|  | 
 | /* Float object implementation */ | 
 |  | 
 | /* XXX There should be overflow checks here, but it's hard to check | 
 |    for any kind of float exception without losing portability. */ | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | #include <ctype.h> | 
 |  | 
 | #if !defined(__STDC__) | 
 | extern double fmod(double, double); | 
 | extern double pow(double, double); | 
 | #endif | 
 |  | 
 | /* Special free list -- see comments for same code in intobject.c. */ | 
 | #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */ | 
 | #define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */ | 
 | #define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) | 
 |  | 
 | struct _floatblock { | 
 | 	struct _floatblock *next; | 
 | 	PyFloatObject objects[N_FLOATOBJECTS]; | 
 | }; | 
 |  | 
 | typedef struct _floatblock PyFloatBlock; | 
 |  | 
 | static PyFloatBlock *block_list = NULL; | 
 | static PyFloatObject *free_list = NULL; | 
 |  | 
 | static PyFloatObject * | 
 | fill_free_list(void) | 
 | { | 
 | 	PyFloatObject *p, *q; | 
 | 	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ | 
 | 	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); | 
 | 	if (p == NULL) | 
 | 		return (PyFloatObject *) PyErr_NoMemory(); | 
 | 	((PyFloatBlock *)p)->next = block_list; | 
 | 	block_list = (PyFloatBlock *)p; | 
 | 	p = &((PyFloatBlock *)p)->objects[0]; | 
 | 	q = p + N_FLOATOBJECTS; | 
 | 	while (--q > p) | 
 | 		q->ob_type = (struct _typeobject *)(q-1); | 
 | 	q->ob_type = NULL; | 
 | 	return p + N_FLOATOBJECTS - 1; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyFloat_FromDouble(double fval) | 
 | { | 
 | 	register PyFloatObject *op; | 
 | 	if (free_list == NULL) { | 
 | 		if ((free_list = fill_free_list()) == NULL) | 
 | 			return NULL; | 
 | 	} | 
 | 	/* Inline PyObject_New */ | 
 | 	op = free_list; | 
 | 	free_list = (PyFloatObject *)op->ob_type; | 
 | 	PyObject_INIT(op, &PyFloat_Type); | 
 | 	op->ob_fval = fval; | 
 | 	return (PyObject *) op; | 
 | } | 
 |  | 
 | /************************************************************************** | 
 | RED_FLAG 22-Sep-2000 tim | 
 | PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG, | 
 |  | 
 | 1.  If v was a regular string, *pend was set to point to its terminating | 
 |     null byte.  That's useless (the caller can find that without any | 
 |     help from this function!). | 
 |  | 
 | 2.  If v was a Unicode string, or an object convertible to a character | 
 |     buffer, *pend was set to point into stack trash (the auto temp | 
 |     vector holding the character buffer).  That was downright dangerous. | 
 |  | 
 | Since we can't change the interface of a public API function, pend is | 
 | still supported but now *officially* useless:  if pend is not NULL, | 
 | *pend is set to NULL. | 
 | **************************************************************************/ | 
 | PyObject * | 
 | PyFloat_FromString(PyObject *v, char **pend) | 
 | { | 
 | 	const char *s, *last, *end; | 
 | 	double x; | 
 | 	char buffer[256]; /* for errors */ | 
 | #ifdef Py_USING_UNICODE | 
 | 	char s_buffer[256]; /* for objects convertible to a char buffer */ | 
 | #endif | 
 | 	int len; | 
 |  | 
 | 	if (pend) | 
 | 		*pend = NULL; | 
 | 	if (PyString_Check(v)) { | 
 | 		s = PyString_AS_STRING(v); | 
 | 		len = PyString_GET_SIZE(v); | 
 | 	} | 
 | #ifdef Py_USING_UNICODE | 
 | 	else if (PyUnicode_Check(v)) { | 
 | 		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 				"Unicode float() literal too long to convert"); | 
 | 			return NULL; | 
 | 		} | 
 | 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), | 
 | 					    PyUnicode_GET_SIZE(v), | 
 | 					    s_buffer, | 
 | 					    NULL)) | 
 | 			return NULL; | 
 | 		s = s_buffer; | 
 | 		len = (int)strlen(s); | 
 | 	} | 
 | #endif | 
 | 	else if (PyObject_AsCharBuffer(v, &s, &len)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"float() argument must be a string or a number"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	last = s + len; | 
 | 	while (*s && isspace(Py_CHARMASK(*s))) | 
 | 		s++; | 
 | 	if (*s == '\0') { | 
 | 		PyErr_SetString(PyExc_ValueError, "empty string for float()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* We don't care about overflow or underflow.  If the platform supports | 
 | 	 * them, infinities and signed zeroes (on underflow) are fine. | 
 | 	 * However, strtod can return 0 for denormalized numbers, where atof | 
 | 	 * does not.  So (alas!) we special-case a zero result.  Note that | 
 | 	 * whether strtod sets errno on underflow is not defined, so we can't | 
 | 	 * key off errno. | 
 |          */ | 
 | 	PyFPE_START_PROTECT("strtod", return NULL) | 
 | 	x = PyOS_ascii_strtod(s, (char **)&end); | 
 | 	PyFPE_END_PROTECT(x) | 
 | 	errno = 0; | 
 | 	/* Believe it or not, Solaris 2.6 can move end *beyond* the null | 
 | 	   byte at the end of the string, when the input is inf(inity). */ | 
 | 	if (end > last) | 
 | 		end = last; | 
 | 	if (end == s) { | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "invalid literal for float(): %.200s", s); | 
 | 		PyErr_SetString(PyExc_ValueError, buffer); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* Since end != s, the platform made *some* kind of sense out | 
 | 	   of the input.  Trust it. */ | 
 | 	while (*end && isspace(Py_CHARMASK(*end))) | 
 | 		end++; | 
 | 	if (*end != '\0') { | 
 | 		PyOS_snprintf(buffer, sizeof(buffer), | 
 | 			      "invalid literal for float(): %.200s", s); | 
 | 		PyErr_SetString(PyExc_ValueError, buffer); | 
 | 		return NULL; | 
 | 	} | 
 | 	else if (end != last) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"null byte in argument for float()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (x == 0.0) { | 
 | 		/* See above -- may have been strtod being anal | 
 | 		   about denorms. */ | 
 | 		PyFPE_START_PROTECT("atof", return NULL) | 
 | 		x = PyOS_ascii_atof(s); | 
 | 		PyFPE_END_PROTECT(x) | 
 | 		errno = 0;    /* whether atof ever set errno is undefined */ | 
 | 	} | 
 | 	return PyFloat_FromDouble(x); | 
 | } | 
 |  | 
 | static void | 
 | float_dealloc(PyFloatObject *op) | 
 | { | 
 | 	if (PyFloat_CheckExact(op)) { | 
 | 		op->ob_type = (struct _typeobject *)free_list; | 
 | 		free_list = op; | 
