| #!/usr/bin/env python | 
 |  | 
 | import unittest | 
 | import random | 
 | import time | 
 | from math import log, exp, sqrt, pi | 
 | from test import test_support | 
 |  | 
 | class TestBasicOps(unittest.TestCase): | 
 |     # Superclass with tests common to all generators. | 
 |     # Subclasses must arrange for self.gen to retrieve the Random instance | 
 |     # to be tested. | 
 |  | 
 |     def randomlist(self, n): | 
 |         """Helper function to make a list of random numbers""" | 
 |         return [self.gen.random() for i in xrange(n)] | 
 |  | 
 |     def test_autoseed(self): | 
 |         self.gen.seed() | 
 |         state1 = self.gen.getstate() | 
 |         time.sleep(1) | 
 |         self.gen.seed()      # diffent seeds at different times | 
 |         state2 = self.gen.getstate() | 
 |         self.assertNotEqual(state1, state2) | 
 |  | 
 |     def test_saverestore(self): | 
 |         N = 1000 | 
 |         self.gen.seed() | 
 |         state = self.gen.getstate() | 
 |         randseq = self.randomlist(N) | 
 |         self.gen.setstate(state)    # should regenerate the same sequence | 
 |         self.assertEqual(randseq, self.randomlist(N)) | 
 |  | 
 |     def test_seedargs(self): | 
 |         for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20), | 
 |                     3.14, 1+2j, 'a', tuple('abc')]: | 
 |             self.gen.seed(arg) | 
 |         for arg in [range(3), dict(one=1)]: | 
 |             self.assertRaises(TypeError, self.gen.seed, arg) | 
 |  | 
 |     def test_jumpahead(self): | 
 |         self.gen.seed() | 
 |         state1 = self.gen.getstate() | 
 |         self.gen.jumpahead(100) | 
 |         state2 = self.gen.getstate()    # s/b distinct from state1 | 
 |         self.assertNotEqual(state1, state2) | 
 |         self.gen.jumpahead(100) | 
 |         state3 = self.gen.getstate()    # s/b distinct from state2 | 
 |         self.assertNotEqual(state2, state3) | 
 |  | 
 |         self.assertRaises(TypeError, self.gen.jumpahead)  # needs an arg | 
 |         self.assertRaises(TypeError, self.gen.jumpahead, "ick")  # wrong type | 
 |         self.assertRaises(TypeError, self.gen.jumpahead, 2.3)  # wrong type | 
 |         self.assertRaises(TypeError, self.gen.jumpahead, 2, 3)  # too many | 
 |  | 
 |     def test_sample(self): | 
 |         # For the entire allowable range of 0 <= k <= N, validate that | 
 |         # the sample is of the correct length and contains only unique items | 
 |         N = 100 | 
 |         population = xrange(N) | 
 |         for k in xrange(N+1): | 
 |             s = self.gen.sample(population, k) | 
 |             self.assertEqual(len(s), k) | 
 |             uniq = dict.fromkeys(s) | 
 |             self.assertEqual(len(uniq), k) | 
 |             self.failIf(None in uniq) | 
 |         self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0 | 
 |  | 
 |     def test_gauss(self): | 
 |         # Ensure that the seed() method initializes all the hidden state.  In | 
 |         # particular, through 2.2.1 it failed to reset a piece of state used | 
 |         # by (and only by) the .gauss() method. | 
 |  | 
 |         for seed in 1, 12, 123, 1234, 12345, 123456, 654321: | 
 |             self.gen.seed(seed) | 
 |             x1 = self.gen.random() | 
 |             y1 = self.gen.gauss(0, 1) | 
 |  | 
 |             self.gen.seed(seed) | 
 |             x2 = self.gen.random() | 
 |             y2 = self.gen.gauss(0, 1) | 
 |  | 
 |             self.assertEqual(x1, x2) | 
 |             self.assertEqual(y1, y2) | 
 |  | 
 |  | 
 | class WichmannHill_TestBasicOps(TestBasicOps): | 
 |     gen = random.WichmannHill() | 
 |  | 
 |     def test_strong_jumpahead(self): | 
 |         # tests that jumpahead(n) semantics correspond to n calls to random() | 
 |         N = 1000 | 
 |         s = self.gen.getstate() | 
 |         self.gen.jumpahead(N) | 
 |         r1 = self.gen.random() | 
 |         # now do it the slow way | 
