|  | 
 | /* Long (arbitrary precision) integer object implementation */ | 
 |  | 
 | /* XXX The functional organization of this file is terrible */ | 
 |  | 
 | #include "Python.h" | 
 | #include "longintrepr.h" | 
 |  | 
 | #include <ctype.h> | 
 |  | 
 | /* For long multiplication, use the O(N**2) school algorithm unless | 
 |  * both operands contain more than KARATSUBA_CUTOFF digits (this | 
 |  * being an internal Python long digit, in base BASE). | 
 |  */ | 
 | #define KARATSUBA_CUTOFF 35 | 
 |  | 
 | #define ABS(x) ((x) < 0 ? -(x) : (x)) | 
 |  | 
 | #undef MIN | 
 | #undef MAX | 
 | #define MAX(x, y) ((x) < (y) ? (y) : (x)) | 
 | #define MIN(x, y) ((x) > (y) ? (y) : (x)) | 
 |  | 
 | /* Forward */ | 
 | static PyLongObject *long_normalize(PyLongObject *); | 
 | static PyLongObject *mul1(PyLongObject *, wdigit); | 
 | static PyLongObject *muladd1(PyLongObject *, wdigit, wdigit); | 
 | static PyLongObject *divrem1(PyLongObject *, digit, digit *); | 
 | static PyObject *long_format(PyObject *aa, int base, int addL); | 
 |  | 
 | #define SIGCHECK(PyTryBlock) \ | 
 | 	if (--_Py_Ticker < 0) { \ | 
 | 		_Py_Ticker = _Py_CheckInterval; \ | 
 | 		if (PyErr_CheckSignals()) { PyTryBlock; } \ | 
 | 	} | 
 |  | 
 | /* Normalize (remove leading zeros from) a long int object. | 
 |    Doesn't attempt to free the storage--in most cases, due to the nature | 
 |    of the algorithms used, this could save at most be one word anyway. */ | 
 |  | 
 | static PyLongObject * | 
 | long_normalize(register PyLongObject *v) | 
 | { | 
 | 	int j = ABS(v->ob_size); | 
 | 	register int i = j; | 
 |  | 
 | 	while (i > 0 && v->ob_digit[i-1] == 0) | 
 | 		--i; | 
 | 	if (i != j) | 
 | 		v->ob_size = (v->ob_size < 0) ? -(i) : i; | 
 | 	return v; | 
 | } | 
 |  | 
 | /* Allocate a new long int object with size digits. | 
 |    Return NULL and set exception if we run out of memory. */ | 
 |  | 
 | PyLongObject * | 
 | _PyLong_New(int size) | 
 | { | 
 | 	return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size); | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyLong_Copy(PyLongObject *src) | 
 | { | 
 | 	PyLongObject *result; | 
 | 	int i; | 
 |  | 
 | 	assert(src != NULL); | 
 | 	i = src->ob_size; | 
 | 	if (i < 0) | 
 | 		i = -(i); | 
 | 	result = _PyLong_New(i); | 
 | 	if (result != NULL) { | 
 | 		result->ob_size = src->ob_size; | 
 | 		while (--i >= 0) | 
 | 			result->ob_digit[i] = src->ob_digit[i]; | 
 | 	} | 
 | 	return (PyObject *)result; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C long int */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromLong(long ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	unsigned long t;  /* unsigned so >> doesn't propagate sign bit */ | 
 | 	int ndigits = 0; | 
 | 	int negative = 0; | 
 |  | 
 | 	if (ival < 0) { | 
 | 		ival = -ival; | 
 | 		negative = 1; | 
 | 	} | 
 |  | 
 | 	/* Count the number of Python digits. | 
 | 	   We used to pick 5 ("big enough for anything"), but that's a | 
 | 	   waste of time and space given that 5*15 = 75 bits are rarely | 
 | 	   needed. */ | 
 | 	t = (unsigned long)ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		v->ob_size = negative ? -ndigits : ndigits; | 
 | 		t = (unsigned long)ival; | 
 | 		while (t) { | 
 | 			*p++ = (digit)(t & MASK); | 
 | 			t >>= SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C unsigned long int */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnsignedLong(unsigned long ival) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	unsigned long t; | 
 | 	int ndigits = 0; | 
 |  | 
 | 	/* Count the number of Python digits. */ | 
 | 	t = (unsigned long)ival; | 
 | 	while (t) { | 
 | 		++ndigits; | 
 | 		t >>= SHIFT; | 
 | 	} | 
 | 	v = _PyLong_New(ndigits); | 
 | 	if (v != NULL) { | 
 | 		digit *p = v->ob_digit; | 
 | 		v->ob_size = ndigits; | 
 | 		while (ival) { | 
 | 			*p++ = (digit)(ival & MASK); | 
 | 			ival >>= SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Create a new long int object from a C double */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromDouble(double dval) | 
 | { | 