 | 	} | 
 | 	else | 
 | 		op->ob_type->tp_free((PyObject *)op); | 
 | } | 
 |  | 
 | double | 
 | PyFloat_AsDouble(PyObject *op) | 
 | { | 
 | 	PyNumberMethods *nb; | 
 | 	PyFloatObject *fo; | 
 | 	double val; | 
 |  | 
 | 	if (op && PyFloat_Check(op)) | 
 | 		return PyFloat_AS_DOUBLE((PyFloatObject*) op); | 
 |  | 
 | 	if (op == NULL) { | 
 | 		PyErr_BadArgument(); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) { | 
 | 		PyErr_SetString(PyExc_TypeError, "a float is required"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	fo = (PyFloatObject*) (*nb->nb_float) (op); | 
 | 	if (fo == NULL) | 
 | 		return -1; | 
 | 	if (!PyFloat_Check(fo)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"nb_float should return float object"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	val = PyFloat_AS_DOUBLE(fo); | 
 | 	Py_DECREF(fo); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static void | 
 | format_float(char *buf, size_t buflen, PyFloatObject *v, int precision) | 
 | { | 
 | 	register char *cp; | 
 | 	char format[32]; | 
 | 	/* Subroutine for float_repr and float_print. | 
 | 	   We want float numbers to be recognizable as such, | 
 | 	   i.e., they should contain a decimal point or an exponent. | 
 | 	   However, %g may print the number as an integer; | 
 | 	   in such cases, we append ".0" to the string. */ | 
 |  | 
 | 	assert(PyFloat_Check(v)); | 
 | 	PyOS_snprintf(format, 32, "%%.%ig", precision); | 
 | 	PyOS_ascii_formatd(buf, buflen, format, v->ob_fval); | 
 | 	cp = buf; | 
 | 	if (*cp == '-') | 
 | 		cp++; | 
 | 	for (; *cp != '\0'; cp++) { | 
 | 		/* Any non-digit means it's not an integer; | 
 | 		   this takes care of NAN and INF as well. */ | 
 | 		if (!isdigit(Py_CHARMASK(*cp))) | 
 | 			break; | 
 | 	} | 
 | 	if (*cp == '\0') { | 
 | 		*cp++ = '.'; | 
 | 		*cp++ = '0'; | 
 | 		*cp++ = '\0'; | 
 | 	} | 
 | } | 
 |  | 
 | /* XXX PyFloat_AsStringEx should not be a public API function (for one | 
 |    XXX thing, its signature passes a buffer without a length; for another, | 
 |    XXX it isn't useful outside this file). | 
 | */ | 
 | void | 
 | PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision) | 
 | { | 
 | 	format_float(buf, 100, v, precision); | 
 | } | 
 |  | 
 | /* Macro and helper that convert PyObject obj to a C double and store | 
 |    the value in dbl; this replaces the functionality of the coercion | 
 |    slot function.  If conversion to double raises an exception, obj is | 
 |    set to NULL, and the function invoking this macro returns NULL.  If | 
 |    obj is not of float, int or long type, Py_NotImplemented is incref'ed, | 
 |    stored in obj, and returned from the function invoking this macro. | 
 | */ | 
 | #define CONVERT_TO_DOUBLE(obj, dbl)			\ | 
 | 	if (PyFloat_Check(obj))				\ | 
 | 		dbl = PyFloat_AS_DOUBLE(obj);		\ | 
 | 	else if (convert_to_double(&(obj), &(dbl)) < 0)	\ | 
 | 		return obj; | 
 |  | 
 | static int | 
 | convert_to_double(PyObject **v, double *dbl) | 
 | { | 
 | 	register PyObject *obj = *v; | 
 |  | 
 | 	if (PyInt_Check(obj)) { | 
 | 		*dbl = (double)PyInt_AS_LONG(obj); | 
 | 	} | 
 | 	else if (PyLong_Check(obj)) { | 
 | 		*dbl = PyLong_AsDouble(obj); | 
 | 		if (*dbl == -1.0 && PyErr_Occurred()) { | 
 | 			*v = NULL; | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		*v = Py_NotImplemented; | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Precisions used by repr() and str(), respectively. | 
 |  | 
 |    The repr() precision (17 significant decimal digits) is the minimal number | 
 |    that is guaranteed to have enough precision so that if the number is read | 
 |    back in the exact same binary value is recreated.  This is true for IEEE | 
 |    floating point by design, and also happens to work for all other modern | 
 |    hardware. | 
 |  | 
 |    The str() precision is chosen so that in most cases, the rounding noise | 
 |    created by various operations is suppressed, while giving plenty of | 
 |    precision for practical use. | 
 |  | 
 | */ | 
 |  | 
 | #define PREC_REPR	17 | 
 | #define PREC_STR	12 | 
 |  | 
 | /* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated: | 
 |    XXX they pass a char buffer without passing a length. | 
 | */ | 
 | void | 
 | PyFloat_AsString(char *buf, PyFloatObject *v) | 
 | { | 
 | 	format_float(buf, 100, v, PREC_STR); | 
 | } | 
 |  | 
 | void | 
 | PyFloat_AsReprString(char *buf, PyFloatObject *v) | 
 | { | 
 | 	format_float(buf, 100, v, PREC_REPR); | 
 | } | 
 |  | 
 | /* ARGSUSED */ | 
 | static int | 
 | float_print(PyFloatObject *v, FILE *fp, int flags) | 
 | { | 
 | 	char buf[100]; | 
 | 	format_float(buf, sizeof(buf), v, | 
 | 		     (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); | 
 | 	fputs(buf, fp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_repr(PyFloatObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	format_float(buf, sizeof(buf), v, PREC_REPR); | 
 | 	return PyString_FromString(buf); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_str(PyFloatObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	format_float(buf, sizeof(buf), v, PREC_STR); | 
 | 	return PyString_FromString(buf); | 
 | } | 
 |  | 
 | /* Comparison is pretty much a nightmare.  When comparing float to float, | 
 |  * we do it as straightforwardly (and long-windedly) as conceivable, so | 
 |  * that, e.g., Python x == y delivers the same result as the platform | 
 |  * C x == y when x and/or y is a NaN. | 
 |  * When mixing float with an integer type, there's no good *uniform* approach. | 
 |  * Converting the double to an integer obviously doesn't work, since we | 
 |  * may lose info from fractional bits.  Converting the integer to a double | 
 |  * also has two failure modes:  (1) a long int may trigger overflow (too | 
 |  * large to fit in the dynamic range of a C double); (2) even a C long may have | 
 |  * more bits than fit in a C double (e.g., on a a 64-bit box long may have | 
 |  * 63 bits of precision, but a C double probably has only 53), and then | 
 |  * we can falsely claim equality when low-order integer bits are lost by | 
 |  * coercion to double.  So this part is painful too. | 
 |  */ | 
 |  | 
 | static PyObject* | 
 | float_richcompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	double i, j; | 
