| |
| /* Float object implementation */ |
| |
| /* XXX There should be overflow checks here, but it's hard to check |
| for any kind of float exception without losing portability. */ |
| |
| #include "Python.h" |
| |
| #include <ctype.h> |
| |
| #if !defined(__STDC__) && !defined(macintosh) |
| extern double fmod(double, double); |
| extern double pow(double, double); |
| #endif |
| |
| #if defined(sun) && !defined(__SVR4) |
| /* On SunOS4.1 only libm.a exists. Make sure that references to all |
| needed math functions exist in the executable, so that dynamic |
| loading of mathmodule does not fail. */ |
| double (*_Py_math_funcs_hack[])() = { |
| acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, |
| fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh |
| }; |
| #endif |
| |
| /* Special free list -- see comments for same code in intobject.c. */ |
| #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ |
| #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ |
| #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) |
| |
| struct _floatblock { |
| struct _floatblock *next; |
| PyFloatObject objects[N_FLOATOBJECTS]; |
| }; |
| |
| typedef struct _floatblock PyFloatBlock; |
| |
| static PyFloatBlock *block_list = NULL; |
| static PyFloatObject *free_list = NULL; |
| |
| static PyFloatObject * |
| fill_free_list(void) |
| { |
| PyFloatObject *p, *q; |
| /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ |
| p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); |
| if (p == NULL) |
| return (PyFloatObject *) PyErr_NoMemory(); |
| ((PyFloatBlock *)p)->next = block_list; |
| block_list = (PyFloatBlock *)p; |
| p = &((PyFloatBlock *)p)->objects[0]; |
| q = p + N_FLOATOBJECTS; |
| while (--q > p) |
| q->ob_type = (struct _typeobject *)(q-1); |
| q->ob_type = NULL; |
| return p + N_FLOATOBJECTS - 1; |
| } |
| |
| PyObject * |
| PyFloat_FromDouble(double fval) |
| { |
| register PyFloatObject *op; |
| if (free_list == NULL) { |
| if ((free_list = fill_free_list()) == NULL) |
| return NULL; |
| } |
| /* PyObject_New is inlined */ |
| op = free_list; |
| free_list = (PyFloatObject *)op->ob_type; |
| PyObject_INIT(op, &PyFloat_Type); |
| op->ob_fval = fval; |
| return (PyObject *) op; |
| } |
| |
| /************************************************************************** |
| RED_FLAG 22-Sep-2000 tim |
| PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG, |
| |
| 1. If v was a regular string, *pend was set to point to its terminating |
| null byte. That's useless (the caller can find that without any |
| help from this function!). |
| |
| 2. If v was a Unicode string, or an object convertible to a character |
| buffer, *pend was set to point into stack trash (the auto temp |
| vector holding the character buffer). That was downright dangerous. |
| |
| Since we can't change the interface of a public API function, pend is |
| still supported but now *officially* useless: if pend is not NULL, |
| *pend is set to NULL. |
| **************************************************************************/ |
| PyObject * |
| PyFloat_FromString(PyObject *v, char **pend) |
| { |
| const char *s, *last, *end; |
| double x; |
| char buffer[256]; /* for errors */ |
| #ifdef Py_USING_UNICODE |
| char s_buffer[256]; /* for objects convertible to a char buffer */ |
| #endif |
| int len; |
| |
