|  | 
 | /* Complex object implementation */ | 
 |  | 
 | /* Borrows heavily from floatobject.c */ | 
 |  | 
 | /* Submitted by Jim Hugunin */ | 
 |  | 
 | #include "Python.h" | 
 | #include "structmember.h" | 
 |  | 
 | #ifdef HAVE_IEEEFP_H | 
 | #include <ieeefp.h> | 
 | #endif | 
 |  | 
 | #ifndef WITHOUT_COMPLEX | 
 |  | 
 | /* Precisions used by repr() and str(), respectively. | 
 |  | 
 |    The repr() precision (17 significant decimal digits) is the minimal number | 
 |    that is guaranteed to have enough precision so that if the number is read | 
 |    back in the exact same binary value is recreated.  This is true for IEEE | 
 |    floating point by design, and also happens to work for all other modern | 
 |    hardware. | 
 |  | 
 |    The str() precision is chosen so that in most cases, the rounding noise | 
 |    created by various operations is suppressed, while giving plenty of | 
 |    precision for practical use. | 
 | */ | 
 |  | 
 | #define PREC_REPR	17 | 
 | #define PREC_STR	12 | 
 |  | 
 | /* elementary operations on complex numbers */ | 
 |  | 
 | static Py_complex c_1 = {1., 0.}; | 
 |  | 
 | Py_complex | 
 | c_sum(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = a.real + b.real; | 
 | 	r.imag = a.imag + b.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_diff(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = a.real - b.real; | 
 | 	r.imag = a.imag - b.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_neg(Py_complex a) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = -a.real; | 
 | 	r.imag = -a.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_prod(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = a.real*b.real - a.imag*b.imag; | 
 | 	r.imag = a.real*b.imag + a.imag*b.real; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_quot(Py_complex a, Py_complex b) | 
 | { | 
 | 	/****************************************************************** | 
 | 	This was the original algorithm.  It's grossly prone to spurious | 
 | 	overflow and underflow errors.  It also merrily divides by 0 despite | 
 | 	checking for that(!).  The code still serves a doc purpose here, as | 
 | 	the algorithm following is a simple by-cases transformation of this | 
 | 	one: | 
 |  | 
 | 	Py_complex r; | 
 | 	double d = b.real*b.real + b.imag*b.imag; | 
 | 	if (d == 0.) | 
 | 		errno = EDOM; | 
 | 	r.real = (a.real*b.real + a.imag*b.imag)/d; | 
 | 	r.imag = (a.imag*b.real - a.real*b.imag)/d; | 
 | 	return r; | 
 | 	******************************************************************/ | 
 |  | 
 | 	/* This algorithm is better, and is pretty obvious:  first divide the | 
 | 	 * numerators and denominator by whichever of {b.real, b.imag} has | 
 | 	 * larger magnitude.  The earliest reference I found was to CACM | 
 | 	 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford | 
 | 	 * University).  As usual, though, we're still ignoring all IEEE | 
 | 	 * endcases. | 
 | 	 */ | 
 | 	 Py_complex r;	/* the result */ | 
 |  	 const double abs_breal = b.real < 0 ? -b.real : b.real; | 
 | 	 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; | 
 |  | 
 | 	 if (abs_breal >= abs_bimag) { | 
 |  		/* divide tops and bottom by b.real */ | 
 | 	 	if (abs_breal == 0.0) { | 
 | 	 		errno = EDOM; | 
 | 	 		r.real = r.imag = 0.0; | 
 | 	 	} | 
 | 	 	else { | 
 | 	 		const double ratio = b.imag / b.real; | 
 | 	 		const double denom = b.real + b.imag * ratio; | 
 | 	 		r.real = (a.real + a.imag * ratio) / denom; | 
 | 	 		r.imag = (a.imag - a.real * ratio) / denom; | 
 | 	 	} | 
 | 	} | 
 | 	else { | 
 | 		/* divide tops and bottom by b.imag */ | 
 | 		const double ratio = b.real / b.imag; | 
 | 		const double denom = b.real * ratio + b.imag; | 
 | 		assert(b.imag != 0.0); | 
 | 		r.real = (a.real * ratio + a.imag) / denom; | 
 | 		r.imag = (a.imag * ratio - a.real) / denom; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_pow(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	double vabs,len,at,phase; | 