 | 	int r = 0; | 
 |  | 
 | 	assert(PyFloat_Check(v)); | 
 | 	i = PyFloat_AS_DOUBLE(v); | 
 |  | 
 | 	/* Switch on the type of w.  Set i and j to doubles to be compared, | 
 | 	 * and op to the richcomp to use. | 
 | 	 */ | 
 | 	if (PyFloat_Check(w)) | 
 | 		j = PyFloat_AS_DOUBLE(w); | 
 |  | 
 | 	else if (Py_IS_INFINITY(i) || Py_IS_NAN(i)) { | 
 | 		if (PyInt_Check(w) || PyLong_Check(w)) | 
 | 			/* If i is an infinity, its magnitude exceeds any | 
 | 			 * finite integer, so it doesn't matter which int we | 
 | 			 * compare i with.  If i is a NaN, similarly. | 
 | 			 */ | 
 | 			j = 0.0; | 
 | 		else | 
 | 			goto Unimplemented; | 
 | 	} | 
 |  | 
 | 	else if (PyInt_Check(w)) { | 
 | 		long jj = PyInt_AS_LONG(w); | 
 | 		/* In the worst realistic case I can imagine, C double is a | 
 | 		 * Cray single with 48 bits of precision, and long has 64 | 
 | 		 * bits. | 
 | 		 */ | 
 | #if SIZEOF_LONG > 6 | 
 | 		unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj); | 
 | 		if (abs >> 48) { | 
 | 			/* Needs more than 48 bits.  Make it take the | 
 | 			 * PyLong path. | 
 | 			 */ | 
 | 			PyObject *result; | 
 | 			PyObject *ww = PyLong_FromLong(jj); | 
 |  | 
 | 			if (ww == NULL) | 
 | 				return NULL; | 
 | 			result = float_richcompare(v, ww, op); | 
 | 			Py_DECREF(ww); | 
 | 			return result; | 
 | 		} | 
 | #endif | 
 | 		j = (double)jj; | 
 | 		assert((long)j == jj); | 
 | 	} | 
 |  | 
 | 	else if (PyLong_Check(w)) { | 
 | 		int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; | 
 | 		int wsign = _PyLong_Sign(w); | 
 | 		size_t nbits; | 
 | 		double mant; | 
 | 		int exponent; | 
 |  | 
 | 		if (vsign != wsign) { | 
 | 			/* Magnitudes are irrelevant -- the signs alone | 
 | 			 * determine the outcome. | 
 | 			 */ | 
 | 			i = (double)vsign; | 
 | 			j = (double)wsign; | 
 | 			goto Compare; | 
 | 		} | 
 | 		/* The signs are the same. */ | 
 | 		/* Convert w to a double if it fits.  In particular, 0 fits. */ | 
 | 		nbits = _PyLong_NumBits(w); | 
 | 		if (nbits == (size_t)-1 && PyErr_Occurred()) { | 
 | 			/* This long is so large that size_t isn't big enough | 
 | 			 * to hold the # of bits.  Replace with little doubles | 
 | 			 * that give the same outcome -- w is so large that | 
 | 			 * its magnitude must exceed the magnitude of any | 
 | 			 * finite float. | 
 | 			 */ | 
 | 			PyErr_Clear(); | 
 | 			i = (double)vsign; | 
 | 			assert(wsign != 0); | 
 | 			j = wsign * 2.0; | 
 | 			goto Compare; | 
 | 		} | 
 | 		if (nbits <= 48) { | 
 | 			j = PyLong_AsDouble(w); | 
 | 			/* It's impossible that <= 48 bits overflowed. */ | 
 | 			assert(j != -1.0 || ! PyErr_Occurred()); | 
 | 			goto Compare; | 
 | 		} | 
 | 		assert(wsign != 0); /* else nbits was 0 */ | 
 | 		assert(vsign != 0); /* if vsign were 0, then since wsign is | 
 | 		                     * not 0, we would have taken the | 
 | 		                     * vsign != wsign branch at the start */ | 
 | 		/* We want to work with non-negative numbers. */ | 
 | 		if (vsign < 0) { | 
 | 			/* "Multiply both sides" by -1; this also swaps the | 
 | 			 * comparator. | 
 | 			 */ | 
 | 			i = -i; | 
 | 			op = _Py_SwappedOp[op]; | 
 | 		} | 
 | 		assert(i > 0.0); | 
 | 		mant = frexp(i, &exponent); | 
 | 		/* exponent is the # of bits in v before the radix point; | 
 | 		 * we know that nbits (the # of bits in w) > 48 at this point | 
 | 		 */ | 
 | 		if (exponent < 0 || (size_t)exponent < nbits) { | 
 | 			i = 1.0; | 
 | 			j = 2.0; | 
 | 			goto Compare; | 
 | 		} | 
 | 		if ((size_t)exponent > nbits) { | 
 | 			i = 2.0; | 
 | 			j = 1.0; | 
 | 			goto Compare; | 
 | 		} | 
 | 		/* v and w have the same number of bits before the radix | 
 | 		 * point.  Construct two longs that have the same comparison | 
 | 		 * outcome. | 
 | 		 */ | 
 | 		{ | 
 | 			double fracpart; | 
 | 			double intpart; | 
 | 			PyObject *result = NULL; | 
 | 			PyObject *one = NULL; | 
 | 			PyObject *vv = NULL; | 
 | 			PyObject *ww = w; | 
 |  | 
 | 			if (wsign < 0) { | 
 | 				ww = PyNumber_Negative(w); | 
 | 				if (ww == NULL) | 
 | 					goto Error; | 
 | 			} | 
 | 			else | 
 | 				Py_INCREF(ww); | 
 |  | 
 | 			fracpart = modf(i, &intpart); | 
 | 			vv = PyLong_FromDouble(intpart); | 
 | 			if (vv == NULL) | 
 | 				goto Error; | 
 |  | 
 | 			if (fracpart != 0.0) { | 
 | 				/* Shift left, and or a 1 bit into vv | 
 | 				 * to represent the lost fraction. | 
 | 				 */ | 
 | 				PyObject *temp; | 
 |  | 
 | 				one = PyInt_FromLong(1); | 
 | 				if (one == NULL) | 
 | 					goto Error; | 
 |  | 
 | 				temp = PyNumber_Lshift(ww, one); | 
 | 				if (temp == NULL) | 
 | 					goto Error; | 
 | 				Py_DECREF(ww); | 
 | 				ww = temp; | 
 |  | 
 | 				temp = PyNumber_Lshift(vv, one); | 
 | 				if (temp == NULL) | 
 | 					goto Error; | 
 | 				Py_DECREF(vv); | 
 | 				vv = temp; | 
 |  | 
 | 				temp = PyNumber_Or(vv, one); | 
 | 				if (temp == NULL) | 
 | 					goto Error; | 
 | 				Py_DECREF(vv); | 
 | 				vv = temp; | 
 | 			} | 
 |  | 
 | 			r = PyObject_RichCompareBool(vv, ww, op); | 
 | 			if (r < 0) | 
 | 				goto Error; | 
 | 			result = PyBool_FromLong(r); | 
 |  		 Error: | 
 |  		 	Py_XDECREF(vv); | 
 |  		 	Py_XDECREF(ww); | 
 |  		 	Py_XDECREF(one); | 
 |  		 	return result; | 
 | 		} | 
 | 	} /* else if (PyLong_Check(w)) */ | 
 |  | 
 | 	else	/* w isn't float, int, or long */ | 
 | 		goto Unimplemented; | 
 |  | 
 |  Compare: | 
 | 	PyFPE_START_PROTECT("richcompare", return NULL) | 
 | 	switch (op) { | 
 | 	case Py_EQ: | 
 | 		r = i == j; | 
 | 		break; | 
 | 	case Py_NE: | 
 | 		r = i != j; | 
 | 		break; | 
 | 	case Py_LE: | 
 | 		r = i <= j; | 
 | 		break; | 
 | 	case Py_GE: | 
 | 		r = i >= j; | 
 | 		break; | 
 | 	case Py_LT: | 
 | 		r = i < j; | 
 | 		break; | 
 | 	case Py_GT: | 
 | 		r = i > j; | 
 | 		break; | 
 | 	} | 
 | 	PyFPE_END_PROTECT(r) | 
 | 	return PyBool_FromLong(r); | 
 |  | 
 |  Unimplemented: | 
 | 	Py_INCREF(Py_NotImplemented); | 
 | 	return Py_NotImplemented; | 
 | } | 
 |  | 
 | static long | 
 | float_hash(PyFloatObject *v) | 
 | { | 
 | 	return _Py_HashDouble(v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_add(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	PyFPE_START_PROTECT("add", return 0) | 