 |         self.gen.setstate(s) | 
 |         for i in xrange(N): | 
 |             self.gen.random() | 
 |         r2 = self.gen.random() | 
 |         self.assertEqual(r1, r2) | 
 |  | 
 |     def test_gauss_with_whseed(self): | 
 |         # Ensure that the seed() method initializes all the hidden state.  In | 
 |         # particular, through 2.2.1 it failed to reset a piece of state used | 
 |         # by (and only by) the .gauss() method. | 
 |  | 
 |         for seed in 1, 12, 123, 1234, 12345, 123456, 654321: | 
 |             self.gen.whseed(seed) | 
 |             x1 = self.gen.random() | 
 |             y1 = self.gen.gauss(0, 1) | 
 |  | 
 |             self.gen.whseed(seed) | 
 |             x2 = self.gen.random() | 
 |             y2 = self.gen.gauss(0, 1) | 
 |  | 
 |             self.assertEqual(x1, x2) | 
 |             self.assertEqual(y1, y2) | 
 |  | 
 | class MersenneTwister_TestBasicOps(TestBasicOps): | 
 |     gen = random.Random() | 
 |  | 
 |     def test_referenceImplementation(self): | 
 |         # Compare the python implementation with results from the original | 
 |         # code.  Create 2000 53-bit precision random floats.  Compare only | 
 |         # the last ten entries to show that the independent implementations | 
 |         # are tracking.  Here is the main() function needed to create the | 
 |         # list of expected random numbers: | 
 |         #    void main(void){ | 
 |         #         int i; | 
 |         #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4; | 
 |         #         init_by_array(init, length); | 
 |         #         for (i=0; i<2000; i++) { | 
 |         #           printf("%.15f ", genrand_res53()); | 
 |         #           if (i%5==4) printf("\n"); | 
 |         #         } | 
 |         #     } | 
 |         expected = [0.45839803073713259, | 
 |                     0.86057815201978782, | 
 |                     0.92848331726782152, | 
 |                     0.35932681119782461, | 
 |                     0.081823493762449573, | 
 |                     0.14332226470169329, | 
 |                     0.084297823823520024, | 
 |                     0.53814864671831453, | 
 |                     0.089215024911993401, | 
 |                     0.78486196105372907] | 
 |  | 
 |         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96)) | 
 |         actual = self.randomlist(2000)[-10:] | 
 |         for a, e in zip(actual, expected): | 
 |             self.assertAlmostEqual(a,e,places=14) | 
 |  | 
 |     def test_strong_reference_implementation(self): | 
 |         # Like test_referenceImplementation, but checks for exact bit-level | 
 |         # equality.  This should pass on any box where C double contains | 
 |         # at least 53 bits of precision (the underlying algorithm suffers | 
 |         # no rounding errors -- all results are exact). | 
 |         from math import ldexp | 
 |  | 
 |         expected = [0x0eab3258d2231fL, | 
 |                     0x1b89db315277a5L, | 
 |                     0x1db622a5518016L, | 
 |                     0x0b7f9af0d575bfL, | 
 |                     0x029e4c4db82240L, | 
 |                     0x04961892f5d673L, | 
 |                     0x02b291598e4589L, | 
 |                     0x11388382c15694L, | 
 |                     0x02dad977c9e1feL, | 
 |                     0x191d96d4d334c6L] | 
 |  | 
 |         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96)) | 
 |         actual = self.randomlist(2000)[-10:] | 
 |         for a, e in zip(actual, expected): | 
 |             self.assertEqual(long(ldexp(a, 53)), e) | 
 |  | 
 |     def test_long_seed(self): | 
 |         # This is most interesting to run in debug mode, just to make sure | 
 |         # nothing blows up.  Under the covers, a dynamically resized array | 
 |         # is allocated, consuming space proportional to the number of bits | 
 |         # in the seed.  Unfortunately, that's a quadratic-time algorithm, | 
 |         # so don't make this horribly big. | 