 | 	if (b.real == 0. && b.imag == 0.) { | 
 | 		r.real = 1.; | 
 | 		r.imag = 0.; | 
 | 	} | 
 | 	else if (a.real == 0. && a.imag == 0.) { | 
 | 		if (b.imag != 0. || b.real < 0.) | 
 | 			errno = EDOM; | 
 | 		r.real = 0.; | 
 | 		r.imag = 0.; | 
 | 	} | 
 | 	else { | 
 | 		vabs = hypot(a.real,a.imag); | 
 | 		len = pow(vabs,b.real); | 
 | 		at = atan2(a.imag, a.real); | 
 | 		phase = at*b.real; | 
 | 		if (b.imag != 0.0) { | 
 | 			len /= exp(at*b.imag); | 
 | 			phase += b.imag*log(vabs); | 
 | 		} | 
 | 		r.real = len*cos(phase); | 
 | 		r.imag = len*sin(phase); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static Py_complex | 
 | c_powu(Py_complex x, long n) | 
 | { | 
 | 	Py_complex r, p; | 
 | 	long mask = 1; | 
 | 	r = c_1; | 
 | 	p = x; | 
 | 	while (mask > 0 && n >= mask) { | 
 | 		if (n & mask) | 
 | 			r = c_prod(r,p); | 
 | 		mask <<= 1; | 
 | 		p = c_prod(p,p); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static Py_complex | 
 | c_powi(Py_complex x, long n) | 
 | { | 
 | 	Py_complex cn; | 
 |  | 
 | 	if (n > 100 || n < -100) { | 
 | 		cn.real = (double) n; | 
 | 		cn.imag = 0.; | 
 | 		return c_pow(x,cn); | 
 | 	} | 
 | 	else if (n > 0) | 
 | 		return c_powu(x,n); | 
 | 	else | 
 | 		return c_quot(c_1,c_powu(x,-n)); | 
 |  | 
 | } | 
 |  | 
 | double | 
 | c_abs(Py_complex z) | 
 | { | 
 | 	/* sets errno = ERANGE on overflow;  otherwise errno = 0 */ | 
 | 	double result; | 
 |  | 
 | 	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
 | 		/* C99 rules: if either the real or the imaginary part is an | 
 | 		   infinity, return infinity, even if the other part is a | 
 | 		   NaN. */ | 
 | 		if (Py_IS_INFINITY(z.real)) { | 
 | 			result = fabs(z.real); | 
 | 			errno = 0; | 
 | 			return result; | 
 | 		} | 
 | 		if (Py_IS_INFINITY(z.imag)) { | 
 | 			result = fabs(z.imag); | 
 | 			errno = 0; | 
 | 			return result; | 
 | 		} | 
 | 		/* either the real or imaginary part is a NaN, | 
 | 		   and neither is infinite. Result should be NaN. */ | 
 | 		return Py_NAN; | 
 | 	} | 
 | 	result = hypot(z.real, z.imag); | 
 | 	if (!Py_IS_FINITE(result)) | 
 | 		errno = ERANGE; | 
 | 	else | 
 | 		errno = 0; | 
 | 	return result; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) | 
 | { | 
 | 	PyObject *op; | 
 |  | 
 | 	op = type->tp_alloc(type, 0); | 
 | 	if (op != NULL) | 
 | 		((PyComplexObject *)op)->cval = cval; | 
 | 	return op; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyComplex_FromCComplex(Py_complex cval) | 
 | { | 
 | 	register PyComplexObject *op; | 
 |  | 
 | 	/* Inline PyObject_New */ | 
 | 	op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); | 
 | 	if (op == NULL) | 
 | 		return PyErr_NoMemory(); | 
 | 	PyObject_INIT(op, &PyComplex_Type); | 
 | 	op->cval = cval; | 
 | 	return (PyObject *) op; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) | 
 | { | 
 | 	Py_complex c; | 
 | 	c.real = real; | 
 | 	c.imag = imag; | 
 | 	return complex_subtype_from_c_complex(type, c); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyComplex_FromDoubles(double real, double imag) | 
 | { | 
 | 	Py_complex c; | 
 | 	c.real = real; | 
 | 	c.imag = imag; | 
 | 	return PyComplex_FromCComplex(c); | 
 | } | 
 |  | 
 | double | 
 | PyComplex_RealAsDouble(PyObject *op) | 
 | { | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval.real; | 
 | 	} | 
 | 	else { | 
 | 		return PyFloat_AsDouble(op); | 
 | 	} | 
 | } | 
 |  | 
 | double | 
 | PyComplex_ImagAsDouble(PyObject *op) | 
 | { | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval.imag; | 
 | 	} | 
 | 	else { | 
 | 		return 0.0; | 
 | 	} | 
 | } | 
 |  | 
 | Py_complex | 
 | PyComplex_AsCComplex(PyObject *op) | 
 | { | 
 | 	Py_complex cv; | 
 | 	PyObject *newop = NULL; | 
 | 	static PyObject *complex_str = NULL; | 
 |  | 
 | 	assert(op); | 