 | 	a = a + b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_sub(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	PyFPE_START_PROTECT("subtract", return 0) | 
 | 	a = a - b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_mul(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	PyFPE_START_PROTECT("multiply", return 0) | 
 | 	a = a * b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	if (b == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float division"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("divide", return 0) | 
 | 	a = a / b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_classic_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	double a,b; | 
 | 	CONVERT_TO_DOUBLE(v, a); | 
 | 	CONVERT_TO_DOUBLE(w, b); | 
 | 	if (Py_DivisionWarningFlag >= 2 && | 
 | 	    PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0) | 
 | 		return NULL; | 
 | 	if (b == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float division"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("divide", return 0) | 
 | 	a = a / b; | 
 | 	PyFPE_END_PROTECT(a) | 
 | 	return PyFloat_FromDouble(a); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_rem(PyObject *v, PyObject *w) | 
 | { | 
 | 	double vx, wx; | 
 | 	double mod; | 
 |  	CONVERT_TO_DOUBLE(v, vx); | 
 |  	CONVERT_TO_DOUBLE(w, wx); | 
 | 	if (wx == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("modulo", return 0) | 
 | 	mod = fmod(vx, wx); | 
 | 	/* note: checking mod*wx < 0 is incorrect -- underflows to | 
 | 	   0 if wx < sqrt(smallest nonzero double) */ | 
 | 	if (mod && ((wx < 0) != (mod < 0))) { | 
 | 		mod += wx; | 
 | 	} | 
 | 	PyFPE_END_PROTECT(mod) | 
 | 	return PyFloat_FromDouble(mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_divmod(PyObject *v, PyObject *w) | 
 | { | 
 | 	double vx, wx; | 
 | 	double div, mod, floordiv; | 
 |  	CONVERT_TO_DOUBLE(v, vx); | 
 |  	CONVERT_TO_DOUBLE(w, wx); | 
 | 	if (wx == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("divmod", return 0) | 
 | 	mod = fmod(vx, wx); | 
 | 	/* fmod is typically exact, so vx-mod is *mathematically* an | 
 | 	   exact multiple of wx.  But this is fp arithmetic, and fp | 
 | 	   vx - mod is an approximation; the result is that div may | 
 | 	   not be an exact integral value after the division, although | 
 | 	   it will always be very close to one. | 
 | 	*/ | 
 | 	div = (vx - mod) / wx; | 
 | 	if (mod) { | 
 | 		/* ensure the remainder has the same sign as the denominator */ | 
 | 		if ((wx < 0) != (mod < 0)) { | 
 | 			mod += wx; | 
 | 			div -= 1.0; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* the remainder is zero, and in the presence of signed zeroes | 
 | 		   fmod returns different results across platforms; ensure | 
 | 		   it has the same sign as the denominator; we'd like to do | 
 | 		   "mod = wx * 0.0", but that may get optimized away */ | 
 | 		mod *= mod;  /* hide "mod = +0" from optimizer */ | 
 | 		if (wx < 0.0) | 
 | 			mod = -mod; | 
 | 	} | 
 | 	/* snap quotient to nearest integral value */ | 
 | 	if (div) { | 
 | 		floordiv = floor(div); | 
 | 		if (div - floordiv > 0.5) | 
 | 			floordiv += 1.0; | 
 | 	} | 
 | 	else { | 
 | 		/* div is zero - get the same sign as the true quotient */ | 
 | 		div *= div;	/* hide "div = +0" from optimizers */ | 
 | 		floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ | 
 | 	} | 
 | 	PyFPE_END_PROTECT(floordiv) | 
 | 	return Py_BuildValue("(dd)", floordiv, mod); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_floor_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyObject *t, *r; | 
 |  | 
 | 	t = float_divmod(v, w); | 
 | 	if (t == NULL || t == Py_NotImplemented) | 
 | 		return t; | 
 | 	assert(PyTuple_CheckExact(t)); | 
 | 	r = PyTuple_GET_ITEM(t, 0); | 
 | 	Py_INCREF(r); | 
 | 	Py_DECREF(t); | 
 | 	return r; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_pow(PyObject *v, PyObject *w, PyObject *z) | 
 | { | 
 | 	double iv, iw, ix; | 
 |  | 
 | 	if ((PyObject *)z != Py_None) { | 
 | 		PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " | 
 | 			"allowed unless all arguments are integers"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	CONVERT_TO_DOUBLE(v, iv); | 
 | 	CONVERT_TO_DOUBLE(w, iw); | 
 |  | 
 | 	/* Sort out special cases here instead of relying on pow() */ | 
 | 	if (iw == 0) { 		/* v**0 is 1, even 0**0 */ | 
 | 		PyFPE_START_PROTECT("pow", return NULL) | 
 | 		if ((PyObject *)z != Py_None) { | 
 | 			double iz; | 
 | 			CONVERT_TO_DOUBLE(z, iz); | 
 | 			ix = fmod(1.0, iz); | 
 | 			if (ix != 0 && iz < 0) | 
 | 				ix += iz; | 
 | 		} | 
 | 		else | 
 | 			ix = 1.0; | 
 | 		PyFPE_END_PROTECT(ix) | 
 | 		return PyFloat_FromDouble(ix); | 
 | 	} | 
 | 	if (iv == 0.0) {  /* 0**w is error if w<0, else 1 */ | 
 | 		if (iw < 0.0) { | 
 | 			PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 					"0.0 cannot be raised to a negative power"); | 
 | 			return NULL; | 
 | 		} | 
 | 		return PyFloat_FromDouble(0.0); | 
 | 	} | 
 | 	if (iv < 0.0) { | 
 | 		/* Whether this is an error is a mess, and bumps into libm | 
 | 		 * bugs so we have to figure it out ourselves. | 
 | 		 */ | 
 | 		if (iw != floor(iw)) { | 
 | 			PyErr_SetString(PyExc_ValueError, "negative number " | 
 | 				"cannot be raised to a fractional power"); | 
 | 			return NULL; | 
 | 		} | 
 | 		/* iw is an exact integer, albeit perhaps a very large one. | 
 | 		 * -1 raised to an exact integer should never be exceptional. | 
 | 		 * Alas, some libms (chiefly glibc as of early 2003) return | 
 | 		 * NaN and set EDOM on pow(-1, large_int) if the int doesn't | 
 | 		 * happen to be representable in a *C* integer.  That's a | 
 | 		 * bug; we let that slide in math.pow() (which currently | 
 | 		 * reflects all platform accidents), but not for Python's **. | 
 | 		 */ | 
 | 		 if (iv == -1.0 && !Py_IS_INFINITY(iw) && iw == iw) { | 
 | 		 	/* XXX the "iw == iw" was to weed out NaNs.  This | 
 | 		 	 * XXX doesn't actually work on all platforms. | 
 | 		 	 */ | 
 | 		 	/* Return 1 if iw is even, -1 if iw is odd; there's | 
 | 		 	 * no guarantee that any C integral type is big | 
 | 		 	 * enough to hold iw, so we have to check this | 
 | 		 	 * indirectly. | 
 | 		 	 */ | 
 | 		 	ix = floor(iw * 0.5) * 2.0; | 