| if (pend) |
| *pend = NULL; |
| if (PyString_Check(v)) { |
| s = PyString_AS_STRING(v); |
| len = PyString_GET_SIZE(v); |
| } |
| #ifdef Py_USING_UNICODE |
| else if (PyUnicode_Check(v)) { |
| if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) { |
| PyErr_SetString(PyExc_ValueError, |
| "Unicode float() literal too long to convert"); |
| return NULL; |
| } |
| if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), |
| PyUnicode_GET_SIZE(v), |
| s_buffer, |
| NULL)) |
| return NULL; |
| s = s_buffer; |
| len = (int)strlen(s); |
| } |
| #endif |
| else if (PyObject_AsCharBuffer(v, &s, &len)) { |
| PyErr_SetString(PyExc_TypeError, |
| "float() argument must be a string or a number"); |
| return NULL; |
| } |
| |
| last = s + len; |
| while (*s && isspace(Py_CHARMASK(*s))) |
| s++; |
| if (*s == '\0') { |
| PyErr_SetString(PyExc_ValueError, "empty string for float()"); |
| return NULL; |
| } |
| /* We don't care about overflow or underflow. If the platform supports |
| * them, infinities and signed zeroes (on underflow) are fine. |
| * However, strtod can return 0 for denormalized numbers, where atof |
| * does not. So (alas!) we special-case a zero result. Note that |
| * whether strtod sets errno on underflow is not defined, so we can't |
| * key off errno. |
| */ |
| PyFPE_START_PROTECT("strtod", return NULL) |
| x = strtod(s, (char **)&end); |
| PyFPE_END_PROTECT(x) |
| errno = 0; |
| /* Believe it or not, Solaris 2.6 can move end *beyond* the null |
| byte at the end of the string, when the input is inf(inity). */ |
| if (end > last) |
| end = last; |
| if (end == s) { |
| PyOS_snprintf(buffer, sizeof(buffer), |
| "invalid literal for float(): %.200s", s); |
| PyErr_SetString(PyExc_ValueError, buffer); |
| return NULL; |
| } |
| /* Since end != s, the platform made *some* kind of sense out |
| of the input. Trust it. */ |
| while (*end && isspace(Py_CHARMASK(*end))) |
| end++; |
| if (*end != '\0') { |
| PyOS_snprintf(buffer, sizeof(buffer), |
| "invalid literal for float(): %.200s", s); |
| PyErr_SetString(PyExc_ValueError, buffer); |
| return NULL; |
| } |
| else if (end != last) { |
| PyErr_SetString(PyExc_ValueError, |
| "null byte in argument for float()"); |
| return NULL; |
| } |
| if (x == 0.0) { |
| /* See above -- may have been strtod being anal |
| about denorms. */ |
| PyFPE_START_PROTECT("atof", return NULL) |
| x = atof(s); |
| PyFPE_END_PROTECT(x) |
| errno = 0; /* whether atof ever set errno is undefined */ |
| } |
| return PyFloat_FromDouble(x); |
| } |
| |
| static void |
| float_dealloc(PyFloatObject *op) |
| { |
| if (PyFloat_CheckExact(op)) { |
| op->ob_type = (struct _typeobject *)free_list; |
| free_list = op; |
| } |
| else |
| op->ob_type->tp_free((PyObject *)op); |
| } |
| |
| double |
| PyFloat_AsDouble(PyObject *op) |
| { |
| PyNumberMethods *nb; |
| PyFloatObject *fo; |
| double val; |
| |
| if (op && PyFloat_Check(op)) |
| return PyFloat_AS_DOUBLE((PyFloatObject*) op); |
| |
| if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || |
| nb->nb_float == NULL) { |
| PyErr_BadArgument(); |
| return -1; |
| } |
| |
| fo = (PyFloatObject*) (*nb->nb_float) (op); |
| if (fo == NULL) |
| return -1; |
| if (!PyFloat_Check(fo)) { |
| PyErr_SetString(PyExc_TypeError, |
| "nb_float should return float object"); |
| return -1; |
| } |
| |
| val = PyFloat_AS_DOUBLE(fo); |