 | 	/* If op is already of type PyComplex_Type, return its value */ | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval; | 
 | 	} | 
 | 	/* If not, use op's __complex__  method, if it exists */ | 
 | 	 | 
 | 	/* return -1 on failure */ | 
 | 	cv.real = -1.; | 
 | 	cv.imag = 0.; | 
 | 		 | 
 | 	if (complex_str == NULL) { | 
 | 		if (!(complex_str = PyUnicode_FromString("__complex__"))) | 
 | 			return cv; | 
 | 	} | 
 |  | 
 |         { | 
 | 		PyObject *complexfunc; | 
 | 		complexfunc = _PyType_Lookup(op->ob_type, complex_str); | 
 | 		/* complexfunc is a borrowed reference */ | 
 | 		if (complexfunc) { | 
 | 			newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL); | 
 | 			if (!newop) | 
 | 				return cv; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (newop) { | 
 | 		if (!PyComplex_Check(newop)) { | 
 | 			PyErr_SetString(PyExc_TypeError, | 
 | 				"__complex__ should return a complex object"); | 
 | 			Py_DECREF(newop); | 
 | 			return cv; | 
 | 		} | 
 | 		cv = ((PyComplexObject *)newop)->cval; | 
 | 		Py_DECREF(newop); | 
 | 		return cv; | 
 | 	} | 
 | 	/* If neither of the above works, interpret op as a float giving the | 
 | 	   real part of the result, and fill in the imaginary part as 0. */ | 
 | 	else { | 
 | 		/* PyFloat_AsDouble will return -1 on failure */ | 
 | 		cv.real = PyFloat_AsDouble(op); | 
 | 		return cv; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | complex_dealloc(PyObject *op) | 
 | { | 
 | 	op->ob_type->tp_free(op); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision) | 
 | { | 
 | 	char format[32]; | 
 | 	if (v->cval.real == 0.) { | 
 | 		if (!Py_IS_FINITE(v->cval.imag)) { | 
 | 			if (Py_IS_NAN(v->cval.imag)) | 
 | 				strncpy(buf, "nan*j", 6); | 
 | 			else if (copysign(1, v->cval.imag) == 1) | 
 | 				strncpy(buf, "inf*j", 6); | 
 | 			else | 
 | 				strncpy(buf, "-inf*j", 7); | 
 | 		} | 
 | 		else { | 
 | 			PyOS_snprintf(format, sizeof(format), "%%.%ig", precision); | 
 | 			PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag); | 
 | 			strncat(buf, "j", 1); | 
 | 		} | 
 | 	} else { | 
 | 		char re[64], im[64]; | 
 | 		/* Format imaginary part with sign, real part without */ | 
 | 		if (!Py_IS_FINITE(v->cval.real)) { | 
 | 			if (Py_IS_NAN(v->cval.real)) | 
 | 				strncpy(re, "nan", 4); | 
 | 			/* else if (copysign(1, v->cval.real) == 1) */ | 
 | 			else if (v->cval.real > 0) | 
 | 				strncpy(re, "inf", 4); | 
 | 			else | 
 | 				strncpy(re, "-inf", 5); | 
 | 		} | 
 | 		else { | 
 | 			PyOS_snprintf(format, sizeof(format), "%%.%ig", precision); | 
 | 			PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real); | 
 | 		} | 
 | 		if (!Py_IS_FINITE(v->cval.imag)) { | 
 | 			if (Py_IS_NAN(v->cval.imag)) | 
 | 				strncpy(im, "+nan*", 6); | 
 | 			/* else if (copysign(1, v->cval.imag) == 1) */ | 
 | 			else if (v->cval.imag > 0) | 
 | 				strncpy(im, "+inf*", 6); | 
 | 			else | 
 | 				strncpy(im, "-inf*", 6); | 
 | 		} | 
 | 		else { | 
 | 			PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision); | 
 | 			PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag); | 
 | 		} | 
 | 		PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im); | 
 | 	} | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_repr(PyComplexObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_to_buf(buf, sizeof(buf), v, PREC_REPR); | 
 | 	return PyUnicode_FromString(buf); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_str(PyComplexObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_to_buf(buf, sizeof(buf), v, PREC_STR); | 
 | 	return PyUnicode_FromString(buf); | 
 | } | 
 |  | 
 | static long | 
 | complex_hash(PyComplexObject *v) | 
 | { | 
 | 	long hashreal, hashimag, combined; | 
 | 	hashreal = _Py_HashDouble(v->cval.real); | 
 | 	if (hashreal == -1) | 
 | 		return -1; | 
 | 	hashimag = _Py_HashDouble(v->cval.imag); | 
 | 	if (hashimag == -1) | 
 | 		return -1; | 
