| '''\ | 
 | This module implements rational numbers. | 
 |  | 
 | The entry point of this module is the function | 
 |         rat(numerator, denominator) | 
 | If either numerator or denominator is of an integral or rational type, | 
 | the result is a rational number, else, the result is the simplest of | 
 | the types float and complex which can hold numerator/denominator. | 
 | If denominator is omitted, it defaults to 1. | 
 | Rational numbers can be used in calculations with any other numeric | 
 | type.  The result of the calculation will be rational if possible. | 
 |  | 
 | There is also a test function with calling sequence | 
 |         test() | 
 | The documentation string of the test function contains the expected | 
 | output. | 
 | ''' | 
 |  | 
 | # Contributed by Sjoerd Mullender | 
 |  | 
 | from types import * | 
 |  | 
 | def gcd(a, b): | 
 |     '''Calculate the Greatest Common Divisor.''' | 
 |     while b: | 
 |         a, b = b, a%b | 
 |     return a | 
 |  | 
 | def rat(num, den = 1): | 
 |     # must check complex before float | 
 |     if isinstance(num, complex) or isinstance(den, complex): | 
 |         # numerator or denominator is complex: return a complex | 
 |         return complex(num) / complex(den) | 
 |     if isinstance(num, float) or isinstance(den, float): | 
 |         # numerator or denominator is float: return a float | 
 |         return float(num) / float(den) | 
 |     # otherwise return a rational | 
 |     return Rat(num, den) | 
 |  | 
 | class Rat: | 
 |     '''This class implements rational numbers.''' | 
 |  | 
 |     def __init__(self, num, den = 1): | 
 |         if den == 0: | 
 |             raise ZeroDivisionError, 'rat(x, 0)' | 
 |  | 
 |         # normalize | 
 |  | 
 |         # must check complex before float | 
 |         if (isinstance(num, complex) or | 
 |             isinstance(den, complex)): | 
 |             # numerator or denominator is complex: | 
 |             # normalized form has denominator == 1+0j | 
 |             self.__num = complex(num) / complex(den) | 
 |             self.__den = complex(1) | 
 |             return | 
 |         if isinstance(num, float) or isinstance(den, float): | 
 |             # numerator or denominator is float: | 
 |             # normalized form has denominator == 1.0 | 
 |             self.__num = float(num) / float(den) | 
 |             self.__den = 1.0 | 
 |             return | 
 |         if (isinstance(num, self.__class__) or | 
 |             isinstance(den, self.__class__)): | 
 |             # numerator or denominator is rational | 
 |             new = num / den | 
 |             if not isinstance(new, self.__class__): | 
 |                 self.__num = new | 
 |                 if isinstance(new, complex): | 
 |                     self.__den = complex(1) | 
 |                 else: | 
 |                     self.__den = 1.0 | 
 |             else: | 
 |                 self.__num = new.__num | 
 |                 self.__den = new.__den | 
 |         else: | 
 |             # make sure numerator and denominator don't | 
 |             # have common factors | 
 |             # this also makes sure that denominator > 0 | 
 |             g = gcd(num, den) | 
 |             self.__num = num / g | 
 |             self.__den = den / g | 
 |         # try making numerator and denominator of IntType if they fit | 
 |         try: | 
 |             numi = int(self.__num) | 
 |             deni = int(self.__den) | 
 |         except (OverflowError, TypeError): | 
 |             pass | 
 |         else: | 
 |             if self.__num == numi and self.__den == deni: | 
 |                 self.__num = numi | 
 |                 self.__den = deni | 
 |  | 
 |     def __repr__(self): | 
 |         return 'Rat(%s,%s)' % (self.__num, self.__den) | 
 |  | 
 |     def __str__(self): | 
 |         if self.__den == 1: | 
 |             return str(self.__num) | 
 |         else: | 
 |             return '(%s/%s)' % (str(self.__num), str(self.__den)) | 
 |  | 
 |     # a + b | 
 |     def __add__(a, b): | 
 |         try: | 
 |             return rat(a.__num * b.__den + b.__num * a.__den, | 
 |                        a.__den * b.__den) | 
 |         except OverflowError: | 
 |             return rat(long(a.__num) * long(b.__den) + | 
 |                        long(b.__num) * long(a.__den), | 
 |                        long(a.__den) * long(b.__den)) | 
 |  | 
 |     def __radd__(b, a): | 
 |         return Rat(a) + b | 
 |  | 
 |     # a - b | 
 |     def __sub__(a, b): | 
 |         try: | 
 |             return rat(a.__num * b.__den - b.__num * a.__den, | 
 |                        a.__den * b.__den) | 
 |         except OverflowError: | 
 |             return rat(long(a.__num) * long(b.__den) - | 
 |                        long(b.__num) * long(a.__den), | 
 |                        long(a.__den) * long(b.__den)) | 
 |  | 
 |     def __rsub__(b, a): | 
 |         return Rat(a) - b | 
 |  | 
 |     # a * b | 
 |     def __mul__(a, b): | 
 |         try: | 
 |             return rat(a.__num * b.__num, a.__den * b.__den) | 
 |         except OverflowError: | 
 |             return rat(long(a.__num) * long(b.__num), | 
 |                        long(a.__den) * long(b.__den)) | 
 |  | 
 |     def __rmul__(b, a): | 
