                                          int precision, | 
 |                                          int flags, | 
 |                                          int *type) | 
 | { | 
 | 	char format[32]; | 
 | 	Py_ssize_t bufsize; | 
 | 	char *buf; | 
 | 	int t, exp; | 
 | 	int upper = 0; | 
 |  | 
 | 	/* Validate format_code, and map upper and lower case */ | 
 | 	switch (format_code) { | 
 | 	case 'e':          /* exponent */ | 
 | 	case 'f':          /* fixed */ | 
 | 	case 'g':          /* general */ | 
 | 		break; | 
 | 	case 'E': | 
 | 		upper = 1; | 
 | 		format_code = 'e'; | 
 | 		break; | 
 | 	case 'F': | 
 | 		upper = 1; | 
 | 		format_code = 'f'; | 
 | 		break; | 
 | 	case 'G': | 
 | 		upper = 1; | 
 | 		format_code = 'g'; | 
 | 		break; | 
 | 	case 'r':          /* repr format */ | 
 | 		/* Supplied precision is unused, must be 0. */ | 
 | 		if (precision != 0) { | 
 | 			PyErr_BadInternalCall(); | 
 | 			return NULL; | 
 | 		} | 
 | 		/* The repr() precision (17 significant decimal digits) is the | 
 | 		   minimal number that is guaranteed to have enough precision | 
 | 		   so that if the number is read back in the exact same binary | 
 | 		   value is recreated.  This is true for IEEE floating point | 
 | 		   by design, and also happens to work for all other modern | 
 | 		   hardware. */ | 
 | 		precision = 17; | 
 | 		format_code = 'g'; | 
 | 		break; | 
 | 	default: | 
 | 		PyErr_BadInternalCall(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Here's a quick-and-dirty calculation to figure out how big a buffer | 
 | 	   we need.  In general, for a finite float we need: | 
 |  | 
 | 	     1 byte for each digit of the decimal significand, and | 
 |  | 
 | 	     1 for a possible sign | 
 | 	     1 for a possible decimal point | 
 | 	     2 for a possible [eE][+-] | 
 | 	     1 for each digit of the exponent;  if we allow 19 digits | 
 | 	       total then we're safe up to exponents of 2**63. | 
 | 	     1 for the trailing nul byte | 
 |  | 
 | 	   This gives a total of 24 + the number of digits in the significand, | 
 | 	   and the number of digits in the significand is: | 
 |  | 
 | 	     for 'g' format: at most precision, except possibly | 
 | 	       when precision == 0, when it's 1. | 
 | 	     for 'e' format: precision+1 | 
 | 	     for 'f' format: precision digits after the point, at least 1 | 
 | 	       before.  To figure out how many digits appear before the point | 
 | 	       we have to examine the size of the number.  If fabs(val) < 1.0 | 
 | 	       then there will be only one digit before the point.  If | 
 | 	       fabs(val) >= 1.0, then there are at most | 
 |  | 
 | 	         1+floor(log10(ceiling(fabs(val)))) | 
 |  | 
 | 	       digits before the point (where the 'ceiling' allows for the | 
 | 	       possibility that the rounding rounds the integer part of val | 
 | 	       up).  A safe upper bound for the above quantity is | 
 | 	       1+floor(exp/3), where exp is the unique integer such that 0.5 | 
 | 	       <= fabs(val)/2**exp < 1.0.  This exp can be obtained from | 
 | 	       frexp. | 
 |  | 
 | 	   So we allow room for precision+1 digits for all formats, plus an | 
 | 	   extra floor(exp/3) digits for 'f' format. | 
 |  | 
 | 	*/ | 
 |  | 
 | 	if (Py_IS_NAN(val) || Py_IS_INFINITY(val)) | 
 | 		/* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */ | 
 | 		bufsize = 5; | 
 | 	else { | 
 | 		bufsize = 25 + precision; | 