 | 	/* Note:  if the imaginary part is 0, hashimag is 0 now, | 
 | 	 * so the following returns hashreal unchanged.  This is | 
 | 	 * important because numbers of different types that | 
 | 	 * compare equal must have the same hash value, so that | 
 | 	 * hash(x + 0*j) must equal hash(x). | 
 | 	 */ | 
 | 	combined = hashreal + 1000003 * hashimag; | 
 | 	if (combined == -1) | 
 | 		combined = -2; | 
 | 	return combined; | 
 | } | 
 |  | 
 | /* This macro may return! */ | 
 | #define TO_COMPLEX(obj, c) \ | 
 | 	if (PyComplex_Check(obj)) \ | 
 | 		c = ((PyComplexObject *)(obj))->cval; \ | 
 | 	else if (to_complex(&(obj), &(c)) < 0) \ | 
 | 		return (obj) | 
 |  | 
 | static int | 
 | to_complex(PyObject **pobj, Py_complex *pc) | 
 | { | 
 | 	PyObject *obj = *pobj; | 
 |  | 
 | 	pc->real = pc->imag = 0.0; | 
 | 	if (PyLong_Check(obj)) { | 
 | 		pc->real = PyLong_AsDouble(obj); | 
 | 		if (pc->real == -1.0 && PyErr_Occurred()) { | 
 | 			*pobj = NULL; | 
 | 			return -1; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | 	if (PyFloat_Check(obj)) { | 
 | 		pc->real = PyFloat_AsDouble(obj); | 
 | 		return 0; | 
 | 	} | 
 | 	Py_INCREF(Py_NotImplemented); | 
 | 	*pobj = Py_NotImplemented; | 
 | 	return -1; | 
 | } | 
 | 		 | 
 |  | 
 | static PyObject * | 
 | complex_add(PyObject *v, PyObject *w) | 
 | { | 
 | 	Py_complex result; | 
 | 	Py_complex a, b; | 
 | 	TO_COMPLEX(v, a); | 
 | 	TO_COMPLEX(w, b); | 
 | 	PyFPE_START_PROTECT("complex_add", return 0) | 
 | 	result = c_sum(a, b); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyComplex_FromCComplex(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_sub(PyObject *v, PyObject *w) | 
 | { | 
 | 	Py_complex result; | 
 | 	Py_complex a, b; | 
 | 	TO_COMPLEX(v, a); | 
 | 	TO_COMPLEX(w, b); | 
 | 	PyFPE_START_PROTECT("complex_sub", return 0) | 
 | 	result = c_diff(a, b); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyComplex_FromCComplex(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_mul(PyObject *v, PyObject *w) | 
 | { | 
 | 	Py_complex result; | 
 | 	Py_complex a, b; | 
 | 	TO_COMPLEX(v, a); | 
 | 	TO_COMPLEX(w, b); | 
 | 	PyFPE_START_PROTECT("complex_mul", return 0) | 
 | 	result = c_prod(a, b); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyComplex_FromCComplex(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	Py_complex quot; | 
 | 	Py_complex a, b; | 
 | 	TO_COMPLEX(v, a); | 
 | 	TO_COMPLEX(w, b); | 
 | 	PyFPE_START_PROTECT("complex_div", return 0) | 
 | 	errno = 0; | 
 | 	quot = c_quot(a, b); | 
 | 	PyFPE_END_PROTECT(quot) | 
 | 	if (errno == EDOM) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyComplex_FromCComplex(quot); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_remainder(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 			"can't mod complex numbers."); | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | complex_divmod(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 			"can't take floor or mod of complex number."); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_pow(PyObject *v, PyObject *w, PyObject *z) | 
 | { | 
 | 	Py_complex p; | 
 | 	Py_complex exponent; | 
 | 	long int_exponent; | 
 | 	Py_complex a, b; | 
 | 	TO_COMPLEX(v, a); | 
 | 	TO_COMPLEX(w, b); | 
 |  | 
 |  	if (z != Py_None) { | 
 | 		PyErr_SetString(PyExc_ValueError, "complex modulo"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("complex_pow", return 0) | 
 | 	errno = 0; | 
 | 	exponent = b; | 
 | 	int_exponent = (long)exponent.real; | 
 | 	if (exponent.imag == 0. && exponent.real == int_exponent) | 
 | 		p = c_powi(a, int_exponent); | 
 | 	else | 
 | 		p = c_pow(a, exponent); | 
 |  | 
 | 	PyFPE_END_PROTECT(p) | 
 | 	Py_ADJUST_ERANGE2(p.real, p.imag); | 
 | 	if (errno == EDOM) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 				"0.0 to a negative or complex power"); | 
 | 		return NULL; | 
 | 	} | 