 |         seed = (1L << (10000 * 8)) - 1  # about 10K bytes | 
 |         self.gen.seed(seed) | 
 |  | 
 | _gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289, | 
 |               771.3234287757674,  -176.6150291498386, 12.50734324009056, | 
 |               -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06) | 
 |  | 
 | def gamma(z, cof=_gammacoeff, g=7): | 
 |     z -= 1.0 | 
 |     sum = cof[0] | 
 |     for i in xrange(1,len(cof)): | 
 |         sum += cof[i] / (z+i) | 
 |     z += 0.5 | 
 |     return (z+g)**z / exp(z+g) * sqrt(2*pi) * sum | 
 |  | 
 | class TestDistributions(unittest.TestCase): | 
 |     def test_zeroinputs(self): | 
 |         # Verify that distributions can handle a series of zero inputs' | 
 |         g = random.Random() | 
 |         x = [g.random() for i in xrange(50)] + [0.0]*5 | 
 |         g.random = x[:].pop; g.uniform(1,10) | 
 |         g.random = x[:].pop; g.paretovariate(1.0) | 
 |         g.random = x[:].pop; g.expovariate(1.0) | 
 |         g.random = x[:].pop; g.weibullvariate(1.0, 1.0) | 
 |         g.random = x[:].pop; g.normalvariate(0.0, 1.0) | 
 |         g.random = x[:].pop; g.gauss(0.0, 1.0) | 
 |         g.random = x[:].pop; g.lognormvariate(0.0, 1.0) | 
 |         g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0) | 
 |         g.random = x[:].pop; g.gammavariate(0.01, 1.0) | 
 |         g.random = x[:].pop; g.gammavariate(1.0, 1.0) | 
 |         g.random = x[:].pop; g.gammavariate(200.0, 1.0) | 
 |         g.random = x[:].pop; g.betavariate(3.0, 3.0) | 
 |  | 
 |     def test_avg_std(self): | 
 |         # Use integration to test distribution average and standard deviation. | 
 |         # Only works for distributions which do not consume variates in pairs | 
 |         g = random.Random() | 
 |         N = 5000 | 
 |         x = [i/float(N) for i in xrange(1,N)] | 
 |         for variate, args, mu, sigmasqrd in [ | 
 |                 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12), | 
 |                 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2), | 
 |                 (g.paretovariate, (5.0,), 5.0/(5.0-1), | 
 |                                   5.0/((5.0-1)**2*(5.0-2))), | 
 |                 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0), | 
 |                                   gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]: | 
 |             g.random = x[:].pop | 
 |             y = [] | 
 |             for i in xrange(len(x)): | 
 |                 try: | 
 |                     y.append(variate(*args)) | 
 |                 except IndexError: | 
 |                     pass | 
 |             s1 = s2 = 0 | 
 |             for e in y: | 
 |                 s1 += e | 
 |                 s2 += (e - mu) ** 2 | 
 |             N = len(y) | 
 |             self.assertAlmostEqual(s1/N, mu, 2) | 
 |             self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2) | 
 |  | 
 | class TestModule(unittest.TestCase): | 
 |     def testMagicConstants(self): | 
 |         self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141) | 
 |         self.assertAlmostEqual(random.TWOPI, 6.28318530718) | 
 |         self.assertAlmostEqual(random.LOG4, 1.38629436111989) | 
 |         self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627) | 
 |  | 
 |     def test__all__(self): | 
 |         # tests validity but not completeness of the __all__ list | 
 |         defined = dict.fromkeys(dir(random)) | 
 |         for entry in random.__all__: | 
 |             self.failUnless(entry in defined) | 
 |  | 
 | def test_main(): | 
 |     suite = unittest.TestSuite() | 
 |     for testclass in (WichmannHill_TestBasicOps, | 
 |                       MersenneTwister_TestBasicOps, | 
 |                       TestDistributions, | 
 |                       TestModule): | 
 |         suite.addTest(unittest.makeSuite(testclass)) | 
 |     test_support.run_suite(suite) | 
 |  | 
 | if __name__ == "__main__": | 
 |     test_main() |