 | 		if (format_code == 'f' && fabs(val) >= 1.0) { | 
 | 			frexp(val, &exp); | 
 | 			bufsize += exp/3; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	buf = PyMem_Malloc(bufsize); | 
 | 	if (buf == NULL) { | 
 | 		PyErr_NoMemory(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Handle nan and inf. */ | 
 | 	if (Py_IS_NAN(val)) { | 
 | 		strcpy(buf, "nan"); | 
 | 		t = Py_DTST_NAN; | 
 | 	} else if (Py_IS_INFINITY(val)) { | 
 | 		if (copysign(1., val) == 1.) | 
 | 			strcpy(buf, "inf"); | 
 | 		else | 
 | 			strcpy(buf, "-inf"); | 
 | 		t = Py_DTST_INFINITE; | 
 | 	} else { | 
 | 		t = Py_DTST_FINITE; | 
 | 		if (flags & Py_DTSF_ADD_DOT_0) | 
 | 			format_code = 'Z'; | 
 |  | 
 | 		PyOS_snprintf(format, sizeof(format), "%%%s.%i%c", | 
 | 			      (flags & Py_DTSF_ALT ? "#" : ""), precision, | 
 | 			      format_code); | 
 | 		_PyOS_ascii_formatd(buf, bufsize, format, val, precision); | 
 | 	} | 
 |  | 
 | 	/* Add sign when requested.  It's convenient (esp. when formatting | 
 | 	 complex numbers) to include a sign even for inf and nan. */ | 
 | 	if (flags & Py_DTSF_SIGN && buf[0] != '-') { | 
 | 		size_t len = strlen(buf); | 
 | 		/* the bufsize calculations above should ensure that we've got | 
 | 		   space to add a sign */ | 
 | 		assert((size_t)bufsize >= len+2); | 
 | 		memmove(buf+1, buf, len+1); | 
 | 		buf[0] = '+'; | 
 | 	} | 
 | 	if (upper) { | 
 | 		/* Convert to upper case. */ | 
 | 		char *p1; | 
 | 		for (p1 = buf; *p1; p1++) | 
 | 			*p1 = Py_TOUPPER(*p1); | 
 | 	} | 
 |  | 
 | 	if (type) | 
 | 		*type = t; | 
 | 	return buf; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* _Py_dg_dtoa is available. */ | 
 |  | 
 | /* I'm using a lookup table here so that I don't have to invent a non-locale | 
 |    specific way to convert to uppercase */ | 
 | #define OFS_INF 0 | 
 | #define OFS_NAN 1 | 
 | #define OFS_E 2 | 
 |  | 
 | /* The lengths of these are known to the code below, so don't change them */ | 
 | static char *lc_float_strings[] = { | 
 | 	"inf", | 
 | 	"nan", | 
 | 	"e", | 
 | }; | 
 | static char *uc_float_strings[] = { | 
 | 	"INF", | 
 | 	"NAN", | 
 | 	"E", | 
 | }; | 
 |  | 
 |  | 
 | /* Convert a double d to a string, and return a PyMem_Malloc'd block of | 
 |    memory contain the resulting string. | 
 |  | 
 |    Arguments: | 
 |      d is the double to be converted | 
 |      format_code is one of 'e', 'f', 'g', 'r'.  'e', 'f' and 'g' | 
 |        correspond to '%e', '%f' and '%g';  'r' corresponds to repr. | 
 |      mode is one of '0', '2' or '3', and is completely determined by | 
 |        format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0. | 
 |      precision is the desired precision | 
 |      always_add_sign is nonzero if a '+' sign should be included for positive | 
 |        numbers | 
 |      add_dot_0_if_integer is nonzero if integers in non-exponential form | 
 |        should have ".0" added.  Only applies to format codes 'r' and 'g'. | 
 |      use_alt_formatting is nonzero if alternative formatting should be | 
 |        used.  Only applies to format codes 'e', 'f' and 'g'.  For code 'g', | 
 |        at most one of use_alt_formatting and add_dot_0_if_integer should | 
 |        be nonzero. | 
 |      type, if non-NULL, will be set to one of these constants to identify | 
 |        the type of the 'd' argument: | 
 |          Py_DTST_FINITE | 
 |          Py_DTST_INFINITE | 
 |          Py_DTST_NAN | 