 | 	PyLongObject *v; | 
 | 	double frac; | 
 | 	int i, ndig, expo, neg; | 
 | 	neg = 0; | 
 | 	if (Py_IS_INFINITY(dval)) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 			"cannot convert float infinity to long"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (dval < 0.0) { | 
 | 		neg = 1; | 
 | 		dval = -dval; | 
 | 	} | 
 | 	frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ | 
 | 	if (expo <= 0) | 
 | 		return PyLong_FromLong(0L); | 
 | 	ndig = (expo-1) / SHIFT + 1; /* Number of 'digits' in result */ | 
 | 	v = _PyLong_New(ndig); | 
 | 	if (v == NULL) | 
 | 		return NULL; | 
 | 	frac = ldexp(frac, (expo-1) % SHIFT + 1); | 
 | 	for (i = ndig; --i >= 0; ) { | 
 | 		long bits = (long)frac; | 
 | 		v->ob_digit[i] = (digit) bits; | 
 | 		frac = frac - (double)bits; | 
 | 		frac = ldexp(frac, SHIFT); | 
 | 	} | 
 | 	if (neg) | 
 | 		v->ob_size = -(v->ob_size); | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | /* Get a C long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | long | 
 | PyLong_AsLong(PyObject *vv) | 
 | { | 
 | 	/* This version by Tim Peters */ | 
 | 	register PyLongObject *v; | 
 | 	unsigned long x, prev; | 
 | 	int i, sign; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		if (vv != NULL && PyInt_Check(vv)) | 
 | 			return PyInt_AsLong(vv); | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = v->ob_size; | 
 | 	sign = 1; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -(i); | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		prev = x; | 
 | 		x = (x << SHIFT) + v->ob_digit[i]; | 
 | 		if ((x >> SHIFT) != prev) | 
 | 			goto overflow; | 
 | 	} | 
 | 	/* Haven't lost any bits, but if the sign bit is set we're in | 
 | 	 * trouble *unless* this is the min negative number.  So, | 
 | 	 * trouble iff sign bit set && (positive || some bit set other | 
 | 	 * than the sign bit). | 
 | 	 */ | 
 | 	if ((long)x < 0 && (sign > 0 || (x << 1) != 0)) | 
 | 		goto overflow; | 
 | 	return (long)x * sign; | 
 |  | 
 |  overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 			"long int too large to convert to int"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Get a C unsigned long int from a long int object. | 
 |    Returns -1 and sets an error condition if overflow occurs. */ | 
 |  | 
 | unsigned long | 
 | PyLong_AsUnsignedLong(PyObject *vv) | 
 | { | 
 | 	register PyLongObject *v; | 
 | 	unsigned long x, prev; | 
 | 	int i; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = v->ob_size; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		PyErr_SetString(PyExc_OverflowError, | 
 | 			   "can't convert negative value to unsigned long"); | 
 | 		return (unsigned long) -1; | 
 | 	} | 
 | 	while (--i >= 0) { | 
 | 		prev = x; | 
 | 		x = (x << SHIFT) + v->ob_digit[i]; | 
 | 		if ((x >> SHIFT) != prev) { | 
 | 			PyErr_SetString(PyExc_OverflowError, | 
 | 				"long int too large to convert"); | 
 | 			return (unsigned long) -1; | 
 | 		} | 
 | 	} | 
 | 	return x; | 
 | } | 
 |  | 
 | int | 
 | _PyLong_Sign(PyObject *vv) | 
 | { | 
 | 	PyLongObject *v = (PyLongObject *)vv; | 
 |  | 
 | 	assert(v != NULL); | 
 | 	assert(PyLong_Check(v)); | 
 |  | 
 | 	return v->ob_size == 0 ? 0 : (v->ob_size < 0 ? -1 : 1); | 
 | } | 
 |  | 
 | size_t | 
 | _PyLong_NumBits(PyObject *vv) | 
 | { | 
 | 	PyLongObject *v = (PyLongObject *)vv; | 
 | 	size_t result = 0; | 
 | 	int ndigits; | 
 |  | 
 | 	assert(v != NULL); | 
 | 	assert(PyLong_Check(v)); | 
 | 	ndigits = ABS(v->ob_size); | 
 | 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | 
 | 	if (ndigits > 0) { | 
 | 		digit msd = v->ob_digit[ndigits - 1]; | 
 |  | 
 | 		result = (ndigits - 1) * SHIFT; | 
 | 		if (result / SHIFT != (size_t)ndigits - 1) | 
 | 			goto Overflow; | 
 | 		do { | 
 | 			++result; | 
 | 			if (result == 0) | 
 | 				goto Overflow; | 
 | 			msd >>= 1; | 
 | 		} while (msd); | 
 | 	} | 
 | 	return result; | 
 |  | 
 | Overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, "long has too many bits " | 
 | 			"to express in a platform size_t"); | 