| Py_DECREF(fo); |
| |
| return val; |
| } |
| |
| /* Methods */ |
| |
| static void |
| format_float(char *buf, size_t buflen, PyFloatObject *v, int precision) |
| { |
| register char *cp; |
| /* Subroutine for float_repr and float_print. |
| We want float numbers to be recognizable as such, |
| i.e., they should contain a decimal point or an exponent. |
| However, %g may print the number as an integer; |
| in such cases, we append ".0" to the string. */ |
| |
| assert(PyFloat_Check(v)); |
| PyOS_snprintf(buf, buflen, "%.*g", precision, v->ob_fval); |
| cp = buf; |
| if (*cp == '-') |
| cp++; |
| for (; *cp != '\0'; cp++) { |
| /* Any non-digit means it's not an integer; |
| this takes care of NAN and INF as well. */ |
| if (!isdigit(Py_CHARMASK(*cp))) |
| break; |
| } |
| if (*cp == '\0') { |
| *cp++ = '.'; |
| *cp++ = '0'; |
| *cp++ = '\0'; |
| } |
| } |
| |
| /* XXX PyFloat_AsStringEx should not be a public API function (for one |
| XXX thing, its signature passes a buffer without a length; for another, |
| XXX it isn't useful outside this file). |
| */ |
| void |
| PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision) |
| { |
| format_float(buf, 100, v, precision); |
| } |
| |
| /* Macro and helper that convert PyObject obj to a C double and store |
| the value in dbl; this replaces the functionality of the coercion |
| slot function. If conversion to double raises an exception, obj is |
| set to NULL, and the function invoking this macro returns NULL. If |
| obj is not of float, int or long type, Py_NotImplemented is incref'ed, |
| stored in obj, and returned from the function invoking this macro. |
| */ |
| #define CONVERT_TO_DOUBLE(obj, dbl) \ |
| if (PyFloat_Check(obj)) \ |
| dbl = PyFloat_AS_DOUBLE(obj); \ |
| else if (convert_to_double(&(obj), &(dbl)) < 0) \ |
| return obj; |
| |
| static int |
| convert_to_double(PyObject **v, double *dbl) |
| { |
| register PyObject *obj = *v; |
| |
| if (PyInt_Check(obj)) { |
| *dbl = (double)PyInt_AS_LONG(obj); |
| } |
| else if (PyLong_Check(obj)) { |
| *dbl = PyLong_AsDouble(obj); |
| if (*dbl == -1.0 && PyErr_Occurred()) { |
| *v = NULL; |
| return -1; |
| } |
| } |
| else { |
| Py_INCREF(Py_NotImplemented); |
| *v = Py_NotImplemented; |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Precisions used by repr() and str(), respectively. |
| |
| The repr() precision (17 significant decimal digits) is the minimal number |
| that is guaranteed to have enough precision so that if the number is read |
| back in the exact same binary value is recreated. This is true for IEEE |
| floating point by design, and also happens to work for all other modern |
| hardware. |
| |
| The str() precision is chosen so that in most cases, the rounding noise |
| created by various operations is suppressed, while giving plenty of |
| precision for practical use. |
| |
| */ |
| |
| #define PREC_REPR 17 |
| #define PREC_STR 12 |
| |
| /* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated: |
| XXX they pass a char buffer without passing a length. |
| */ |
| void |
| PyFloat_AsString(char *buf, PyFloatObject *v) |
| { |
| format_float(buf, 100, v, PREC_STR); |
| } |
| |
| void |
| PyFloat_AsReprString(char *buf, PyFloatObject *v) |
| { |
| format_float(buf, 100, v, PREC_REPR); |
| } |
| |
| /* ARGSUSED */ |
| static int |