 |  | 
 |    Returns a PyMem_Malloc'd block of memory containing the resulting string, | 
 |     or NULL on error. If NULL is returned, the Python error has been set. | 
 |  */ | 
 |  | 
 | static char * | 
 | format_float_short(double d, char format_code, | 
 | 		   int mode, Py_ssize_t precision, | 
 | 		   int always_add_sign, int add_dot_0_if_integer, | 
 | 		   int use_alt_formatting, char **float_strings, int *type) | 
 | { | 
 | 	char *buf = NULL; | 
 | 	char *p = NULL; | 
 | 	Py_ssize_t bufsize = 0; | 
 | 	char *digits, *digits_end; | 
 | 	int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0; | 
 | 	Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end; | 
 | 	_Py_SET_53BIT_PRECISION_HEADER; | 
 |  | 
 | 	/* _Py_dg_dtoa returns a digit string (no decimal point or exponent). | 
 | 	   Must be matched by a call to _Py_dg_freedtoa. */ | 
 | 	_Py_SET_53BIT_PRECISION_START; | 
 | 	digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign, | 
 | 			     &digits_end); | 
 | 	_Py_SET_53BIT_PRECISION_END; | 
 |  | 
 | 	decpt = (Py_ssize_t)decpt_as_int; | 
 | 	if (digits == NULL) { | 
 | 		/* The only failure mode is no memory. */ | 
 | 		PyErr_NoMemory(); | 
 | 		goto exit; | 
 | 	} | 
 | 	assert(digits_end != NULL && digits_end >= digits); | 
 | 	digits_len = digits_end - digits; | 
 |  | 
 | 	if (digits_len && !Py_ISDIGIT(digits[0])) { | 
 | 		/* Infinities and nans here; adapt Gay's output, | 
 | 		   so convert Infinity to inf and NaN to nan, and | 
 | 		   ignore sign of nan. Then return. */ | 
 |  | 
 | 		/* ignore the actual sign of a nan */ | 
 | 		if (digits[0] == 'n' || digits[0] == 'N') | 
 | 			sign = 0; | 
 |  | 
 | 		/* We only need 5 bytes to hold the result "+inf\0" . */ | 
 | 		bufsize = 5; /* Used later in an assert. */ | 
 | 		buf = (char *)PyMem_Malloc(bufsize); | 
 | 		if (buf == NULL) { | 
 | 			PyErr_NoMemory(); | 
 | 			goto exit; | 
 | 		} | 
 | 		p = buf; | 
 |  | 
 | 		if (sign == 1) { | 
 | 			*p++ = '-'; | 
 | 		} | 
 | 		else if (always_add_sign) { | 
 | 			*p++ = '+'; | 
 | 		} | 
 | 		if (digits[0] == 'i' || digits[0] == 'I') { | 
 | 			strncpy(p, float_strings[OFS_INF], 3); | 
 | 			p += 3; | 
 |  | 
 | 			if (type) | 
 | 				*type = Py_DTST_INFINITE; | 
 | 		} | 
 | 		else if (digits[0] == 'n' || digits[0] == 'N') { | 
 | 			strncpy(p, float_strings[OFS_NAN], 3); | 
 | 			p += 3; | 
 |  | 
 | 			if (type) | 
 | 				*type = Py_DTST_NAN; | 
 | 		} | 
 | 		else { | 
 | 			/* shouldn't get here: Gay's code should always return | 
 | 			   something starting with a digit, an 'I',  or 'N' */ | 
 | 			strncpy(p, "ERR", 3); | 
 | 			p += 3; | 
 | 			assert(0); | 
 | 		} | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	/* The result must be finite (not inf or nan). */ | 
 | 	if (type) | 
 | 		*type = Py_DTST_FINITE; | 
 |  | 
 |  | 
 | 	/* We got digits back, format them.  We may need to pad 'digits' | 
 | 	   either on the left or right (or both) with extra zeros, so in | 
 | 	   general the resulting string has the form | 
 |  | 
 | 	     [<sign>]<zeros><digits><zeros>[<exponent>] | 
 |  | 
 | 	   where either of the <zeros> pieces could be empty, and there's a | 
 | 	   decimal point that could appear either in <digits> or in the | 
 | 	   leading or trailing <zeros>. | 
 |  | 
 | 	   Imagine an infinite 'virtual' string vdigits, consisting of the | 
 | 	   string 'digits' (starting at index 0) padded on both the left and | 