 | 	else if (errno == ERANGE) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"complex exponentiation"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyComplex_FromCComplex(p); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_int_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 			"can't take floor of complex number."); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_neg(PyComplexObject *v) | 
 | { | 
 | 	Py_complex neg; | 
 | 	neg.real = -v->cval.real; | 
 | 	neg.imag = -v->cval.imag; | 
 | 	return PyComplex_FromCComplex(neg); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_pos(PyComplexObject *v) | 
 | { | 
 | 	if (PyComplex_CheckExact(v)) { | 
 | 		Py_INCREF(v); | 
 | 		return (PyObject *)v; | 
 | 	} | 
 | 	else | 
 | 		return PyComplex_FromCComplex(v->cval); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_abs(PyComplexObject *v) | 
 | { | 
 | 	double result; | 
 |  | 
 | 	PyFPE_START_PROTECT("complex_abs", return 0) | 
 | 	result = c_abs(v->cval); | 
 | 	PyFPE_END_PROTECT(result) | 
 |  | 
 | 	if (errno == ERANGE) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 				"absolute value too large"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static int | 
 | complex_bool(PyComplexObject *v) | 
 | { | 
 | 	return v->cval.real != 0.0 || v->cval.imag != 0.0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_richcompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	PyObject *res; | 
 | 	Py_complex i, j; | 
 | 	TO_COMPLEX(v, i); | 
 | 	TO_COMPLEX(w, j); | 
 |  | 
 | 	if (op != Py_EQ && op != Py_NE) { | 
 | 		/* XXX Should eventually return NotImplemented */ | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 			"no ordering relation is defined for complex numbers"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) | 
 | 		res = Py_True; | 
 | 	else | 
 | 		res = Py_False; | 
 |  | 
 | 	Py_INCREF(res); | 
 | 	return res; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_int(PyObject *v) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 		   "can't convert complex to int; use int(abs(z))"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_float(PyObject *v) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 		   "can't convert complex to float; use abs(z)"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_conjugate(PyObject *self) | 
 | { | 
 | 	Py_complex c; | 
 | 	c = ((PyComplexObject *)self)->cval; | 
 | 	c.imag = -c.imag; | 
 | 	return PyComplex_FromCComplex(c); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(complex_conjugate_doc, | 
 | "complex.conjugate() -> complex\n" | 
 | "\n" | 
 | "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j."); | 
 |  | 
 | static PyObject * | 
 | complex_getnewargs(PyComplexObject *v) | 
 | { | 
 | 	Py_complex c = v->cval; | 
 | 	return Py_BuildValue("(dd)", c.real, c.imag); | 
 | } | 
 |  | 
 | #if 0 | 
 | static PyObject * | 
 | complex_is_finite(PyObject *self) | 
 | { | 
 | 	Py_complex c; | 
 | 	c = ((PyComplexObject *)self)->cval; | 
 | 	return PyBool_FromLong((long)(Py_IS_FINITE(c.real) && | 
 | 				      Py_IS_FINITE(c.imag))); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(complex_is_finite_doc, | 
 | "complex.is_finite() -> bool\n" | 
 | "\n" | 
 | "Returns True if the real and the imaginary part is finite."); | 
 | #endif | 
 |  | 
 | static PyMethodDef complex_methods[] = { | 
 | 	{"conjugate",	(PyCFunction)complex_conjugate,	METH_NOARGS, | 
 | 	 complex_conjugate_doc}, | 
 | #if 0 | 
 | 	{"is_finite",	(PyCFunction)complex_is_finite,	METH_NOARGS, | 
 | 	 complex_is_finite_doc}, | 
 | #endif | 
 | 	{"__getnewargs__",	(PyCFunction)complex_getnewargs,	METH_NOARGS}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 | static PyMemberDef complex_members[] = { | 
 | 	{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, | 
 | 	 "the real part of a complex number"}, | 
 | 	{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, | 
