Port test_complex.py to unittest.

Move the constructor tests from test_builtin to test_complex.

Add a bunch of tests (code coverage is a 94%).

From SF patch #736962.
diff --git a/Lib/test/test_complex.py b/Lib/test/test_complex.py
index 8a02f7f..0963bcc 100644
--- a/Lib/test/test_complex.py
+++ b/Lib/test/test_complex.py
@@ -1,91 +1,251 @@
-from test.test_support import TestFailed, vereq
+import unittest
+from test import test_support
+
+import warnings
+warnings.filterwarnings(
+    "ignore",
+    category=DeprecationWarning,
+    message=".*complex divmod.*are deprecated"
+)
+
 from random import random
 
-# These tests ensure that complex math does the right thing; tests of
-# the complex() function/constructor are in test_b1.py.
+# These tests ensure that complex math does the right thing
 
-# XXX need many, many more tests here.
+class ComplexTest(unittest.TestCase):
 
-nerrors = 0
+    def assertAlmostEqual(self, a, b):
+        if isinstance(a, complex):
+            if isinstance(b, complex):
+                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
+                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
+            else:
+                unittest.TestCase.assertAlmostEqual(self, a.real, b)
+                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
+        else:
+            if isinstance(b, complex):
+                unittest.TestCase.assertAlmostEqual(self, a, b.real)
+                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
+            else:
+                unittest.TestCase.assertAlmostEqual(self, a, b)
 
-def check_close_real(x, y, eps=1e-9):
-    """Return true iff floats x and y "are close\""""
-    # put the one with larger magnitude second
-    if abs(x) > abs(y):
-        x, y = y, x
-    if y == 0:
-        return abs(x) < eps
-    if x == 0:
-        return abs(y) < eps
-    # check that relative difference < eps
-    return abs((x-y)/y) < eps
+    def assertCloseAbs(self, x, y, eps=1e-9):
+        """Return true iff floats x and y "are close\""""
+        # put the one with larger magnitude second
+        if abs(x) > abs(y):
+            x, y = y, x
+        if y == 0:
+            return abs(x) < eps
+        if x == 0:
+            return abs(y) < eps
+        # check that relative difference < eps
+        self.assert_(abs((x-y)/y) < eps)
 
-def check_close(x, y, eps=1e-9):
-    """Return true iff complexes x and y "are close\""""
-    return check_close_real(x.real, y.real, eps) and \
-           check_close_real(x.imag, y.imag, eps)
+    def assertClose(self, x, y, eps=1e-9):
+        """Return true iff complexes x and y "are close\""""
+        self.assertCloseAbs(x.real, y.real, eps)
+        self.assertCloseAbs(x.imag, y.imag, eps)
 
-def test_div(x, y):
-    """Compute complex z=x*y, and check that z/x==y and z/y==x."""
-    global nerrors
-    z = x * y
-    if x != 0:
-        q = z / x
-        if not check_close(q, y):
-            nerrors += 1
-            print "%r / %r == %r but expected %r" % (z, x, q, y)
-    if y != 0:
-        q = z / y
-        if not check_close(q, x):
-            nerrors += 1
-            print "%r / %r == %r but expected %r" % (z, y, q, x)
+    def assertIs(self, a, b):
+        self.assert_(a is b)
 
-simple_real = [float(i) for i in range(-5, 6)]
-simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
-for x in simple_complex:
-    for y in simple_complex:
-        test_div(x, y)
+    def check_div(self, x, y):
+        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
+        z = x * y
+        if x != 0:
+            q = z / x
+            self.assertClose(q, y)
+        if y != 0:
+            q = z / y
+            self.assertClose(q, x)
 
-# A naive complex division algorithm (such as in 2.0) is very prone to
-# nonsense errors for these (overflows and underflows).
-test_div(complex(1e200, 1e200), 1+0j)
-test_div(complex(1e-200, 1e-200), 1+0j)
+    def test_div(self):
+        simple_real = [float(i) for i in xrange(-5, 6)]
+        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
+        for x in simple_complex:
+            for y in simple_complex:
+                self.check_div(x, y)
 
-# Just for fun.
-for i in range(100):
-    test_div(complex(random(), random()),
-             complex(random(), random()))
+        # A naive complex division algorithm (such as in 2.0) is very prone to
+        # nonsense errors for these (overflows and underflows).
+        self.check_div(complex(1e200, 1e200), 1+0j)
+        self.check_div(complex(1e-200, 1e-200), 1+0j)
 
-for i in range(100):
-    if not complex(random() + 1e-6, random() + 1e-6):
-        raise TestFailed("complex(random(), random()) should be true")
+        # Just for fun.
+        for i in xrange(100):
+            self.check_div(complex(random(), random()),
+                           complex(random(), random()))
 
-if complex(0.0, 0.0):
-    raise TestFailed("complex(0.0, 0.0) should be false")
+        self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
+        # FIXME: The following currently crashes on Alpha
+        # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
 
-vereq(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
+    def test_truediv(self):
+        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
+        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
 
-try:
-    print int(5+3j)
-except TypeError:
-    pass
-else:
-    raise TestFailed("int(complex()) didn't raise TypeError")
+    def test_floordiv(self):
+        self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
+        self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)
 
-try:
-    print float(5+3j)
-except TypeError:
-    pass
-else:
-    raise TestFailed("float(complex()) didn't raise TypeError")
+    def test_coerce(self):
+        self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)
 
-try:
-    z = 1.0 / (0+0j)
-except ZeroDivisionError:
-    pass
-else:
-    nerrors += 1
-    raise TestFailed("Division by complex 0 didn't raise ZeroDivisionError")
+    def test_richcompare(self):
+        self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1L<<10000)
+        self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
+        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
+        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
+        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
+        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
+        self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
+        self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
+        self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
+        self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
 