 | 	   right with infinite strings of zeros.  We want to output a slice | 
 |  | 
 | 	     vdigits[vdigits_start : vdigits_end] | 
 |  | 
 | 	   of this virtual string.  Thus if vdigits_start < 0 then we'll end | 
 | 	   up producing some leading zeros; if vdigits_end > digits_len there | 
 | 	   will be trailing zeros in the output.  The next section of code | 
 | 	   determines whether to use an exponent or not, figures out the | 
 | 	   position 'decpt' of the decimal point, and computes 'vdigits_start' | 
 | 	   and 'vdigits_end'. */ | 
 | 	vdigits_end = digits_len; | 
 | 	switch (format_code) { | 
 | 	case 'e': | 
 | 		use_exp = 1; | 
 | 		vdigits_end = precision; | 
 | 		break; | 
 | 	case 'f': | 
 | 		vdigits_end = decpt + precision; | 
 | 		break; | 
 | 	case 'g': | 
 | 		if (decpt <= -4 || decpt > | 
 | 		    (add_dot_0_if_integer ? precision-1 : precision)) | 
 | 			use_exp = 1; | 
 | 		if (use_alt_formatting) | 
 | 			vdigits_end = precision; | 
 | 		break; | 
 | 	case 'r': | 
 | 		/* convert to exponential format at 1e16.  We used to convert | 
 | 		   at 1e17, but that gives odd-looking results for some values | 
 | 		   when a 16-digit 'shortest' repr is padded with bogus zeros. | 
 | 		   For example, repr(2e16+8) would give 20000000000000010.0; | 
 | 		   the true value is 20000000000000008.0. */ | 
 | 		if (decpt <= -4 || decpt > 16) | 
 | 			use_exp = 1; | 
 | 		break; | 
 | 	default: | 
 | 		PyErr_BadInternalCall(); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	/* if using an exponent, reset decimal point position to 1 and adjust | 
 | 	   exponent accordingly.*/ | 
 | 	if (use_exp) { | 
 | 		exp = decpt - 1; | 
 | 		decpt = 1; | 
 | 	} | 
 | 	/* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start < | 
 | 	   decpt < vdigits_end if add_dot_0_if_integer and no exponent */ | 
 | 	vdigits_start = decpt <= 0 ? decpt-1 : 0; | 
 | 	if (!use_exp && add_dot_0_if_integer) | 
 | 		vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1; | 
 | 	else | 
 | 		vdigits_end = vdigits_end > decpt ? vdigits_end : decpt; | 
 |  | 
 | 	/* double check inequalities */ | 
 | 	assert(vdigits_start <= 0 && | 
 | 	       0 <= digits_len && | 
 | 	       digits_len <= vdigits_end); | 
 | 	/* decimal point should be in (vdigits_start, vdigits_end] */ | 
 | 	assert(vdigits_start < decpt && decpt <= vdigits_end); | 
 |  | 
 | 	/* Compute an upper bound how much memory we need. This might be a few | 
 | 	   chars too long, but no big deal. */ | 
 | 	bufsize = | 
 | 		/* sign, decimal point and trailing 0 byte */ | 
 | 		3 + | 
 |  | 
 | 		/* total digit count (including zero padding on both sides) */ | 
 | 		(vdigits_end - vdigits_start) + | 
 |  | 
 | 		/* exponent "e+100", max 3 numerical digits */ | 
 | 		(use_exp ? 5 : 0); | 
 |  | 
 | 	/* Now allocate the memory and initialize p to point to the start of | 
 | 	   it. */ | 
 | 	buf = (char *)PyMem_Malloc(bufsize); | 
 | 	if (buf == NULL) { | 
 | 		PyErr_NoMemory(); | 
 | 		goto exit; | 
 | 	} | 
 | 	p = buf; | 
 |  | 
 | 	/* Add a negative sign if negative, and a plus sign if non-negative | 
 | 	   and always_add_sign is true. */ | 
 | 	if (sign == 1) | 
 | 		*p++ = '-'; | 
 | 	else if (always_add_sign) | 
 | 		*p++ = '+'; | 
 |  | 
 | 	/* note that exactly one of the three 'if' conditions is true, | 
 | 	   so we include exactly one decimal point */ | 
 | 	/* Zero padding on left of digit string */ | 