| float_print(PyFloatObject *v, FILE *fp, int flags) |
| { |
| char buf[100]; |
| format_float(buf, sizeof(buf), v, |
| (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); |
| fputs(buf, fp); |
| return 0; |
| } |
| |
| static PyObject * |
| float_repr(PyFloatObject *v) |
| { |
| char buf[100]; |
| format_float(buf, sizeof(buf), v, PREC_REPR); |
| return PyString_FromString(buf); |
| } |
| |
| static PyObject * |
| float_str(PyFloatObject *v) |
| { |
| char buf[100]; |
| format_float(buf, sizeof(buf), v, PREC_STR); |
| return PyString_FromString(buf); |
| } |
| |
| static int |
| float_compare(PyFloatObject *v, PyFloatObject *w) |
| { |
| double i = v->ob_fval; |
| double j = w->ob_fval; |
| return (i < j) ? -1 : (i > j) ? 1 : 0; |
| } |
| |
| static long |
| float_hash(PyFloatObject *v) |
| { |
| return _Py_HashDouble(v->ob_fval); |
| } |
| |
| static PyObject * |
| float_add(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| PyFPE_START_PROTECT("add", return 0) |
| a = a + b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_sub(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| PyFPE_START_PROTECT("subtract", return 0) |
| a = a - b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_mul(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| PyFPE_START_PROTECT("multiply", return 0) |
| a = a * b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_div(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| if (b == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "float division"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("divide", return 0) |
| a = a / b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_classic_div(PyObject *v, PyObject *w) |
| { |
| double a,b; |
| CONVERT_TO_DOUBLE(v, a); |
| CONVERT_TO_DOUBLE(w, b); |
| if (Py_DivisionWarningFlag >= 2 && |
| PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0) |
| return NULL; |
| if (b == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "float division"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("divide", return 0) |
| a = a / b; |
| PyFPE_END_PROTECT(a) |
| return PyFloat_FromDouble(a); |
| } |
| |
| static PyObject * |
| float_rem(PyObject *v, PyObject *w) |
| { |
| double vx, wx; |
| double mod; |
| CONVERT_TO_DOUBLE(v, vx); |
| CONVERT_TO_DOUBLE(w, wx); |
| if (wx == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "float modulo"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("modulo", return 0) |
| mod = fmod(vx, wx); |
| /* note: checking mod*wx < 0 is incorrect -- underflows to |
| 0 if wx < sqrt(smallest nonzero double) */ |
| if (mod && ((wx < 0) != (mod < 0))) { |
| mod += wx; |
| } |
| PyFPE_END_PROTECT(mod) |
| return PyFloat_FromDouble(mod); |
| } |
| |
| static PyObject * |
| float_divmod(PyObject *v, PyObject *w) |
| { |
| double vx, wx; |
| double div, mod, floordiv; |
| CONVERT_TO_DOUBLE(v, vx); |
| CONVERT_TO_DOUBLE(w, wx); |
| if (wx == 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); |
| return NULL; |
| } |
| PyFPE_START_PROTECT("divmod", return 0) |
| mod = fmod(vx, wx); |
| /* fmod is typically exact, so vx-mod is *mathematically* an |
| exact multiple of wx. But this is fp arithmetic, and fp |
| vx - mod is an approximation; the result is that div may |
| not be an exact integral value after the division, although |
| it will always be very close to one. |