 | 			return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0); | 
 | 		} | 
 | 		/* Else iv != -1.0, and overflow or underflow are possible. | 
 | 		 * Unless we're to write pow() ourselves, we have to trust | 
 | 		 * the platform to do this correctly. | 
 | 		 */ | 
 | 	} | 
 | 	errno = 0; | 
 | 	PyFPE_START_PROTECT("pow", return NULL) | 
 | 	ix = pow(iv, iw); | 
 | 	PyFPE_END_PROTECT(ix) | 
 | 	Py_ADJUST_ERANGE1(ix); | 
 | 	if (errno != 0) { | 
 | 		/* We don't expect any errno value other than ERANGE, but | 
 | 		 * the range of libm bugs appears unbounded. | 
 | 		 */ | 
 | 		PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : | 
 | 						     PyExc_ValueError); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyFloat_FromDouble(ix); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_neg(PyFloatObject *v) | 
 | { | 
 | 	return PyFloat_FromDouble(-v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_pos(PyFloatObject *v) | 
 | { | 
 | 	if (PyFloat_CheckExact(v)) { | 
 | 		Py_INCREF(v); | 
 | 		return (PyObject *)v; | 
 | 	} | 
 | 	else | 
 | 		return PyFloat_FromDouble(v->ob_fval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_abs(PyFloatObject *v) | 
 | { | 
 | 	return PyFloat_FromDouble(fabs(v->ob_fval)); | 
 | } | 
 |  | 
 | static int | 
 | float_nonzero(PyFloatObject *v) | 
 | { | 
 | 	return v->ob_fval != 0.0; | 
 | } | 
 |  | 
 | static int | 
 | float_coerce(PyObject **pv, PyObject **pw) | 
 | { | 
 | 	if (PyInt_Check(*pw)) { | 
 | 		long x = PyInt_AsLong(*pw); | 
 | 		*pw = PyFloat_FromDouble((double)x); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (PyLong_Check(*pw)) { | 
 | 		double x = PyLong_AsDouble(*pw); | 
 | 		if (x == -1.0 && PyErr_Occurred()) | 
 | 			return -1; | 
 | 		*pw = PyFloat_FromDouble(x); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (PyFloat_Check(*pw)) { | 
 | 		Py_INCREF(*pv); | 
 | 		Py_INCREF(*pw); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; /* Can't do it */ | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_long(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	return PyLong_FromDouble(x); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_int(PyObject *v) | 
 | { | 
 | 	double x = PyFloat_AsDouble(v); | 
 | 	double wholepart;	/* integral portion of x, rounded toward 0 */ | 
 |  | 
 | 	(void)modf(x, &wholepart); | 
 | 	/* Try to get out cheap if this fits in a Python int.  The attempt | 
 | 	 * to cast to long must be protected, as C doesn't define what | 
 | 	 * happens if the double is too big to fit in a long.  Some rare | 
 | 	 * systems raise an exception then (RISCOS was mentioned as one, | 
 | 	 * and someone using a non-default option on Sun also bumped into | 
 | 	 * that).  Note that checking for >= and <= LONG_{MIN,MAX} would | 
 | 	 * still be vulnerable:  if a long has more bits of precision than | 
 | 	 * a double, casting MIN/MAX to double may yield an approximation, | 
 | 	 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would | 
 | 	 * yield true from the C expression wholepart<=LONG_MAX, despite | 
 | 	 * that wholepart is actually greater than LONG_MAX. | 
 | 	 */ | 
 | 	if (LONG_MIN < wholepart && wholepart < LONG_MAX) { | 
 | 		const long aslong = (long)wholepart; | 
 | 		return PyInt_FromLong(aslong); | 
 | 	} | 
 | 	return PyLong_FromDouble(wholepart); | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_float(PyObject *v) | 
 | { | 
 | 	if (PyFloat_CheckExact(v)) | 
 | 		Py_INCREF(v); | 
 | 	else | 
 | 		v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); | 
 | 	return v; | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | 
 |  | 
 | static PyObject * | 
 | float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *x = Py_False; /* Integer zero */ | 
 | 	static char *kwlist[] = {"x", 0}; | 
 |  | 
 | 	if (type != &PyFloat_Type) | 
 | 		return float_subtype_new(type, args, kwds); /* Wimp out */ | 
 | 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) | 
 | 		return NULL; | 
 | 	if (PyString_Check(x)) | 
 | 		return PyFloat_FromString(x, NULL); | 
 | 	return PyNumber_Float(x); | 
 | } | 
 |  | 
 | /* Wimpy, slow approach to tp_new calls for subtypes of float: | 
 |    first create a regular float from whatever arguments we got, | 
 |    then allocate a subtype instance and initialize its ob_fval | 
 |    from the regular float.  The regular float is then thrown away. | 
 | */ | 
 | static PyObject * | 
 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *tmp, *new; | 
 |  | 
 | 	assert(PyType_IsSubtype(type, &PyFloat_Type)); | 
 | 	tmp = float_new(&PyFloat_Type, args, kwds); | 
 | 	if (tmp == NULL) | 
 | 		return NULL; | 
 | 	assert(PyFloat_CheckExact(tmp)); | 
 | 	new = type->tp_alloc(type, 0); | 
 | 	if (new == NULL) { | 
 | 		Py_DECREF(tmp); | 
 | 		return NULL; | 
 | 	} | 
 | 	((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; | 
 | 	Py_DECREF(tmp); | 
 | 	return new; | 
 | } | 
 |  | 
 | static PyObject * | 
 | float_getnewargs(PyFloatObject *v) | 
 | { | 
 | 	return Py_BuildValue("(d)", v->ob_fval); | 
 | } | 
 |  | 
 | /* this is for the benefit of the pack/unpack routines below */ | 
 |  | 
 | typedef enum { | 
 | 	unknown_format, ieee_big_endian_format, ieee_little_endian_format | 
 | } float_format_type; | 
 |  | 
 | static float_format_type double_format, float_format; | 
 | static float_format_type detected_double_format, detected_float_format; | 
 |  | 
 | static PyObject * | 
 | float_getformat(PyTypeObject *v, PyObject* arg) | 
 | { | 
 | 	char* s; | 
 | 	float_format_type r; | 
 |  | 
 | 	if (!PyString_Check(arg)) { | 
 | 		PyErr_Format(PyExc_TypeError, | 
 | 	     "__getformat__() argument must be string, not %.500s", | 
 | 			     arg->ob_type->tp_name); | 
 | 		return NULL; | 
 | 	} | 
 | 	s = PyString_AS_STRING(arg); | 
 | 	if (strcmp(s, "double") == 0) { | 
 | 		r = double_format; | 
 | 	} | 
 | 	else if (strcmp(s, "float") == 0) { | 
 | 		r = float_format; | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"__getformat__() argument 1 must be " | 
 | 				"'double' or 'float'"); | 
 | 		return NULL; | 
 | 	} | 
 | 	 | 
 | 	switch (r) { | 
 | 	case unknown_format: | 
 | 		return PyString_FromString("unknown"); | 
 | 	case ieee_little_endian_format: | 
 | 		return PyString_FromString("IEEE, little-endian"); | 