 |         return Rat(a) * b | 
 |  | 
 |     # a / b | 
 |     def __div__(a, b): | 
 |         try: | 
 |             return rat(a.__num * b.__den, a.__den * b.__num) | 
 |         except OverflowError: | 
 |             return rat(long(a.__num) * long(b.__den), | 
 |                        long(a.__den) * long(b.__num)) | 
 |  | 
 |     def __rdiv__(b, a): | 
 |         return Rat(a) / b | 
 |  | 
 |     # a % b | 
 |     def __mod__(a, b): | 
 |         div = a / b | 
 |         try: | 
 |             div = int(div) | 
 |         except OverflowError: | 
 |             div = long(div) | 
 |         return a - b * div | 
 |  | 
 |     def __rmod__(b, a): | 
 |         return Rat(a) % b | 
 |  | 
 |     # a ** b | 
 |     def __pow__(a, b): | 
 |         if b.__den != 1: | 
 |             if isinstance(a.__num, complex): | 
 |                 a = complex(a) | 
 |             else: | 
 |                 a = float(a) | 
 |             if isinstance(b.__num, complex): | 
 |                 b = complex(b) | 
 |             else: | 
 |                 b = float(b) | 
 |             return a ** b | 
 |         try: | 
 |             return rat(a.__num ** b.__num, a.__den ** b.__num) | 
 |         except OverflowError: | 
 |             return rat(long(a.__num) ** b.__num, | 
 |                        long(a.__den) ** b.__num) | 
 |  | 
 |     def __rpow__(b, a): | 
 |         return Rat(a) ** b | 
 |  | 
 |     # -a | 
 |     def __neg__(a): | 
 |         try: | 
 |             return rat(-a.__num, a.__den) | 
 |         except OverflowError: | 
 |             # a.__num == sys.maxint | 
 |             return rat(-long(a.__num), a.__den) | 
 |  | 
 |     # abs(a) | 
 |     def __abs__(a): | 
 |         return rat(abs(a.__num), a.__den) | 
 |  | 
 |     # int(a) | 
 |     def __int__(a): | 
 |         return int(a.__num / a.__den) | 
 |  | 
 |     # long(a) | 
 |     def __long__(a): | 
 |         return long(a.__num) / long(a.__den) | 
 |  | 
 |     # float(a) | 
 |     def __float__(a): | 
 |         return float(a.__num) / float(a.__den) | 
 |  | 
 |     # complex(a) | 
 |     def __complex__(a): | 
 |         return complex(a.__num) / complex(a.__den) | 
 |  | 
 |     # cmp(a,b) | 
 |     def __cmp__(a, b): | 
 |         diff = Rat(a - b) | 
 |         if diff.__num < 0: | 
 |             return -1 | 
 |         elif diff.__num > 0: | 
 |             return 1 | 
 |         else: | 
 |             return 0 | 
 |  | 
 |     def __rcmp__(b, a): | 
 |         return cmp(Rat(a), b) | 
 |  | 
 |     # a != 0 | 
 |     def __nonzero__(a): | 
 |         return a.__num != 0 | 
 |  | 
 |     # coercion | 
 |     def __coerce__(a, b): | 
 |         return a, Rat(b) | 
 |  | 
 | def test(): | 
 |     '''\ | 
 |     Test function for rat module. | 
 |  | 
 |     The expected output is (module some differences in floating | 
 |     precission): | 
 |     -1 | 
 |     -1 | 
 |     0 0L 0.1 (0.1+0j) | 
 |     [Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)] | 
 |     [Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)] | 
 |     0 | 
 |     (11/10) | 
 |     (11/10) | 
 |     1.1 | 
 |     OK | 
 |     2 1.5 (3/2) (1.5+1.5j) (15707963/5000000) | 
 |     2 2 2.0 (2+0j) | 
 |  | 
 |     4 0 4 1 4 0 | 
 |     3.5 0.5 3.0 1.33333333333 2.82842712475 1 | 
 |     (7/2) (1/2) 3 (4/3) 2.82842712475 1 | 
 |     (3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1 | 
 |     1.5 1 1.5 (1.5+0j) | 
 |  | 
 |     3.5 -0.5 3.0 0.75 2.25 -1 | 
 |     3.0 0.0 2.25 1.0 1.83711730709 0 | 
 |     3.0 0.0 2.25 1.0 1.83711730709 1 | 
 |     (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1 | 
 |     (3/2) 1 1.5 (1.5+0j) | 
 |  | 
 |     (7/2) (-1/2) 3 (3/4) (9/4) -1 | 
 |     3.0 0.0 2.25 1.0 1.83711730709 -1 | 
 |     3 0 (9/4) 1 1.83711730709 0 | 
 |     (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1 | 
 |     (1.5+1.5j) (1.5+1.5j) | 
 |  | 
 |     (3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1 | 
 |     (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1 | 
 |     (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1 | 
 |     (3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0 | 
 |     ''' | 
 |     print rat(-1L, 1) | 
 |     print rat(1, -1) | 
 |     a = rat(1, 10) | 
 |     print int(a), long(a), float(a), complex(a) | 
 |     b = rat(2, 5) | 
 |     l = [a+b, a-b, a*b, a/b] | 
 |     print l | 
 |     l.sort() | 
 |     print l | 
 |     print rat(0, 1) | 
 |     print a+1 | 
 |     print a+1L | 
 |     print a+1.0 | 
 |     try: | 
 |         print rat(1, 0) | 
 |         raise SystemError, 'should have been ZeroDivisionError' | 
 |     except ZeroDivisionError: | 
 |         print 'OK' | 
 |     print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000) | 
 |     list = [2, 1.5, rat(3,2), 1.5+1.5j] | 
 |     for i in list: | 
 |         print i, | 
 |         if not isinstance(i, complex): | 
 |             print int(i), float(i), | 
 |         print complex(i) | 
 |         print | 
 |         for j in list: | 
 |             print i + j, i - j, i * j, i / j, i ** j, | 
 |             if not (isinstance(i, complex) or | 
 |                     isinstance(j, complex)): | 
 |                 print cmp(i, j) | 
 |             print | 
 |  | 
 |  | 
 | if __name__ == '__main__': | 
 |     test() |