 | 	return (size_t)-1; | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyLong_FromByteArray(const unsigned char* bytes, size_t n, | 
 | 		      int little_endian, int is_signed) | 
 | { | 
 | 	const unsigned char* pstartbyte;/* LSB of bytes */ | 
 | 	int incr;			/* direction to move pstartbyte */ | 
 | 	const unsigned char* pendbyte;	/* MSB of bytes */ | 
 | 	size_t numsignificantbytes;	/* number of bytes that matter */ | 
 | 	size_t ndigits;			/* number of Python long digits */ | 
 | 	PyLongObject* v;		/* result */ | 
 | 	int idigit = 0;  		/* next free index in v->ob_digit */ | 
 |  | 
 | 	if (n == 0) | 
 | 		return PyLong_FromLong(0L); | 
 |  | 
 | 	if (little_endian) { | 
 | 		pstartbyte = bytes; | 
 | 		pendbyte = bytes + n - 1; | 
 | 		incr = 1; | 
 | 	} | 
 | 	else { | 
 | 		pstartbyte = bytes + n - 1; | 
 | 		pendbyte = bytes; | 
 | 		incr = -1; | 
 | 	} | 
 |  | 
 | 	if (is_signed) | 
 | 		is_signed = *pendbyte >= 0x80; | 
 |  | 
 | 	/* Compute numsignificantbytes.  This consists of finding the most | 
 | 	   significant byte.  Leading 0 bytes are insignficant if the number | 
 | 	   is positive, and leading 0xff bytes if negative. */ | 
 | 	{ | 
 | 		size_t i; | 
 | 		const unsigned char* p = pendbyte; | 
 | 		const int pincr = -incr;  /* search MSB to LSB */ | 
 | 		const unsigned char insignficant = is_signed ? 0xff : 0x00; | 
 |  | 
 | 		for (i = 0; i < n; ++i, p += pincr) { | 
 | 			if (*p != insignficant) | 
 | 				break; | 
 | 		} | 
 | 		numsignificantbytes = n - i; | 
 | 		/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so | 
 | 		   actually has 2 significant bytes.  OTOH, 0xff0001 == | 
 | 		   -0x00ffff, so we wouldn't *need* to bump it there; but we | 
 | 		   do for 0xffff = -0x0001.  To be safe without bothering to | 
 | 		   check every case, bump it regardless. */ | 
 | 		if (is_signed && numsignificantbytes < n) | 
 | 			++numsignificantbytes; | 
 | 	} | 
 |  | 
 | 	/* How many Python long digits do we need?  We have | 
 | 	   8*numsignificantbytes bits, and each Python long digit has SHIFT | 
 | 	   bits, so it's the ceiling of the quotient. */ | 
 | 	ndigits = (numsignificantbytes * 8 + SHIFT - 1) / SHIFT; | 
 | 	if (ndigits > (size_t)INT_MAX) | 
 | 		return PyErr_NoMemory(); | 
 | 	v = _PyLong_New((int)ndigits); | 
 | 	if (v == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* Copy the bits over.  The tricky parts are computing 2's-comp on | 
 | 	   the fly for signed numbers, and dealing with the mismatch between | 
 | 	   8-bit bytes and (probably) 15-bit Python digits.*/ | 
 | 	{ | 
 | 		size_t i; | 
 | 		twodigits carry = 1;		/* for 2's-comp calculation */ | 
 | 		twodigits accum = 0;		/* sliding register */ | 
 | 		unsigned int accumbits = 0; 	/* number of bits in accum */ | 
 | 		const unsigned char* p = pstartbyte; | 
 |  | 
 | 		for (i = 0; i < numsignificantbytes; ++i, p += incr) { | 
 | 			twodigits thisbyte = *p; | 
 | 			/* Compute correction for 2's comp, if needed. */ | 
 | 			if (is_signed) { | 
 | 				thisbyte = (0xff ^ thisbyte) + carry; | 
 | 				carry = thisbyte >> 8; | 
 | 				thisbyte &= 0xff; | 
 | 			} | 
 | 			/* Because we're going LSB to MSB, thisbyte is | 
 | 			   more significant than what's already in accum, | 
 | 			   so needs to be prepended to accum. */ | 
 | 			accum |= thisbyte << accumbits; | 
 | 			accumbits += 8; | 
 | 			if (accumbits >= SHIFT) { | 
 | 				/* There's enough to fill a Python digit. */ | 
 | 				assert(idigit < (int)ndigits); | 
 | 				v->ob_digit[idigit] = (digit)(accum & MASK); | 
 | 				++idigit; | 
 | 				accum >>= SHIFT; | 
 | 				accumbits -= SHIFT; | 
 | 				assert(accumbits < SHIFT); | 
 | 			} | 
 | 		} | 
 | 		assert(accumbits < SHIFT); | 
 | 		if (accumbits) { | 
 | 			assert(idigit < (int)ndigits); | 
 | 			v->ob_digit[idigit] = (digit)accum; | 
 | 			++idigit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	v->ob_size = is_signed ? -idigit : idigit; | 
 | 	return (PyObject *)long_normalize(v); | 
 | } | 
 |  | 
 | int | 
 | _PyLong_AsByteArray(PyLongObject* v, | 
 | 		    unsigned char* bytes, size_t n, | 
 | 		    int little_endian, int is_signed) | 
 | { | 