-if nerrors:
-    raise TestFailed("%d tests failed" % nerrors)
+    def test_mod(self):
+        self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)
+
+    def test_divmod(self):
+        self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)
+
+    def test_pow(self):
+        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
+        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
+        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
+        self.assertAlmostEqual(pow(1j, -1), 1/1j)
+        self.assertAlmostEqual(pow(1j, 200), 1)
+        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
+
+    def test_boolcontext(self):
+        for i in xrange(100):
+            self.assert_(complex(random() + 1e-6, random() + 1e-6))
+        self.assert_(not complex(0.0, 0.0))
+
+    def test_conjugate(self):
+        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
+
+    def test_constructor(self):
+        class OS:
+            def __init__(self, value): self.value = value
+            def __complex__(self): return self.value
+        class NS(object):
+            def __init__(self, value): self.value = value
+            def __complex__(self): return self.value
+        self.assertEqual(complex(OS(1+10j)), 1+10j)
+        self.assertEqual(complex(NS(1+10j)), 1+10j)
+        self.assertRaises(TypeError, complex, OS(None))
+        self.assertRaises(TypeError, complex, NS(None))
+
+        self.assertAlmostEqual(complex("1+10j"), 1+10j)
+        self.assertAlmostEqual(complex(10), 10+0j)
+        self.assertAlmostEqual(complex(10.0), 10+0j)
+        self.assertAlmostEqual(complex(10L), 10+0j)
+        self.assertAlmostEqual(complex(10+0j), 10+0j)
+        self.assertAlmostEqual(complex(1,10), 1+10j)
+        self.assertAlmostEqual(complex(1,10L), 1+10j)
+        self.assertAlmostEqual(complex(1,10.0), 1+10j)
+        self.assertAlmostEqual(complex(1L,10), 1+10j)
+        self.assertAlmostEqual(complex(1L,10L), 1+10j)
+        self.assertAlmostEqual(complex(1L,10.0), 1+10j)
+        self.assertAlmostEqual(complex(1.0,10), 1+10j)
+        self.assertAlmostEqual(complex(1.0,10L), 1+10j)
+        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
+        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
+        self.assertAlmostEqual(complex(3.14), 3.14+0j)
+        self.assertAlmostEqual(complex(314), 314.0+0j)
+        self.assertAlmostEqual(complex(314L), 314.0+0j)
+        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
+        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
+        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
+        self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
+        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
+        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
+        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
+        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
+        self.assertAlmostEqual(complex("1"), 1+0j)
+        self.assertAlmostEqual(complex("1j"), 1j)
+        self.assertAlmostEqual(complex(),  0)
+        self.assertAlmostEqual(complex("-1"), -1)
+        self.assertAlmostEqual(complex("+1"), +1)
+
+        class complex2(complex): pass
+        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
+        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
+        self.assertAlmostEqual(complex(real=17+23j), 17+23j)
+        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
+        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
+
+        c = 3.14 + 1j
+        self.assert_(complex(c) is c)
+        del c
+
+        self.assertRaises(TypeError, complex, "1", "1")
+        self.assertRaises(TypeError, complex, 1, "1")
+
+        self.assertEqual(complex("  3.14+J  "), 3.14+1j)
+        if test_support.have_unicode:
+            self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)
+
+        # SF bug 543840:  complex(string) accepts strings with \0
+        # Fixed in 2.3.
+        self.assertRaises(ValueError, complex, '1+1j\0j')
+
+        self.assertRaises(TypeError, int, 5+3j)
+        self.assertRaises(TypeError, long, 5+3j)
+        self.assertRaises(TypeError, float, 5+3j)
+        self.assertRaises(ValueError, complex, "")
+        self.assertRaises(TypeError, complex, None)
+        self.assertRaises(ValueError, complex, "\0")
+        self.assertRaises(TypeError, complex, "1", "2")
+        self.assertRaises(TypeError, complex, "1", 42)
+        self.assertRaises(TypeError, complex, 1, "2")
+        self.assertRaises(ValueError, complex, "1+")
+        self.assertRaises(ValueError, complex, "1+1j+1j")
+        self.assertRaises(ValueError, complex, "--")
+        if test_support.have_unicode:
+            self.assertRaises(ValueError, complex, unicode("1"*500))
+            self.assertRaises(ValueError, complex, unicode("x"))
+
+        class EvilExc(Exception):
+             pass
+
+        class evilcomplex:
+            def __complex__(self):
+                raise EvilExc
+
+        self.assertRaises(EvilExc, complex, evilcomplex())
+
+        class float2:
+            def __init__(self, value):
+                self.value = value
+            def __float__(self):
+                return self.value
+
+        self.assertAlmostEqual(complex(float2(42.)), 42)
+        self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
+        self.assertRaises(TypeError, complex, float2(None))
+
+    def test_hash(self):
+        for x in xrange(-30, 30):
+            self.assertEqual(hash(x), hash(complex(x, 0)))
+            x /= 3.0    # now check against floating point
+            self.assertEqual(hash(x), hash(complex(x, 0.)))
+
+    def test_abs(self):
+        nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
+        for num in nums:
+            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))
+
+    def test_repr(self):
+        self.assertEqual(repr(1+6j), '(1+6j)')
+
+    def test_neg(self):
+        self.assertEqual(-(1+6j), -1-6j)
+
+
+def test_main():
+    test_support.run_unittest(ComplexTest)
+
+if __name__ == "__main__":
+    test_main()