 | 	case ieee_big_endian_format: | 
 | 		return PyString_FromString("IEEE, big-endian"); | 
 | 	default: | 
 | 		Py_FatalError("insane float_format or double_format"); | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_getformat_doc, | 
 | "float.__getformat__(typestr) -> string\n" | 
 | "\n" | 
 | "You probably don't want to use this function.  It exists mainly to be\n" | 
 | "used in Python's test suite.\n" | 
 | "\n" | 
 | "typestr must be 'double' or 'float'.  This function returns whichever of\n" | 
 | "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n" | 
 | "format of floating point numbers used by the C type named by typestr."); | 
 |  | 
 | static PyObject * | 
 | float_setformat(PyTypeObject *v, PyObject* args) | 
 | { | 
 | 	char* typestr; | 
 | 	char* format; | 
 | 	float_format_type f; | 
 | 	float_format_type detected; | 
 | 	float_format_type *p; | 
 |  | 
 | 	if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format)) | 
 | 		return NULL; | 
 |  | 
 | 	if (strcmp(typestr, "double") == 0) { | 
 | 		p = &double_format; | 
 | 		detected = detected_double_format; | 
 | 	} | 
 | 	else if (strcmp(typestr, "float") == 0) { | 
 | 		p = &float_format; | 
 | 		detected = detected_float_format; | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"__setformat__() argument 1 must " | 
 | 				"be 'double' or 'float'"); | 
 | 		return NULL; | 
 | 	} | 
 | 	 | 
 | 	if (strcmp(format, "unknown") == 0) { | 
 | 		f = unknown_format; | 
 | 	} | 
 | 	else if (strcmp(format, "IEEE, little-endian") == 0) { | 
 | 		f = ieee_little_endian_format; | 
 | 	} | 
 | 	else if (strcmp(format, "IEEE, big-endian") == 0) { | 
 | 		f = ieee_big_endian_format; | 
 | 	} | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"__setformat__() argument 2 must be " | 
 | 				"'unknown', 'IEEE, little-endian' or " | 
 | 				"'IEEE, big-endian'"); | 
 | 		return NULL; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (f != unknown_format && f != detected) { | 
 | 		PyErr_Format(PyExc_ValueError, | 
 | 			     "can only set %s format to 'unknown' or the " | 
 | 			     "detected platform value", typestr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	*p = f; | 
 | 	Py_RETURN_NONE; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(float_setformat_doc, | 
 | "float.__setformat__(typestr, fmt) -> None\n" | 
 | "\n" | 
 | "You probably don't want to use this function.  It exists mainly to be\n" | 
 | "used in Python's test suite.\n" | 
 | "\n" | 
 | "typestr must be 'double' or 'float'.  fmt must be one of 'unknown',\n" | 
 | "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n" | 
 | "one of the latter two if it appears to match the underlying C reality.\n" | 
 | "\n" | 
 | "Overrides the automatic determination of C-level floating point type.\n" | 
 | "This affects how floats are converted to and from binary strings."); | 
 |  | 
 | static PyMethodDef float_methods[] = { | 
 | 	{"__getnewargs__",	(PyCFunction)float_getnewargs,	METH_NOARGS}, | 
 | 	{"__getformat__",	(PyCFunction)float_getformat,	 | 
 | 	 METH_O|METH_CLASS,		float_getformat_doc}, | 
 | 	{"__setformat__",	(PyCFunction)float_setformat,	 | 
 | 	 METH_VARARGS|METH_CLASS,	float_setformat_doc}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(float_doc, | 
 | "float(x) -> floating point number\n\ | 
 | \n\ | 
 | Convert a string or number to a floating point number, if possible."); | 
 |  | 
 |  | 
 | static PyNumberMethods float_as_number = { | 
 | 	(binaryfunc)float_add, /*nb_add*/ | 
 | 	(binaryfunc)float_sub, /*nb_subtract*/ | 
 | 	(binaryfunc)float_mul, /*nb_multiply*/ | 
 | 	(binaryfunc)float_classic_div, /*nb_divide*/ | 
 | 	(binaryfunc)float_rem, /*nb_remainder*/ | 
 | 	(binaryfunc)float_divmod, /*nb_divmod*/ | 
 | 	(ternaryfunc)float_pow, /*nb_power*/ | 
 | 	(unaryfunc)float_neg, /*nb_negative*/ | 
 | 	(unaryfunc)float_pos, /*nb_positive*/ | 
 | 	(unaryfunc)float_abs, /*nb_absolute*/ | 
 | 	(inquiry)float_nonzero, /*nb_nonzero*/ | 
 | 	0,		/*nb_invert*/ | 
 | 	0,		/*nb_lshift*/ | 
 | 	0,		/*nb_rshift*/ | 
 | 	0,		/*nb_and*/ | 
 | 	0,		/*nb_xor*/ | 
 | 	0,		/*nb_or*/ | 
 | 	(coercion)float_coerce, /*nb_coerce*/ | 
 | 	(unaryfunc)float_int, /*nb_int*/ | 
 | 	(unaryfunc)float_long, /*nb_long*/ | 
 | 	(unaryfunc)float_float, /*nb_float*/ | 
 | 	0,		/* nb_oct */ | 
 | 	0,		/* nb_hex */ | 
 | 	0,		/* nb_inplace_add */ | 
 | 	0,		/* nb_inplace_subtract */ | 
 | 	0,		/* nb_inplace_multiply */ | 
 | 	0,		/* nb_inplace_divide */ | 
 | 	0,		/* nb_inplace_remainder */ | 
 | 	0, 		/* nb_inplace_power */ | 
 | 	0,		/* nb_inplace_lshift */ | 
 | 	0,		/* nb_inplace_rshift */ | 
 | 	0,		/* nb_inplace_and */ | 
 | 	0,		/* nb_inplace_xor */ | 
 | 	0,		/* nb_inplace_or */ | 
 | 	float_floor_div, /* nb_floor_divide */ | 
 | 	float_div,	/* nb_true_divide */ | 
 | 	0,		/* nb_inplace_floor_divide */ | 
 | 	0,		/* nb_inplace_true_divide */ | 
 | }; | 
 |  | 
 | PyTypeObject PyFloat_Type = { | 
 | 	PyObject_HEAD_INIT(&PyType_Type) | 
 | 	0, | 
 | 	"float", | 
 | 	sizeof(PyFloatObject), | 
 | 	0, | 
 | 	(destructor)float_dealloc,		/* tp_dealloc */ | 
 | 	(printfunc)float_print, 		/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,			 		/* tp_compare */ | 
 | 	(reprfunc)float_repr,			/* tp_repr */ | 
 | 	&float_as_number,			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)float_hash,			/* tp_hash */ | 
 | 	0,					/* tp_call */ | 
 | 	(reprfunc)float_str,			/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | | 
 | 		Py_TPFLAGS_BASETYPE,		/* tp_flags */ | 
 | 	float_doc,				/* tp_doc */ | 
 |  	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	(richcmpfunc)float_richcompare,		/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	float_methods,				/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	0,					/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	0,					/* tp_alloc */ | 
 | 	float_new,				/* tp_new */ | 
 | }; | 
 |  | 
 | void | 
 | _PyFloat_Init(void) | 
 | { | 
 | 	/* We attempt to determine if this machine is using IEEE | 
 | 	   floating point formats by peering at the bits of some | 
 | 	   carefully chosen values.  If it looks like we are on an | 
 | 	   IEEE platform, the float packing/unpacking routines can | 