 | 	int i;			/* index into v->ob_digit */ | 
 | 	int ndigits;		/* |v->ob_size| */ | 
 | 	twodigits accum;	/* sliding register */ | 
 | 	unsigned int accumbits; /* # bits in accum */ | 
 | 	int do_twos_comp;	/* store 2's-comp?  is_signed and v < 0 */ | 
 | 	twodigits carry;	/* for computing 2's-comp */ | 
 | 	size_t j;		/* # bytes filled */ | 
 | 	unsigned char* p;	/* pointer to next byte in bytes */ | 
 | 	int pincr;		/* direction to move p */ | 
 |  | 
 | 	assert(v != NULL && PyLong_Check(v)); | 
 |  | 
 | 	if (v->ob_size < 0) { | 
 | 		ndigits = -(v->ob_size); | 
 | 		if (!is_signed) { | 
 | 			PyErr_SetString(PyExc_TypeError, | 
 | 				"can't convert negative long to unsigned"); | 
 | 			return -1; | 
 | 		} | 
 | 		do_twos_comp = 1; | 
 | 	} | 
 | 	else { | 
 | 		ndigits = v->ob_size; | 
 | 		do_twos_comp = 0; | 
 | 	} | 
 |  | 
 | 	if (little_endian) { | 
 | 		p = bytes; | 
 | 		pincr = 1; | 
 | 	} | 
 | 	else { | 
 | 		p = bytes + n - 1; | 
 | 		pincr = -1; | 
 | 	} | 
 |  | 
 | 	/* Copy over all the Python digits. | 
 | 	   It's crucial that every Python digit except for the MSD contribute | 
 | 	   exactly SHIFT bits to the total, so first assert that the long is | 
 | 	   normalized. */ | 
 | 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | 
 | 	j = 0; | 
 | 	accum = 0; | 
 | 	accumbits = 0; | 
 | 	carry = do_twos_comp ? 1 : 0; | 
 | 	for (i = 0; i < ndigits; ++i) { | 
 | 		twodigits thisdigit = v->ob_digit[i]; | 
 | 		if (do_twos_comp) { | 
 | 			thisdigit = (thisdigit ^ MASK) + carry; | 
 | 			carry = thisdigit >> SHIFT; | 
 | 			thisdigit &= MASK; | 
 | 		} | 
 | 		/* Because we're going LSB to MSB, thisdigit is more | 
 | 		   significant than what's already in accum, so needs to be | 
 | 		   prepended to accum. */ | 
 | 		accum |= thisdigit << accumbits; | 
 | 		accumbits += SHIFT; | 
 |  | 
 | 		/* The most-significant digit may be (probably is) at least | 
 | 		   partly empty. */ | 
 | 		if (i == ndigits - 1) { | 
 | 			/* Count # of sign bits -- they needn't be stored, | 
 | 			 * although for signed conversion we need later to | 
 | 			 * make sure at least one sign bit gets stored. | 
 | 			 * First shift conceptual sign bit to real sign bit. | 
 | 			 */ | 
 | 			stwodigits s = (stwodigits)(thisdigit << | 
 | 				(8*sizeof(stwodigits) - SHIFT)); | 
 | 			unsigned int nsignbits = 0; | 
 | 			while ((s < 0) == do_twos_comp && nsignbits < SHIFT) { | 
 | 				++nsignbits; | 
 | 				s <<= 1; | 
 | 			} | 
 | 			accumbits -= nsignbits; | 
 | 		} | 
 |  | 
 | 		/* Store as many bytes as possible. */ | 
 | 		while (accumbits >= 8) { | 
 | 			if (j >= n) | 
 | 				goto Overflow; | 
 | 			++j; | 
 | 			*p = (unsigned char)(accum & 0xff); | 
 | 			p += pincr; | 
 | 			accumbits -= 8; | 
 | 			accum >>= 8; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Store the straggler (if any). */ | 
 | 	assert(accumbits < 8); | 
 | 	assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */ | 
 | 	if (accumbits > 0) { | 
 | 		if (j >= n) | 
 | 			goto Overflow; | 
 | 		++j; | 
 | 		if (do_twos_comp) { | 
 | 			/* Fill leading bits of the byte with sign bits | 
 | 			   (appropriately pretending that the long had an | 
 | 			   infinite supply of sign bits). */ | 
 | 			accum |= (~(twodigits)0) << accumbits; | 
 | 		} | 
 | 		*p = (unsigned char)(accum & 0xff); | 
 | 		p += pincr; | 
 | 	} | 
 | 	else if (j == n && n > 0 && is_signed) { | 
 | 		/* The main loop filled the byte array exactly, so the code | 
 | 		   just above didn't get to ensure there's a sign bit, and the | 
 | 		   loop below wouldn't add one either.  Make sure a sign bit | 
 | 		   exists. */ | 
 | 		unsigned char msb = *(p - pincr); | 
 | 		int sign_bit_set = msb >= 0x80; | 
 | 		assert(accumbits == 0); | 
 | 		if (sign_bit_set == do_twos_comp) | 
 | 			return 0; | 
 | 		else | 
 | 			goto Overflow; | 
 | 	} | 
 |  | 
 | 	/* Fill remaining bytes with copies of the sign bit. */ | 
 | 	{ | 
 | 		unsigned char signbyte = do_twos_comp ? 0xffU : 0U; | 
 | 		for ( ; j < n; ++j, p += pincr) | 