| */ |
| div = (vx - mod) / wx; |
| if (mod) { |
| /* ensure the remainder has the same sign as the denominator */ |
| if ((wx < 0) != (mod < 0)) { |
| mod += wx; |
| div -= 1.0; |
| } |
| } |
| else { |
| /* the remainder is zero, and in the presence of signed zeroes |
| fmod returns different results across platforms; ensure |
| it has the same sign as the denominator; we'd like to do |
| "mod = wx * 0.0", but that may get optimized away */ |
| mod *= mod; /* hide "mod = +0" from optimizer */ |
| if (wx < 0.0) |
| mod = -mod; |
| } |
| /* snap quotient to nearest integral value */ |
| if (div) { |
| floordiv = floor(div); |
| if (div - floordiv > 0.5) |
| floordiv += 1.0; |
| } |
| else { |
| /* div is zero - get the same sign as the true quotient */ |
| div *= div; /* hide "div = +0" from optimizers */ |
| floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ |
| } |
| PyFPE_END_PROTECT(floordiv) |
| return Py_BuildValue("(dd)", floordiv, mod); |
| } |
| |
| static PyObject * |
| float_floor_div(PyObject *v, PyObject *w) |
| { |
| PyObject *t, *r; |
| |
| t = float_divmod(v, w); |
| if (t == NULL || t == Py_NotImplemented) |
| return t; |
| assert(PyTuple_CheckExact(t)); |
| r = PyTuple_GET_ITEM(t, 0); |
| Py_INCREF(r); |
| Py_DECREF(t); |
| return r; |
| } |
| |
| static PyObject * |
| float_pow(PyObject *v, PyObject *w, PyObject *z) |
| { |
| double iv, iw, ix; |
| |
| if ((PyObject *)z != Py_None) { |
| PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " |
| "allowed unless all arguments are integers"); |
| return NULL; |
| } |
| |
| CONVERT_TO_DOUBLE(v, iv); |
| CONVERT_TO_DOUBLE(w, iw); |
| |
| /* Sort out special cases here instead of relying on pow() */ |
| if (iw == 0) { /* v**0 is 1, even 0**0 */ |
| PyFPE_START_PROTECT("pow", return NULL) |
| if ((PyObject *)z != Py_None) { |
| double iz; |
| CONVERT_TO_DOUBLE(z, iz); |
| ix = fmod(1.0, iz); |
| if (ix != 0 && iz < 0) |
| ix += iz; |
| } |
| else |
| ix = 1.0; |
| PyFPE_END_PROTECT(ix) |
| return PyFloat_FromDouble(ix); |
| } |
| if (iv == 0.0) { /* 0**w is error if w<0, else 1 */ |
| if (iw < 0.0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "0.0 cannot be raised to a negative power"); |
| return NULL; |
| } |
| return PyFloat_FromDouble(0.0); |
| } |
| if (iv < 0.0 && iw != floor(iw)) { |
| PyErr_SetString(PyExc_ValueError, |
| "negative number cannot be raised to a fractional power"); |
| return NULL; |
| } |
| errno = 0; |
| PyFPE_START_PROTECT("pow", return NULL) |
| ix = pow(iv, iw); |
| PyFPE_END_PROTECT(ix) |
| Py_ADJUST_ERANGE1(ix); |
| if (errno != 0) { |
| assert(errno == ERANGE); |
| PyErr_SetFromErrno(PyExc_OverflowError); |
| return NULL; |
| } |
| return PyFloat_FromDouble(ix); |
| } |
| |
| static PyObject * |
| float_neg(PyFloatObject *v) |
| { |
| return PyFloat_FromDouble(-v->ob_fval); |
| } |
| |
| static PyObject * |
| float_pos(PyFloatObject *v) |
| { |
| if (PyFloat_CheckExact(v)) { |
| Py_INCREF(v); |
| return (PyObject *)v; |
| } |
| else |
| return PyFloat_FromDouble(v->ob_fval); |
| } |
| |
| static PyObject * |
| float_abs(PyFloatObject *v) |
| { |
| return PyFloat_FromDouble(fabs(v->ob_fval)); |
| } |
| |
| static int |
| float_nonzero(PyFloatObject *v) |
| { |
| return v->ob_fval != 0.0; |
| } |
| |
| static int |
| float_coerce(PyObject **pv, PyObject **pw) |
| { |
| if (PyInt_Check(*pw)) { |