 | 	if (decpt <= 0) { | 
 | 		memset(p, '0', decpt-vdigits_start); | 
 | 		p += decpt - vdigits_start; | 
 | 		*p++ = '.'; | 
 | 		memset(p, '0', 0-decpt); | 
 | 		p += 0-decpt; | 
 | 	} | 
 | 	else { | 
 | 		memset(p, '0', 0-vdigits_start); | 
 | 		p += 0 - vdigits_start; | 
 | 	} | 
 |  | 
 | 	/* Digits, with included decimal point */ | 
 | 	if (0 < decpt && decpt <= digits_len) { | 
 | 		strncpy(p, digits, decpt-0); | 
 | 		p += decpt-0; | 
 | 		*p++ = '.'; | 
 | 		strncpy(p, digits+decpt, digits_len-decpt); | 
 | 		p += digits_len-decpt; | 
 | 	} | 
 | 	else { | 
 | 		strncpy(p, digits, digits_len); | 
 | 		p += digits_len; | 
 | 	} | 
 |  | 
 | 	/* And zeros on the right */ | 
 | 	if (digits_len < decpt) { | 
 | 		memset(p, '0', decpt-digits_len); | 
 | 		p += decpt-digits_len; | 
 | 		*p++ = '.'; | 
 | 		memset(p, '0', vdigits_end-decpt); | 
 | 		p += vdigits_end-decpt; | 
 | 	} | 
 | 	else { | 
 | 		memset(p, '0', vdigits_end-digits_len); | 
 | 		p += vdigits_end-digits_len; | 
 | 	} | 
 |  | 
 | 	/* Delete a trailing decimal pt unless using alternative formatting. */ | 
 | 	if (p[-1] == '.' && !use_alt_formatting) | 
 | 		p--; | 
 |  | 
 | 	/* Now that we've done zero padding, add an exponent if needed. */ | 
 | 	if (use_exp) { | 
 | 		*p++ = float_strings[OFS_E][0]; | 
 | 		exp_len = sprintf(p, "%+.02d", exp); | 
 | 		p += exp_len; | 
 | 	} | 
 |   exit: | 
 | 	if (buf) { | 
 | 		*p = '\0'; | 
 | 		/* It's too late if this fails, as we've already stepped on | 
 | 		   memory that isn't ours. But it's an okay debugging test. */ | 
 | 		assert(p-buf < bufsize); | 
 | 	} | 
 | 	if (digits) | 
 | 		_Py_dg_freedtoa(digits); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 |  | 
 | PyAPI_FUNC(char *) PyOS_double_to_string(double val, | 
 | 					 char format_code, | 
 | 					 int precision, | 
 | 					 int flags, | 
 | 					 int *type) | 
 | { | 
 | 	char **float_strings = lc_float_strings; | 
 | 	int mode; | 
 |  | 
 | 	/* Validate format_code, and map upper and lower case. Compute the | 
 | 	   mode and make any adjustments as needed. */ | 
 | 	switch (format_code) { | 
 | 	/* exponent */ | 
 | 	case 'E': | 
 | 		float_strings = uc_float_strings; | 
 | 		format_code = 'e'; | 
 | 		/* Fall through. */ | 
 | 	case 'e': | 
 | 		mode = 2; | 
 | 		precision++; | 
 | 		break; | 
 |  | 
 | 	/* fixed */ | 
 | 	case 'F': | 
 | 		float_strings = uc_float_strings; | 
 | 		format_code = 'f'; | 
 | 		/* Fall through. */ | 
 | 	case 'f': | 
 | 		mode = 3; | 
 | 		break; | 
 |  | 
 | 	/* general */ | 
 | 	case 'G': | 
 | 		float_strings = uc_float_strings; | 
 | 		format_code = 'g'; | 
 | 		/* Fall through. */ | 
 | 	case 'g': | 
 | 		mode = 2; | 
 | 		/* precision 0 makes no sense for 'g' format; interpret as 1 */ | 
 | 		if (precision == 0) | 
 | 			precision = 1; | 
 | 		break; | 
 |  | 
 | 	/* repr format */ | 
 | 	case 'r': | 
 | 		mode = 0; | 
 | 		/* Supplied precision is unused, must be 0. */ | 
 | 		if (precision != 0) { | 
 | 			PyErr_BadInternalCall(); | 
 | 			return NULL; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		PyErr_BadInternalCall(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return format_float_short(val, format_code, mode, precision, | 
 | 				  flags & Py_DTSF_SIGN, | 
 | 				  flags & Py_DTSF_ADD_DOT_0, | 
 | 				  flags & Py_DTSF_ALT, | 
 | 				  float_strings, type); | 
 | } | 
 | #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */ |