| #include "rotatingtree.h" | 
 |  | 
 | #define KEY_LOWER_THAN(key1, key2)  ((char*)(key1) < (char*)(key2)) | 
 |  | 
 | /* The randombits() function below is a fast-and-dirty generator that | 
 |  * is probably irregular enough for our purposes.  Note that it's biased: | 
 |  * I think that ones are slightly more probable than zeroes.  It's not | 
 |  * important here, though. | 
 |  */ | 
 |  | 
 | static unsigned int random_value = 1; | 
 | static unsigned int random_stream = 0; | 
 |  | 
 | static int | 
 | randombits(int bits) | 
 | { | 
 | 	int result; | 
 | 	if (random_stream < (1U << bits)) { | 
 | 		random_value *= 1082527; | 
 | 		random_stream = random_value; | 
 | 	} | 
 | 	result = random_stream & ((1<<bits)-1); | 
 | 	random_stream >>= bits; | 
 | 	return result; | 
 | } | 
 |  | 
 |  | 
 | /* Insert a new node into the tree. | 
 |    (*root) is modified to point to the new root. */ | 
 | void | 
 | RotatingTree_Add(rotating_node_t **root, rotating_node_t *node) | 
 | { | 
 | 	while (*root != NULL) { | 
 | 		if (KEY_LOWER_THAN(node->key, (*root)->key)) | 
 | 			root = &((*root)->left); | 
 | 		else | 
 | 			root = &((*root)->right); | 
 | 	} | 
 | 	node->left = NULL; | 
 | 	node->right = NULL; | 
 | 	*root = node; | 
 | } | 
 |  | 
 | /* Locate the node with the given key.  This is the most complicated | 
 |    function because it occasionally rebalances the tree to move the | 
 |    resulting node closer to the root. */ | 
 | rotating_node_t * | 
 | RotatingTree_Get(rotating_node_t **root, void *key) | 
 | { | 
 | 	if (randombits(3) != 4) { | 
 | 		/* Fast path, no rebalancing */ | 
 | 		rotating_node_t *node = *root; | 
 | 		while (node != NULL) { | 
 | 			if (node->key == key) | 
 | 				return node; | 
 | 			if (KEY_LOWER_THAN(key, node->key)) | 
 | 				node = node->left; | 
 | 			else | 
 | 				node = node->right; | 
 | 		} | 
 | 		return NULL; | 
 | 	} | 
 | 	else { | 
 | 		rotating_node_t **pnode = root; | 
 | 		rotating_node_t *node = *pnode; | 
 | 		rotating_node_t *next; | 
 | 		int rotate; | 
 | 		if (node == NULL) | 
 | 			return NULL; | 
 | 		while (1) { | 
 | 			if (node->key == key) | 
 | 				return node; | 
 | 			rotate = !randombits(1); | 
 | 			if (KEY_LOWER_THAN(key, node->key)) { | 
 | 				next = node->left; | 
 | 				if (next == NULL) | 
 | 					return NULL; | 
 | 				if (rotate) { | 
 | 					node->left = next->right; | 
 | 					next->right = node; | 
 | 					*pnode = next; | 
 | 				} | 
 | 				else | 
 | 					pnode = &(node->left); | 
 | 			} | 
 | 			else { | 
 | 				next = node->right; | 
 | 				if (next == NULL) | 
 | 					return NULL; | 
 | 				if (rotate) { | 
 | 					node->right = next->left; | 
 | 					next->left = node; | 
 | 					*pnode = next; | 
 | 				} | 
 | 				else | 
 | 					pnode = &(node->right); | 
 | 			} | 
 | 			node = next; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Enumerate all nodes in the tree.  The callback enumfn() should return | 
 |    zero to continue the enumeration, or non-zero to interrupt it. | 
 |    A non-zero value is directly returned by RotatingTree_Enum(). */ | 
 | int | 
 | RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn, | 
 | 		  void *arg) | 
 | { | 
 | 	int result; | 
 | 	rotating_node_t *node; | 
 | 	while (root != NULL) { | 
 | 		result = RotatingTree_Enum(root->left, enumfn, arg); | 
 | 		if (result != 0) return result; | 
 | 		node = root->right; | 
 | 		result = enumfn(root, arg); | 
 | 		if (result != 0) return result; | 
 | 		root = node; | 
 | 	} | 
 | 	return 0; | 
 | } |