| long x = PyInt_AsLong(*pw); |
| *pw = PyFloat_FromDouble((double)x); |
| Py_INCREF(*pv); |
| return 0; |
| } |
| else if (PyLong_Check(*pw)) { |
| *pw = PyFloat_FromDouble(PyLong_AsDouble(*pw)); |
| Py_INCREF(*pv); |
| return 0; |
| } |
| else if (PyFloat_Check(*pw)) { |
| Py_INCREF(*pv); |
| Py_INCREF(*pw); |
| return 0; |
| } |
| return 1; /* Can't do it */ |
| } |
| |
| static PyObject * |
| float_int(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| double wholepart; /* integral portion of x, rounded toward 0 */ |
| long aslong; /* (long)wholepart */ |
| |
| (void)modf(x, &wholepart); |
| #ifdef RISCOS |
| /* conversion from floating to integral type would raise exception */ |
| if (wholepart>LONG_MAX || wholepart<LONG_MIN) { |
| PyErr_SetString(PyExc_OverflowError, "float too large to convert"); |
| return NULL; |
| } |
| #endif |
| /* doubles may have more bits than longs, or vice versa; and casting |
| to long may yield gibberish in either case. What really matters |
| is whether converting back to double again reproduces what we |
| started with. */ |
| aslong = (long)wholepart; |
| if ((double)aslong == wholepart) |
| return PyInt_FromLong(aslong); |
| PyErr_SetString(PyExc_OverflowError, "float too large to convert"); |
| return NULL; |
| } |
| |
| static PyObject * |
| float_long(PyObject *v) |
| { |
| double x = PyFloat_AsDouble(v); |
| return PyLong_FromDouble(x); |
| } |
| |
| static PyObject * |
| float_float(PyObject *v) |
| { |
| Py_INCREF(v); |
| return v; |
| } |
| |
| |
| staticforward PyObject * |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); |
| |
| static PyObject * |
| float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *x = Py_False; /* Integer zero */ |
| static char *kwlist[] = {"x", 0}; |
| |
| if (type != &PyFloat_Type) |
| return float_subtype_new(type, args, kwds); /* Wimp out */ |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) |
| return NULL; |
| if (PyString_Check(x)) |
| return PyFloat_FromString(x, NULL); |
| return PyNumber_Float(x); |
| } |
| |
| /* Wimpy, slow approach to tp_new calls for subtypes of float: |
| first create a regular float from whatever arguments we got, |
| then allocate a subtype instance and initialize its ob_fval |
| from the regular float. The regular float is then thrown away. |
| */ |
| static PyObject * |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *tmp, *new; |
| |
| assert(PyType_IsSubtype(type, &PyFloat_Type)); |
| tmp = float_new(&PyFloat_Type, args, kwds); |
| if (tmp == NULL) |
| return NULL; |
| assert(PyFloat_CheckExact(tmp)); |
| new = type->tp_alloc(type, 0); |
| if (new == NULL) |
| return NULL; |
| ((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; |
| Py_DECREF(tmp); |
| return new; |
| } |
| |
| static char float_doc[] = |
| "float(x) -> floating point number\n\ |
| \n\ |
| Convert a string or number to a floating point number, if possible."; |
| |
| |
| static PyNumberMethods float_as_number = { |
| (binaryfunc)float_add, /*nb_add*/ |
| (binaryfunc)float_sub, /*nb_subtract*/ |
| (binaryfunc)float_mul, /*nb_multiply*/ |
| (binaryfunc)float_classic_div, /*nb_divide*/ |
| (binaryfunc)float_rem, /*nb_remainder*/ |
| (binaryfunc)float_divmod, /*nb_divmod*/ |
| (ternaryfunc)float_pow, /*nb_power*/ |
| (unaryfunc)float_neg, /*nb_negative*/ |
| (unaryfunc)float_pos, /*nb_positive*/ |