 | 	 "the imaginary part of a complex number"}, | 
 | 	{0}, | 
 | }; | 
 |  | 
 | static PyObject * | 
 | complex_subtype_from_string(PyTypeObject *type, PyObject *v) | 
 | { | 
 | 	const char *s, *start; | 
 | 	char *end; | 
 | 	double x=0.0, y=0.0, z; | 
 | 	int got_re=0, got_im=0, got_bracket=0, done=0; | 
 | 	int digit_or_dot; | 
 | 	int sw_error=0; | 
 | 	int sign; | 
 | 	char buffer[256]; /* For errors */ | 
 | 	char s_buffer[256]; | 
 | 	Py_ssize_t len; | 
 |  | 
 | 	if (PyUnicode_Check(v)) { | 
 | 		if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 				 "complex() literal too large to convert"); | 
 | 			return NULL; | 
 | 		} | 
 | 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), | 
 | 					    PyUnicode_GET_SIZE(v), | 
 | 					    s_buffer, | 
 | 					    NULL)) | 
 | 			return NULL; | 
 | 		s = s_buffer; | 
 | 		len = strlen(s); | 
 | 	} | 
 | 	else if (PyObject_AsCharBuffer(v, &s, &len)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"complex() arg is not a string"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* position on first nonblank */ | 
 | 	start = s; | 
 | 	while (*s && isspace(Py_CHARMASK(*s))) | 
 | 		s++; | 
 | 	if (s[0] == '\0') { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"complex() arg is an empty string"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (s[0] == '(') { | 
 | 		/* Skip over possible bracket from repr(). */ | 
 | 		got_bracket = 1; | 
 | 		s++; | 
 | 		while (*s && isspace(Py_CHARMASK(*s))) | 
 | 			s++; | 
 | 	} | 
 |  | 
 | 	z = -1.0; | 
 | 	sign = 1; | 
 | 	do { | 
 |  | 
 | 		switch (*s) { | 
 |  | 
 | 		case '\0': | 
 | 			if (s-start != len) { | 
 | 				PyErr_SetString( | 
 | 					PyExc_ValueError, | 
 | 					"complex() arg contains a null byte"); | 
 | 				return NULL; | 
 | 			} | 
 | 			if(!done) sw_error=1; | 
 | 			break; | 
 |  | 
 | 		case ')': | 
 | 			if (!got_bracket || !(got_re || got_im)) { | 
 | 				sw_error=1; | 
 | 				break; | 
 | 			} | 
 | 			got_bracket=0; | 
 | 			done=1; | 
 | 			s++; | 
 | 			while (*s && isspace(Py_CHARMASK(*s))) | 
 | 				s++; | 
 | 			if (*s) sw_error=1; | 
 | 			break; | 
 |  | 
 | 		case '-': | 
 | 			sign = -1; | 
 | 				/* Fallthrough */ | 
 | 		case '+': | 
 | 			if (done)  sw_error=1; | 
 | 			s++; | 
 | 			if  (  *s=='\0'||*s=='+'||*s=='-'||*s==')'|| | 
 | 			       isspace(Py_CHARMASK(*s))  )  sw_error=1; | 
 | 			break; | 
 |  | 
 | 		case 'J': | 
 | 		case 'j': | 
 | 			if (got_im || done) { | 
 | 				sw_error = 1; | 
 | 				break; | 
 | 			} | 
 | 			if  (z<0.0) { | 
 | 				y=sign; | 
 | 			} | 
 | 			else{ | 
 | 				y=sign*z; | 
 | 			} | 
 | 			got_im=1; | 
 | 			s++; | 
 | 			if  (*s!='+' && *s!='-' ) | 
 | 				done=1; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			if (isspace(Py_CHARMASK(*s))) { | 
 | 				while (*s && isspace(Py_CHARMASK(*s))) | 
 | 					s++; | 
 | 				if (*s && *s != ')') | 
 | 					sw_error=1; | 
 | 				else | 
 | 					done = 1; | 
 | 				break; | 
 | 			} | 
 | 			digit_or_dot = | 
 | 				(*s=='.' || isdigit(Py_CHARMASK(*s))); | 
 | 			if  (done||!digit_or_dot) { | 
 | 				sw_error=1; | 
 | 				break; | 
 | 			} | 
 | 			errno = 0; | 
 | 			PyFPE_START_PROTECT("strtod", return 0) | 
 | 				z = PyOS_ascii_strtod(s, &end) ; | 
 | 			PyFPE_END_PROTECT(z) | 
 | 				if (errno != 0) { | 
 | 					PyOS_snprintf(buffer, sizeof(buffer), | 
 | 					  "float() out of range: %.150s", s); | 
 | 					PyErr_SetString( | 
 | 						PyExc_ValueError, | 
 | 						buffer); | 
 | 					return NULL; | 
 | 				} | 
 | 			s=end; | 
 | 			if  (*s=='J' || *s=='j') { | 
 |  | 
 | 				break; | 
 | 			} | 
 | 			if  (got_re) { | 
 | 				sw_error=1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 				/* accept a real part */ | 
 | 			x=sign*z; | 
 | 			got_re=1; | 
 | 			if  (got_im)  done=1; | 
 | 			z = -1.0; | 
 | 			sign = 1; | 
 | 			break; | 
 |  | 
 | 		}  /* end of switch  */ | 
 |  | 