 | 			*p = signbyte; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | Overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, "long too big to convert"); | 
 | 	return -1; | 
 |  | 
 | } | 
 |  | 
 | double | 
 | _PyLong_AsScaledDouble(PyObject *vv, int *exponent) | 
 | { | 
 | /* NBITS_WANTED should be > the number of bits in a double's precision, | 
 |    but small enough so that 2**NBITS_WANTED is within the normal double | 
 |    range.  nbitsneeded is set to 1 less than that because the most-significant | 
 |    Python digit contains at least 1 significant bit, but we don't want to | 
 |    bother counting them (catering to the worst case cheaply). | 
 |  | 
 |    57 is one more than VAX-D double precision; I (Tim) don't know of a double | 
 |    format with more precision than that; it's 1 larger so that we add in at | 
 |    least one round bit to stand in for the ignored least-significant bits. | 
 | */ | 
 | #define NBITS_WANTED 57 | 
 | 	PyLongObject *v; | 
 | 	double x; | 
 | 	const double multiplier = (double)(1L << SHIFT); | 
 | 	int i, sign; | 
 | 	int nbitsneeded; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	v = (PyLongObject *)vv; | 
 | 	i = v->ob_size; | 
 | 	sign = 1; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -(i); | 
 | 	} | 
 | 	else if (i == 0) { | 
 | 		*exponent = 0; | 
 | 		return 0.0; | 
 | 	} | 
 | 	--i; | 
 | 	x = (double)v->ob_digit[i]; | 
 | 	nbitsneeded = NBITS_WANTED - 1; | 
 | 	/* Invariant:  i Python digits remain unaccounted for. */ | 
 | 	while (i > 0 && nbitsneeded > 0) { | 
 | 		--i; | 
 | 		x = x * multiplier + (double)v->ob_digit[i]; | 
 | 		nbitsneeded -= SHIFT; | 
 | 	} | 
 | 	/* There are i digits we didn't shift in.  Pretending they're all | 
 | 	   zeroes, the true value is x * 2**(i*SHIFT). */ | 
 | 	*exponent = i; | 
 | 	assert(x > 0.0); | 
 | 	return x * sign; | 
 | #undef NBITS_WANTED | 
 | } | 
 |  | 
 | /* Get a C double from a long int object. */ | 
 |  | 
 | double | 
 | PyLong_AsDouble(PyObject *vv) | 
 | { | 
 | 	int e; | 
 | 	double x; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	x = _PyLong_AsScaledDouble(vv, &e); | 
 | 	if (x == -1.0 && PyErr_Occurred()) | 
 | 		return -1.0; | 
 | 	if (e > INT_MAX / SHIFT) | 
 | 		goto overflow; | 
 | 	errno = 0; | 
 | 	x = ldexp(x, e * SHIFT); | 
 | 	if (Py_OVERFLOWED(x)) | 
 | 		goto overflow; | 
 | 	return x; | 
 |  | 
 | overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 		"long int too large to convert to float"); | 
 | 	return -1.0; | 
 | } | 
 |  | 
 | /* Create a new long (or int) object from a C pointer */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromVoidPtr(void *p) | 
 | { | 
 | #if SIZEOF_VOID_P <= SIZEOF_LONG | 
 | 	return PyInt_FromLong((long)p); | 
 | #else | 
 |  | 
 | #ifndef HAVE_LONG_LONG | 
 | #   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" | 
 | #endif | 
 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P | 
 | #   error "PyLong_FromVoidPtr: sizeof(LONG_LONG) < sizeof(void*)" | 
 | #endif | 
 | 	/* optimize null pointers */ | 
 | 	if (p == NULL) | 
 | 		return PyInt_FromLong(0); | 
 | 	return PyLong_FromLongLong((LONG_LONG)p); | 
 |  | 
 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | 
 | } | 
 |  | 
 | /* Get a C pointer from a long object (or an int object in some cases) */ | 
 |  | 
 | void * | 
 | PyLong_AsVoidPtr(PyObject *vv) | 
 | { | 
 | 	/* This function will allow int or long objects. If vv is neither, | 
 | 	   then the PyLong_AsLong*() functions will raise the exception: | 
 | 	   PyExc_SystemError, "bad argument to internal function" | 
 | 	*/ | 
 | #if SIZEOF_VOID_P <= SIZEOF_LONG | 
 | 	long x; | 
 |  | 
 | 	if (PyInt_Check(vv)) | 
 | 		x = PyInt_AS_LONG(vv); | 
 | 	else | 
 | 		x = PyLong_AsLong(vv); | 
 | #else | 
 |  | 
 | #ifndef HAVE_LONG_LONG | 
 | #   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" | 
 | #endif | 
 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P | 
 | #   error "PyLong_AsVoidPtr: sizeof(LONG_LONG) < sizeof(void*)" | 
 | #endif | 
 | 	LONG_LONG x; | 
 |  | 
 | 	if (PyInt_Check(vv)) | 
 | 		x = PyInt_AS_LONG(vv); | 
 | 	else | 
 | 		x = PyLong_AsLongLong(vv); | 