| (unaryfunc)float_abs, /*nb_absolute*/ |
| (inquiry)float_nonzero, /*nb_nonzero*/ |
| 0, /*nb_invert*/ |
| 0, /*nb_lshift*/ |
| 0, /*nb_rshift*/ |
| 0, /*nb_and*/ |
| 0, /*nb_xor*/ |
| 0, /*nb_or*/ |
| (coercion)float_coerce, /*nb_coerce*/ |
| (unaryfunc)float_int, /*nb_int*/ |
| (unaryfunc)float_long, /*nb_long*/ |
| (unaryfunc)float_float, /*nb_float*/ |
| 0, /* nb_oct */ |
| 0, /* nb_hex */ |
| 0, /* nb_inplace_add */ |
| 0, /* nb_inplace_subtract */ |
| 0, /* nb_inplace_multiply */ |
| 0, /* nb_inplace_divide */ |
| 0, /* nb_inplace_remainder */ |
| 0, /* nb_inplace_power */ |
| 0, /* nb_inplace_lshift */ |
| 0, /* nb_inplace_rshift */ |
| 0, /* nb_inplace_and */ |
| 0, /* nb_inplace_xor */ |
| 0, /* nb_inplace_or */ |
| float_floor_div, /* nb_floor_divide */ |
| float_div, /* nb_true_divide */ |
| 0, /* nb_inplace_floor_divide */ |
| 0, /* nb_inplace_true_divide */ |
| }; |
| |
| PyTypeObject PyFloat_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "float", |
| sizeof(PyFloatObject), |
| 0, |
| (destructor)float_dealloc, /* tp_dealloc */ |
| (printfunc)float_print, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| (cmpfunc)float_compare, /* tp_compare */ |
| (reprfunc)float_repr, /* tp_repr */ |
| &float_as_number, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| (hashfunc)float_hash, /* tp_hash */ |
| 0, /* tp_call */ |
| (reprfunc)float_str, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | |
| Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| float_doc, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| 0, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| float_new, /* tp_new */ |
| }; |
| |
| void |
| PyFloat_Fini(void) |
| { |
| PyFloatObject *p; |
| PyFloatBlock *list, *next; |
| int i; |
| int bc, bf; /* block count, number of freed blocks */ |
| int frem, fsum; /* remaining unfreed floats per block, total */ |
| |
| bc = 0; |
| bf = 0; |
| fsum = 0; |
| list = block_list; |
| block_list = NULL; |
| free_list = NULL; |
| while (list != NULL) { |
| bc++; |
| frem = 0; |
| for (i = 0, p = &list->objects[0]; |
| i < N_FLOATOBJECTS; |
| i++, p++) { |
| if (PyFloat_CheckExact(p) && p->ob_refcnt != 0) |
| frem++; |
| } |
| next = list->next; |
| if (frem) { |
| list->next = block_list; |
| block_list = list; |
| for (i = 0, p = &list->objects[0]; |
| i < N_FLOATOBJECTS; |
| i++, p++) { |
| if (!PyFloat_CheckExact(p) || |
| p->ob_refcnt == 0) { |
| p->ob_type = (struct _typeobject *) |
| free_list; |
| free_list = p; |
| } |
| } |
| } |
| else { |
| PyMem_FREE(list); /* XXX PyObject_FREE ??? */ |
| bf++; |
| } |
| fsum += frem; |
| list = next; |
| } |
| if (!Py_VerboseFlag) |
| return; |
| fprintf(stderr, "# cleanup floats"); |
| if (!fsum) { |
| fprintf(stderr, "\n"); |
| } |
| else { |
| fprintf(stderr, |
| ": %d unfreed float%s in %d out of %d block%s\n", |
| fsum, fsum == 1 ? "" : "s", |
| bc - bf, bc, bc == 1 ? "" : "s"); |
| } |
| if (Py_VerboseFlag > 1) { |
| list = block_list; |
| while (list != NULL) { |
| for (i = 0, p = &list->objects[0]; |
| i < N_FLOATOBJECTS; |
| i++, p++) { |
| if (PyFloat_CheckExact(p) && |
| p->ob_refcnt != 0) { |
| char buf[100]; |
| PyFloat_AsString(buf, p); |
| fprintf(stderr, |
| "# <float at %p, refcnt=%d, val=%s>\n", |
| p, p->ob_refcnt, buf); |
| } |
| } |
| list = list->next; |
| } |
| } |
| } |