 | 	} while (s - start < len && !sw_error); | 
 |  | 
 | 	if (sw_error || got_bracket) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"complex() arg is a malformed string"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return complex_subtype_from_doubles(type, x, y); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *r, *i, *tmp, *f; | 
 | 	PyNumberMethods *nbr, *nbi = NULL; | 
 | 	Py_complex cr, ci; | 
 | 	int own_r = 0; | 
 | 	int cr_is_complex = 0; | 
 | 	int ci_is_complex = 0; | 
 | 	static PyObject *complexstr; | 
 | 	static char *kwlist[] = {"real", "imag", 0}; | 
 |  | 
 | 	r = Py_False; | 
 | 	i = NULL; | 
 | 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, | 
 | 					 &r, &i)) | 
 | 		return NULL; | 
 |  | 
 | 	/* Special-case for a single argument when type(arg) is complex. */ | 
 | 	if (PyComplex_CheckExact(r) && i == NULL && | 
 | 	    type == &PyComplex_Type) { | 
 | 		/* Note that we can't know whether it's safe to return | 
 | 		   a complex *subclass* instance as-is, hence the restriction | 
 | 		   to exact complexes here.  If either the input or the | 
 | 		   output is a complex subclass, it will be handled below  | 
 | 		   as a non-orthogonal vector.  */ | 
 | 		Py_INCREF(r); | 
 | 		return r; | 
 | 	} | 
 | 	if (PyUnicode_Check(r)) { | 
 | 		if (i != NULL) { | 
 | 			PyErr_SetString(PyExc_TypeError, | 
 | 					"complex() can't take second arg" | 
 | 					" if first is a string"); | 
 | 			return NULL; | 
 | 		} | 
 | 		return complex_subtype_from_string(type, r); | 
 | 	} | 
 | 	if (i != NULL && PyUnicode_Check(i)) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 				"complex() second arg can't be a string"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* XXX Hack to support classes with __complex__ method */ | 
 | 	if (complexstr == NULL) { | 
 | 		complexstr = PyUnicode_InternFromString("__complex__"); | 
 | 		if (complexstr == NULL) | 
 | 			return NULL; | 
 | 	} | 
 | 	f = PyObject_GetAttr(r, complexstr); | 
 | 	if (f == NULL) | 
 | 		PyErr_Clear(); | 
 | 	else { | 
 | 		PyObject *args = PyTuple_New(0); | 
 | 		if (args == NULL) | 
 | 			return NULL; | 
 | 		r = PyEval_CallObject(f, args); | 
 | 		Py_DECREF(args); | 
 | 		Py_DECREF(f); | 
 | 		if (r == NULL) | 
 | 			return NULL; | 
 | 		own_r = 1; | 
 | 	} | 
 | 	nbr = r->ob_type->tp_as_number; | 
 | 	if (i != NULL) | 
 | 		nbi = i->ob_type->tp_as_number; | 
 | 	if (nbr == NULL || nbr->nb_float == NULL || | 
 | 	    ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 			   "complex() argument must be a string or a number"); | 
 | 		if (own_r) { | 
 | 			Py_DECREF(r); | 
 | 		} | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* If we get this far, then the "real" and "imag" parts should | 
 | 	   both be treated as numbers, and the constructor should return a | 
 | 	   complex number equal to (real + imag*1j). | 
 |  | 
 |  	   Note that we do NOT assume the input to already be in canonical | 
 | 	   form; the "real" and "imag" parts might themselves be complex | 
 | 	   numbers, which slightly complicates the code below. */ | 
 | 	if (PyComplex_Check(r)) { | 
 | 		/* Note that if r is of a complex subtype, we're only | 
 | 		   retaining its real & imag parts here, and the return | 
 | 		   value is (properly) of the builtin complex type. */ | 
 | 		cr = ((PyComplexObject*)r)->cval; | 
 | 		cr_is_complex = 1; | 
 | 		if (own_r) { | 
 | 			Py_DECREF(r); | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* The "real" part really is entirely real, and contributes | 
 | 		   nothing in the imaginary direction.   | 
 | 		   Just treat it as a double. */ | 
 | 		tmp = PyNumber_Float(r); | 
 | 		if (own_r) { | 
 | 			/* r was a newly created complex number, rather | 
 | 			   than the original "real" argument. */ | 
 | 			Py_DECREF(r); | 
 | 		} | 
 | 		if (tmp == NULL) | 
 | 			return NULL; | 
 | 		if (!PyFloat_Check(tmp)) { | 