 |  | 
 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | 
 |  | 
 | 	if (x == -1 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return (void *)x; | 
 | } | 
 |  | 
 | #ifdef HAVE_LONG_LONG | 
 |  | 
 | /* Initial LONG_LONG support by Chris Herborth (chrish@qnx.com), later | 
 |  * rewritten to use the newer PyLong_{As,From}ByteArray API. | 
 |  */ | 
 |  | 
 | #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one | 
 |  | 
 | /* Create a new long int object from a C LONG_LONG int. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromLongLong(LONG_LONG ival) | 
 | { | 
 | 	LONG_LONG bytes = ival; | 
 | 	int one = 1; | 
 | 	return _PyLong_FromByteArray( | 
 | 			(unsigned char *)&bytes, | 
 | 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); | 
 | } | 
 |  | 
 | /* Create a new long int object from a C unsigned LONG_LONG int. */ | 
 |  | 
 | PyObject * | 
 | PyLong_FromUnsignedLongLong(unsigned LONG_LONG ival) | 
 | { | 
 | 	unsigned LONG_LONG bytes = ival; | 
 | 	int one = 1; | 
 | 	return _PyLong_FromByteArray( | 
 | 			(unsigned char *)&bytes, | 
 | 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); | 
 | } | 
 |  | 
 | /* Get a C LONG_LONG int from a long int object. | 
 |    Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | LONG_LONG | 
 | PyLong_AsLongLong(PyObject *vv) | 
 | { | 
 | 	LONG_LONG bytes; | 
 | 	int one = 1; | 
 | 	int res; | 
 |  | 
 | 	if (vv == NULL) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 | 	if (!PyLong_Check(vv)) { | 
 | 		if (PyInt_Check(vv)) | 
 | 			return (LONG_LONG)PyInt_AsLong(vv); | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	res = _PyLong_AsByteArray( | 
 | 			(PyLongObject *)vv, (unsigned char *)&bytes, | 
 | 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); | 
 |  | 
 | 	/* Plan 9 can't handle LONG_LONG in ? : expressions */ | 
 | 	if (res < 0) | 
 | 		return (LONG_LONG)-1; | 
 | 	else | 
 | 		return bytes; | 
 | } | 
 |  | 
 | /* Get a C unsigned LONG_LONG int from a long int object. | 
 |    Return -1 and set an error if overflow occurs. */ | 
 |  | 
 | unsigned LONG_LONG | 
 | PyLong_AsUnsignedLongLong(PyObject *vv) | 
 | { | 
 | 	unsigned LONG_LONG bytes; | 
 | 	int one = 1; | 
 | 	int res; | 
 |  | 
 | 	if (vv == NULL || !PyLong_Check(vv)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	res = _PyLong_AsByteArray( | 
 | 			(PyLongObject *)vv, (unsigned char *)&bytes, | 
 | 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); | 
 |  | 
 | 	/* Plan 9 can't handle LONG_LONG in ? : expressions */ | 
 | 	if (res < 0) | 
 | 		return (unsigned LONG_LONG)res; | 
 | 	else | 
 | 		return bytes; | 
 | } | 
 |  | 
 | #undef IS_LITTLE_ENDIAN | 
 |  | 
 | #endif /* HAVE_LONG_LONG */ | 
 |  | 
 |  | 
 | static int | 
 | convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) { | 
 | 	if (PyLong_Check(v)) { | 
 | 		*a = (PyLongObject *) v; | 
 | 		Py_INCREF(v); | 
 | 	} | 
 | 	else if (PyInt_Check(v)) { | 
 | 		*a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v)); | 
 | 	} | 
 | 	else { | 
 | 		return 0; | 
 | 	} | 
 | 	if (PyLong_Check(w)) { | 
 | 		*b = (PyLongObject *) w; | 
 | 		Py_INCREF(w); | 
 | 	} | 
 | 	else if (PyInt_Check(w)) { | 
 | 		*b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w)); | 
 | 	} | 
 | 	else { | 
 | 		Py_DECREF(*a); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | #define CONVERT_BINOP(v, w, a, b) \ | 
 | 	if (!convert_binop(v, w, a, b)) { \ | 
 | 		Py_INCREF(Py_NotImplemented); \ | 
 | 		return Py_NotImplemented; \ | 
 | 	} | 
 |  | 
 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n] | 
 |  * is modified in place, by adding y to it.  Carries are propagated as far as | 
 |  * x[m-1], and the remaining carry (0 or 1) is returned. | 
 |  */ | 
 | static digit | 
 | v_iadd(digit *x, int m, digit *y, int n) | 
 | { | 
 | 	int i; | 
 | 	digit carry = 0; | 
 |  | 
 | 	assert(m >= n); | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		carry += x[i] + y[i]; | 
 | 		x[i] = carry & MASK; | 
 | 		carry >>= SHIFT; | 
 | 		assert((carry & 1) == carry); | 
 | 	} | 
 | 	for (; carry && i < m; ++i) { | 