 | 	   just copy bits, if not they resort to arithmetic & shifts | 
 | 	   and masks.  The shifts & masks approach works on all finite | 
 | 	   values, but what happens to infinities, NaNs and signed | 
 | 	   zeroes on packing is an accident, and attempting to unpack | 
 | 	   a NaN or an infinity will raise an exception. | 
 |  | 
 | 	   Note that if we're on some whacked-out platform which uses | 
 | 	   IEEE formats but isn't strictly little-endian or big- | 
 | 	   endian, we will fall back to the portable shifts & masks | 
 | 	   method. */ | 
 |  | 
 | #if SIZEOF_DOUBLE == 8 | 
 | 	{ | 
 | 		double x = 9006104071832581.0; | 
 | 		if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) | 
 | 			detected_double_format = ieee_big_endian_format; | 
 | 		else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) | 
 | 			detected_double_format = ieee_little_endian_format; | 
 | 		else  | 
 | 			detected_double_format = unknown_format; | 
 | 	} | 
 | #else | 
 | 	detected_double_format = unknown_format; | 
 | #endif | 
 |  | 
 | #if SIZEOF_FLOAT == 4 | 
 | 	{ | 
 | 		float y = 16711938.0; | 
 | 		if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) | 
 | 			detected_float_format = ieee_big_endian_format; | 
 | 		else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) | 
 | 			detected_float_format = ieee_little_endian_format; | 
 | 		else  | 
 | 			detected_float_format = unknown_format; | 
 | 	} | 
 | #else | 
 | 	detected_float_format = unknown_format; | 
 | #endif | 
 |  | 
 | 	double_format = detected_double_format; | 
 | 	float_format = detected_float_format; | 
 | } | 
 |  | 
 | void | 
 | PyFloat_Fini(void) | 
 | { | 
 | 	PyFloatObject *p; | 
 | 	PyFloatBlock *list, *next; | 
 | 	unsigned i; | 
 | 	int bc, bf;	/* block count, number of freed blocks */ | 
 | 	int frem, fsum;	/* remaining unfreed floats per block, total */ | 
 |  | 
 | 	bc = 0; | 
 | 	bf = 0; | 
 | 	fsum = 0; | 
 | 	list = block_list; | 
 | 	block_list = NULL; | 
 | 	free_list = NULL; | 
 | 	while (list != NULL) { | 
 | 		bc++; | 
 | 		frem = 0; | 
 | 		for (i = 0, p = &list->objects[0]; | 
 | 		     i < N_FLOATOBJECTS; | 
 | 		     i++, p++) { | 
 | 			if (PyFloat_CheckExact(p) && p->ob_refcnt != 0) | 
 | 				frem++; | 
 | 		} | 
 | 		next = list->next; | 
 | 		if (frem) { | 
 | 			list->next = block_list; | 
 | 			block_list = list; | 
 | 			for (i = 0, p = &list->objects[0]; | 
 | 			     i < N_FLOATOBJECTS; | 
 | 			     i++, p++) { | 
 | 				if (!PyFloat_CheckExact(p) || | 
 | 				    p->ob_refcnt == 0) { | 
 | 					p->ob_type = (struct _typeobject *) | 
 | 						free_list; | 
 | 					free_list = p; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			PyMem_FREE(list); /* XXX PyObject_FREE ??? */ | 
 | 			bf++; | 
 | 		} | 
 | 		fsum += frem; | 
 | 		list = next; | 
 | 	} | 
 | 	if (!Py_VerboseFlag) | 
 | 		return; | 
 | 	fprintf(stderr, "# cleanup floats"); | 
 | 	if (!fsum) { | 
 | 		fprintf(stderr, "\n"); | 
 | 	} | 
 | 	else { | 
 | 		fprintf(stderr, | 
 | 			": %d unfreed float%s in %d out of %d block%s\n", | 
 | 			fsum, fsum == 1 ? "" : "s", | 
 | 			bc - bf, bc, bc == 1 ? "" : "s"); | 
 | 	} | 
 | 	if (Py_VerboseFlag > 1) { | 
 | 		list = block_list; | 
 | 		while (list != NULL) { | 
 | 			for (i = 0, p = &list->objects[0]; | 
 | 			     i < N_FLOATOBJECTS; | 
 | 			     i++, p++) { | 
 | 				if (PyFloat_CheckExact(p) && | 
 | 				    p->ob_refcnt != 0) { | 
 | 					char buf[100]; | 
 | 					PyFloat_AsString(buf, p); | 
 | 					fprintf(stderr, | 
 | 			     "#   <float at %p, refcnt=%d, val=%s>\n", | 
 | 						p, p->ob_refcnt, buf); | 
 | 				} | 
 | 			} | 
 | 			list = list->next; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------------------- | 
 |  * _PyFloat_{Pack,Unpack}{4,8}.  See floatobject.h. | 
 |  * | 
 |  * TODO:  On platforms that use the standard IEEE-754 single and double | 
 |  * formats natively, these routines could simply copy the bytes. | 
 |  */ | 
 | int | 
 | _PyFloat_Pack4(double x, unsigned char *p, int le) | 
 | { | 
 | 	if (float_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		double f; | 
 | 		unsigned int fbits; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 3; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		if (x < 0) { | 
 | 			sign = 1; | 
 | 			x = -x; | 
 | 		} | 
 | 		else | 
 | 			sign = 0; | 
 |  | 
 | 		f = frexp(x, &e); | 
 |  | 
 | 		/* Normalize f to be in the range [1.0, 2.0) */ | 
 | 		if (0.5 <= f && f < 1.0) { | 
 | 			f *= 2.0; | 
 | 			e--; | 
 | 		} | 
 | 		else if (f == 0.0) | 
 | 			e = 0; | 
 | 		else { | 
 | 			PyErr_SetString(PyExc_SystemError, | 
 | 					"frexp() result out of range"); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		if (e >= 128) | 
 | 			goto Overflow; | 
 | 		else if (e < -126) { | 
 | 			/* Gradual underflow */ | 
 | 			f = ldexp(f, 126 + e); | 
 | 			e = 0; | 
 | 		} | 
 | 		else if (!(e == 0 && f == 0.0)) { | 
 | 			e += 127; | 
 | 			f -= 1.0; /* Get rid of leading 1 */ | 
 | 		} | 
 |  | 
 | 		f *= 8388608.0; /* 2**23 */ | 
 | 		fbits = (unsigned int)(f + 0.5); /* Round */ | 
 | 		assert(fbits <= 8388608); | 
 | 		if (fbits >> 23) { | 
 | 			/* The carry propagated out of a string of 23 1 bits. */ | 
 | 			fbits = 0; | 
 | 			++e; | 
 | 			if (e >= 255) | 
 | 				goto Overflow; | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		*p = (sign << 7) | (e >> 1); | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		*p = (char) (((e & 1) << 7) | (fbits >> 16)); | 
 | 		p += incr; | 
 |  | 
 | 		/* Third byte */ | 
 | 		*p = (fbits >> 8) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		*p = fbits & 0xFF; | 
 |  | 
 | 		/* Done */ | 
 | 		return 0; | 
 |  | 
 | 	  Overflow: | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"float too large to pack with f format"); | 
 | 		return -1; | 
 | 	} | 
 | 	else { | 
 | 		float y = (float)x; | 
 | 		const char *s = (char*)&y; | 
 | 		int i, incr = 1; | 
 |  | 
 | 		if ((float_format == ieee_little_endian_format && !le) | 
 | 		    || (float_format == ieee_big_endian_format && le)) { | 
 | 			p += 3; | 
 | 			incr = -1; | 
 | 		} | 
 | 		 | 
 | 		for (i = 0; i < 4; i++) { | 
 | 			*p = *s++; | 
 | 			p += incr; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | _PyFloat_Pack8(double x, unsigned char *p, int le) | 