 | 			PyErr_SetString(PyExc_TypeError, | 
 | 					"float(r) didn't return a float"); | 
 | 			Py_DECREF(tmp); | 
 | 			return NULL; | 
 | 		} | 
 | 		cr.real = PyFloat_AsDouble(tmp); | 
 | 		cr.imag = 0.0; /* Shut up compiler warning */ | 
 | 		Py_DECREF(tmp); | 
 | 	} | 
 | 	if (i == NULL) { | 
 | 		ci.real = 0.0; | 
 | 	} | 
 | 	else if (PyComplex_Check(i)) { | 
 | 		ci = ((PyComplexObject*)i)->cval; | 
 | 		ci_is_complex = 1; | 
 | 	} else { | 
 | 		/* The "imag" part really is entirely imaginary, and | 
 | 		   contributes nothing in the real direction. | 
 | 		   Just treat it as a double. */ | 
 | 		tmp = (*nbi->nb_float)(i); | 
 | 		if (tmp == NULL) | 
 | 			return NULL; | 
 | 		ci.real = PyFloat_AsDouble(tmp); | 
 | 		Py_DECREF(tmp); | 
 | 	} | 
 | 	/*  If the input was in canonical form, then the "real" and "imag" | 
 | 	    parts are real numbers, so that ci.imag and cr.imag are zero. | 
 | 	    We need this correction in case they were not real numbers. */ | 
 |  | 
 | 	if (ci_is_complex) { | 
 | 		cr.real -= ci.imag; | 
 | 	} | 
 | 	if (cr_is_complex) { | 
 | 		ci.real += cr.imag; | 
 | 	} | 
 | 	return complex_subtype_from_doubles(type, cr.real, ci.real); | 
 | } | 
 |  | 
 | PyDoc_STRVAR(complex_doc, | 
 | "complex(real[, imag]) -> complex number\n" | 
 | "\n" | 
 | "Create a complex number from a real part and an optional imaginary part.\n" | 
 | "This is equivalent to (real + imag*1j) where imag defaults to 0."); | 
 |  | 
 | static PyNumberMethods complex_as_number = { | 
 | 	(binaryfunc)complex_add, 		/* nb_add */ | 
 | 	(binaryfunc)complex_sub, 		/* nb_subtract */ | 
 | 	(binaryfunc)complex_mul, 		/* nb_multiply */ | 
 | 	(binaryfunc)complex_remainder,		/* nb_remainder */ | 
 | 	(binaryfunc)complex_divmod,		/* nb_divmod */ | 
 | 	(ternaryfunc)complex_pow,		/* nb_power */ | 
 | 	(unaryfunc)complex_neg,			/* nb_negative */ | 
 | 	(unaryfunc)complex_pos,			/* nb_positive */ | 
 | 	(unaryfunc)complex_abs,			/* nb_absolute */ | 
 | 	(inquiry)complex_bool,			/* nb_bool */ | 
 | 	0,					/* nb_invert */ | 
 | 	0,					/* nb_lshift */ | 
 | 	0,					/* nb_rshift */ | 
 | 	0,					/* nb_and */ | 
 | 	0,					/* nb_xor */ | 
 | 	0,					/* nb_or */ | 
 | 	complex_int,				/* nb_int */ | 
 | 	0,					/* nb_reserved */ | 
 | 	complex_float,				/* nb_float */ | 
 | 	0,					/* nb_inplace_add */ | 
 | 	0,					/* nb_inplace_subtract */ | 
 | 	0,					/* nb_inplace_multiply*/ | 
 | 	0,					/* nb_inplace_remainder */ | 
 | 	0, 					/* nb_inplace_power */ | 
 | 	0,					/* nb_inplace_lshift */ | 
 | 	0,					/* nb_inplace_rshift */ | 
 | 	0,					/* nb_inplace_and */ | 
 | 	0,					/* nb_inplace_xor */ | 
 | 	0,					/* nb_inplace_or */ | 
 | 	(binaryfunc)complex_int_div,		/* nb_floor_divide */ | 
 | 	(binaryfunc)complex_div,		/* nb_true_divide */ | 
 | 	0,					/* nb_inplace_floor_divide */ | 
 | 	0,					/* nb_inplace_true_divide */ | 
 | }; | 
 |  | 
 | PyTypeObject PyComplex_Type = { | 
 | 	PyVarObject_HEAD_INIT(&PyType_Type, 0) | 
 | 	"complex", | 
 | 	sizeof(PyComplexObject), | 
 | 	0, | 
 | 	complex_dealloc,			/* tp_dealloc */ | 
 | 	0,					/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,					/* tp_reserved */ | 
 | 	(reprfunc)complex_repr,			/* tp_repr */ | 
 | 	&complex_as_number,    			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)complex_hash, 		/* tp_hash */ | 
 | 	0,					/* tp_call */ | 
 | 	(reprfunc)complex_str,			/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ | 
 | 	complex_doc,				/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	complex_richcompare,			/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	complex_methods,			/* tp_methods */ | 
 | 	complex_members,			/* tp_members */ | 
 | 	0,					/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	PyType_GenericAlloc,			/* tp_alloc */ | 
 | 	complex_new,				/* tp_new */ | 
 | 	PyObject_Del,           		/* tp_free */ | 
 | }; | 
 |  | 
 | #endif |