 | 		carry += x[i]; | 
 | 		x[i] = carry & MASK; | 
 | 		carry >>= SHIFT; | 
 | 		assert((carry & 1) == carry); | 
 | 	} | 
 | 	return carry; | 
 | } | 
 |  | 
 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n] | 
 |  * is modified in place, by subtracting y from it.  Borrows are propagated as | 
 |  * far as x[m-1], and the remaining borrow (0 or 1) is returned. | 
 |  */ | 
 | static digit | 
 | v_isub(digit *x, int m, digit *y, int n) | 
 | { | 
 | 	int i; | 
 | 	digit borrow = 0; | 
 |  | 
 | 	assert(m >= n); | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		borrow = x[i] - y[i] - borrow; | 
 | 		x[i] = borrow & MASK; | 
 | 		borrow >>= SHIFT; | 
 | 		borrow &= 1;	/* keep only 1 sign bit */ | 
 | 	} | 
 | 	for (; borrow && i < m; ++i) { | 
 | 		borrow = x[i] - borrow; | 
 | 		x[i] = borrow & MASK; | 
 | 		borrow >>= SHIFT; | 
 | 		borrow &= 1; | 
 | 	} | 
 | 	return borrow; | 
 | } | 
 |  | 
 | /* Multiply by a single digit, ignoring the sign. */ | 
 |  | 
 | static PyLongObject * | 
 | mul1(PyLongObject *a, wdigit n) | 
 | { | 
 | 	return muladd1(a, n, (digit)0); | 
 | } | 
 |  | 
 | /* Multiply by a single digit and add a single digit, ignoring the sign. */ | 
 |  | 
 | static PyLongObject * | 
 | muladd1(PyLongObject *a, wdigit n, wdigit extra) | 
 | { | 
 | 	int size_a = ABS(a->ob_size); | 
 | 	PyLongObject *z = _PyLong_New(size_a+1); | 
 | 	twodigits carry = extra; | 
 | 	int i; | 
 |  | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; i < size_a; ++i) { | 
 | 		carry += (twodigits)a->ob_digit[i] * n; | 
 | 		z->ob_digit[i] = (digit) (carry & MASK); | 
 | 		carry >>= SHIFT; | 
 | 	} | 
 | 	z->ob_digit[i] = (digit) carry; | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient | 
 |    in pout, and returning the remainder.  pin and pout point at the LSD. | 
 |    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in | 
 |    long_format, but that should be done with great care since longs are | 
 |    immutable. */ | 
 |  | 
 | static digit | 
 | inplace_divrem1(digit *pout, digit *pin, int size, digit n) | 
 | { | 
 | 	twodigits rem = 0; | 
 |  | 
 | 	assert(n > 0 && n <= MASK); | 
 | 	pin += size; | 
 | 	pout += size; | 
 | 	while (--size >= 0) { | 
 | 		digit hi; | 
 | 		rem = (rem << SHIFT) + *--pin; | 
 | 		*--pout = hi = (digit)(rem / n); | 
 | 		rem -= hi * n; | 
 | 	} | 
 | 	return (digit)rem; | 
 | } | 
 |  | 
 | /* Divide a long integer by a digit, returning both the quotient | 
 |    (as function result) and the remainder (through *prem). | 
 |    The sign of a is ignored; n should not be zero. */ | 
 |  | 
 | static PyLongObject * | 
 | divrem1(PyLongObject *a, digit n, digit *prem) | 
 | { | 
 | 	const int size = ABS(a->ob_size); | 
 | 	PyLongObject *z; | 
 |  | 
 | 	assert(n > 0 && n <= MASK); | 
 | 	z = _PyLong_New(size); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* Convert a long int object to a string, using a given conversion base. | 
 |    Return a string object. | 
 |    If base is 8 or 16, add the proper prefix '0' or '0x'. */ | 
 |  | 
 | static PyObject * | 
 | long_format(PyObject *aa, int base, int addL) | 
 | { | 
 | 	register PyLongObject *a = (PyLongObject *)aa; | 
 | 	PyStringObject *str; | 
 | 	int i; | 
 | 	const int size_a = ABS(a->ob_size); | 
 | 	char *p; | 
 | 	int bits; | 
 | 	char sign = '\0'; | 
 |  | 
 | 	if (a == NULL || !PyLong_Check(a)) { | 
 | 		PyErr_BadInternalCall(); | 
 | 		return NULL; | 
 | 	} | 
 | 	assert(base >= 2 && base <= 36); | 
 |  | 
 | 	/* Compute a rough upper bound for the length of the string */ | 
 | 	i = base; | 
 | 	bits = 0; | 
 | 	while (i > 1) { | 
 | 		++bits; | 
 | 		i >>= 1; | 
 | 	} | 
 | 	i = 5 + (addL ? 1 : 0) + (size_a*SHIFT + bits-1) / bits; | 
 | 	str = (PyStringObject *) PyString_FromStringAndSize((char *)0, i); | 
 | 	if (str == NULL) | 
 | 		return NULL; | 
 | 	p = PyString_AS_STRING(str) + i; | 
 | 	*p = '\0'; | 
 |         if (addL) | 
 |                 *--p = 'L'; | 
 | 	if (a->ob_size < 0) | 
 | 		sign = '-'; | 
 |  | 
 | 	if (a->ob_size == 0) { | 
 | 		*--p = '0'; | 
 | 	} | 