 | { | 
 | 	if (double_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		double f; | 
 | 		unsigned int fhi, flo; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 7; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		if (x < 0) { | 
 | 			sign = 1; | 
 | 			x = -x; | 
 | 		} | 
 | 		else | 
 | 			sign = 0; | 
 |  | 
 | 		f = frexp(x, &e); | 
 |  | 
 | 		/* Normalize f to be in the range [1.0, 2.0) */ | 
 | 		if (0.5 <= f && f < 1.0) { | 
 | 			f *= 2.0; | 
 | 			e--; | 
 | 		} | 
 | 		else if (f == 0.0) | 
 | 			e = 0; | 
 | 		else { | 
 | 			PyErr_SetString(PyExc_SystemError, | 
 | 					"frexp() result out of range"); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		if (e >= 1024) | 
 | 			goto Overflow; | 
 | 		else if (e < -1022) { | 
 | 			/* Gradual underflow */ | 
 | 			f = ldexp(f, 1022 + e); | 
 | 			e = 0; | 
 | 		} | 
 | 		else if (!(e == 0 && f == 0.0)) { | 
 | 			e += 1023; | 
 | 			f -= 1.0; /* Get rid of leading 1 */ | 
 | 		} | 
 |  | 
 | 		/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ | 
 | 		f *= 268435456.0; /* 2**28 */ | 
 | 		fhi = (unsigned int)f; /* Truncate */ | 
 | 		assert(fhi < 268435456); | 
 |  | 
 | 		f -= (double)fhi; | 
 | 		f *= 16777216.0; /* 2**24 */ | 
 | 		flo = (unsigned int)(f + 0.5); /* Round */ | 
 | 		assert(flo <= 16777216); | 
 | 		if (flo >> 24) { | 
 | 			/* The carry propagated out of a string of 24 1 bits. */ | 
 | 			flo = 0; | 
 | 			++fhi; | 
 | 			if (fhi >> 28) { | 
 | 				/* And it also progagated out of the next 28 bits. */ | 
 | 				fhi = 0; | 
 | 				++e; | 
 | 				if (e >= 2047) | 
 | 					goto Overflow; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		*p = (sign << 7) | (e >> 4); | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); | 
 | 		p += incr; | 
 |  | 
 | 		/* Third byte */ | 
 | 		*p = (fhi >> 16) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		*p = (fhi >> 8) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fifth byte */ | 
 | 		*p = fhi & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Sixth byte */ | 
 | 		*p = (flo >> 16) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Seventh byte */ | 
 | 		*p = (flo >> 8) & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Eighth byte */ | 
 | 		*p = flo & 0xFF; | 
 | 		p += incr; | 
 |  | 
 | 		/* Done */ | 
 | 		return 0; | 
 |  | 
 | 	  Overflow: | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"float too large to pack with d format"); | 
 | 		return -1; | 
 | 	} | 
 | 	else { | 
 | 		const char *s = (char*)&x; | 
 | 		int i, incr = 1; | 
 |  | 
 | 		if ((double_format == ieee_little_endian_format && !le) | 
 | 		    || (double_format == ieee_big_endian_format && le)) { | 
 | 			p += 7; | 
 | 			incr = -1; | 
 | 		} | 
 | 		 | 
 | 		for (i = 0; i < 8; i++) { | 
 | 			*p = *s++; | 
 | 			p += incr; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack4(const unsigned char *p, int le) | 
 | { | 
 | 	if (float_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		unsigned int f; | 
 | 		double x; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 3; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		sign = (*p >> 7) & 1; | 
 | 		e = (*p & 0x7F) << 1; | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		e |= (*p >> 7) & 1; | 
 | 		f = (*p & 0x7F) << 16; | 
 | 		p += incr; | 
 |  | 
 | 		if (e == 255) { | 
 | 			PyErr_SetString( | 
 | 				PyExc_ValueError, | 
 | 				"can't unpack IEEE 754 special value " | 
 | 				"on non-IEEE platform"); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		/* Third byte */ | 
 | 		f |= *p << 8; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		f |= *p; | 
 |  | 
 | 		x = (double)f / 8388608.0; | 
 |  | 
 | 		/* XXX This sadly ignores Inf/NaN issues */ | 
 | 		if (e == 0) | 
 | 			e = -126; | 
 | 		else { | 
 | 			x += 1.0; | 
 | 			e -= 127; | 
 | 		} | 
 | 		x = ldexp(x, e); | 
 |  | 
 | 		if (sign) | 
 | 			x = -x; | 
 |  | 
 | 		return x; | 
 | 	} | 
 | 	else { | 
 | 		if ((float_format == ieee_little_endian_format && !le) | 
 | 		    || (float_format == ieee_big_endian_format && le)) { | 
 | 			char buf[8]; | 
 | 			char *d = &buf[3]; | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < 4; i++) { | 
 | 				*d-- = *p++; | 
 | 			} | 
 | 			return *(float*)&buf[0]; | 
 | 		} | 
 | 		else { | 
 | 			return *(float*)p; | 
 | 		} | 
 | 	}		 | 
 | } | 
 |  | 
 | double | 
 | _PyFloat_Unpack8(const unsigned char *p, int le) | 
 | { | 
 | 	if (double_format == unknown_format) { | 
 | 		unsigned char sign; | 
 | 		int e; | 
 | 		unsigned int fhi, flo; | 
 | 		double x; | 
 | 		int incr = 1; | 
 |  | 
 | 		if (le) { | 
 | 			p += 7; | 
 | 			incr = -1; | 
 | 		} | 
 |  | 
 | 		/* First byte */ | 
 | 		sign = (*p >> 7) & 1; | 
 | 		e = (*p & 0x7F) << 4; | 
 | 		 | 
 | 		p += incr; | 
 |  | 
 | 		/* Second byte */ | 
 | 		e |= (*p >> 4) & 0xF; | 
 | 		fhi = (*p & 0xF) << 24; | 
 | 		p += incr; | 
 |  | 
 | 		if (e == 2047) { | 
 | 			PyErr_SetString( | 
 | 				PyExc_ValueError, | 
 | 				"can't unpack IEEE 754 special value " | 
 | 				"on non-IEEE platform"); | 
 | 			return -1.0; | 
 | 		} | 
 |  | 
 | 		/* Third byte */ | 
 | 		fhi |= *p << 16; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fourth byte */ | 
 | 		fhi |= *p  << 8; | 
 | 		p += incr; | 
 |  | 
 | 		/* Fifth byte */ | 
 | 		fhi |= *p; | 
 | 		p += incr; | 
 |  | 
 | 		/* Sixth byte */ | 
 | 		flo = *p << 16; | 
 | 		p += incr; | 
 |  | 
 | 		/* Seventh byte */ | 
 | 		flo |= *p << 8; | 
 | 		p += incr; | 
 |  | 
 | 		/* Eighth byte */ | 
 | 		flo |= *p; | 
 |  | 
 | 		x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ | 
 | 		x /= 268435456.0; /* 2**28 */ | 
 |  | 
 | 		if (e == 0) | 
 | 			e = -1022; | 
 | 		else { | 
 | 			x += 1.0; | 
 | 			e -= 1023; | 
 | 		} | 
 | 		x = ldexp(x, e); | 
 |  | 
 | 		if (sign) | 
 | 			x = -x; | 
 |  | 
 | 		return x; | 
 | 	} | 
 | 	else { | 
 | 		if ((double_format == ieee_little_endian_format && !le) | 
 | 		    || (double_format == ieee_big_endian_format && le)) { | 
 | 			char buf[8]; | 
 | 			char *d = &buf[7]; | 
 | 			int i; | 
 | 			 | 
 | 			for (i = 0; i < 8; i++) { | 
 | 				*d-- = *p++; | 
 | 			} | 
 | 			return *(double*)&buf[0]; | 
 | 		} | 
 | 		else { | 
 | 			return *(double*)p; | 
 | 		} | 
 | 	} | 
 | } |