 | 	else if ((base & (base - 1)) == 0) { | 
 | 		/* JRH: special case for power-of-2 bases */ | 
 | 		twodigits accum = 0; | 
 | 		int accumbits = 0;	/* # of bits in accum */ | 
 | 		int basebits = 1;	/* # of bits in base-1 */ | 
 | 		i = base; | 
 | 		while ((i >>= 1) > 1) | 
 | 			++basebits; | 
 |  | 
 | 		for (i = 0; i < size_a; ++i) { | 
 | 			accum |= (twodigits)a->ob_digit[i] << accumbits; | 
 | 			accumbits += SHIFT; | 
 | 			assert(accumbits >= basebits); | 
 | 			do { | 
 | 				char cdigit = (char)(accum & (base - 1)); | 
 | 				cdigit += (cdigit < 10) ? '0' : 'A'-10; | 
 | 				assert(p > PyString_AS_STRING(str)); | 
 | 				*--p = cdigit; | 
 | 				accumbits -= basebits; | 
 | 				accum >>= basebits; | 
 | 			} while (i < size_a-1 ? accumbits >= basebits : | 
 | 					 	accum > 0); | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		/* Not 0, and base not a power of 2.  Divide repeatedly by | 
 | 		   base, but for speed use the highest power of base that | 
 | 		   fits in a digit. */ | 
 | 		int size = size_a; | 
 | 		digit *pin = a->ob_digit; | 
 | 		PyLongObject *scratch; | 
 | 		/* powbasw <- largest power of base that fits in a digit. */ | 
 | 		digit powbase = base;  /* powbase == base ** power */ | 
 | 		int power = 1; | 
 | 		for (;;) { | 
 | 			unsigned long newpow = powbase * (unsigned long)base; | 
 | 			if (newpow >> SHIFT)  /* doesn't fit in a digit */ | 
 | 				break; | 
 | 			powbase = (digit)newpow; | 
 | 			++power; | 
 | 		} | 
 |  | 
 | 		/* Get a scratch area for repeated division. */ | 
 | 		scratch = _PyLong_New(size); | 
 | 		if (scratch == NULL) { | 
 | 			Py_DECREF(str); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		/* Repeatedly divide by powbase. */ | 
 | 		do { | 
 | 			int ntostore = power; | 
 | 			digit rem = inplace_divrem1(scratch->ob_digit, | 
 | 						     pin, size, powbase); | 
 | 			pin = scratch->ob_digit; /* no need to use a again */ | 
 | 			if (pin[size - 1] == 0) | 
 | 				--size; | 
 | 			SIGCHECK({ | 
 | 				Py_DECREF(scratch); | 
 | 				Py_DECREF(str); | 
 | 				return NULL; | 
 | 			}) | 
 |  | 
 | 			/* Break rem into digits. */ | 
 | 			assert(ntostore > 0); | 
 | 			do { | 
 | 				digit nextrem = (digit)(rem / base); | 
 | 				char c = (char)(rem - nextrem * base); | 
 | 				assert(p > PyString_AS_STRING(str)); | 
 | 				c += (c < 10) ? '0' : 'A'-10; | 
 | 				*--p = c; | 
 | 				rem = nextrem; | 
 | 				--ntostore; | 
 | 				/* Termination is a bit delicate:  must not | 
 | 				   store leading zeroes, so must get out if | 
 | 				   remaining quotient and rem are both 0. */ | 
 | 			} while (ntostore && (size || rem)); | 
 | 		} while (size != 0); | 
 | 		Py_DECREF(scratch); | 
 | 	} | 
 |  | 
 | 	if (base == 8) { | 
 | 		if (size_a != 0) | 
 | 			*--p = '0'; | 
 | 	} | 
 | 	else if (base == 16) { | 
 | 		*--p = 'x'; | 
 | 		*--p = '0'; | 
 | 	} | 
 | 	else if (base != 10) { | 
 | 		*--p = '#'; | 
 | 		*--p = '0' + base%10; | 
 | 		if (base > 10) | 
 | 			*--p = '0' + base/10; | 
 | 	} | 
 | 	if (sign) | 
 | 		*--p = sign; | 
 | 	if (p != PyString_AS_STRING(str)) { | 
 | 		char *q = PyString_AS_STRING(str); | 
 | 		assert(p > q); | 
 | 		do { | 
 | 		} while ((*q++ = *p++) != '\0'); | 
 | 		q--; | 
 | 		_PyString_Resize((PyObject **)&str, | 
 | 				 (int) (q - PyString_AS_STRING(str))); | 
 | 	} | 
 | 	return (PyObject *)str; | 
 | } | 
 |  | 
 | /* *str points to the first digit in a string of base base digits.  base | 
 |  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first | 
 |  * non-digit (which may be *str!).  A normalized long is returned. | 
 |  * The point to this routine is that it takes time linear in the number of | 
 |  * string characters. | 
 |  */ | 
 | static PyLongObject * | 
 | long_from_binary_base(char **str, int base) | 
 | { | 
 | 	char *p = *str; | 
 | 	char *start = p; | 
 | 	int bits_per_char; | 
 | 	int n; | 
 | 	PyLongObject *z; | 
 | 	twodigits accum; | 
 | 	int bits_in_accum; | 
 | 	digit *pdigit; | 
 |  | 
 | 	assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); | 
 | 	n = base; | 
 | 	for (bits_per_char = -1; n; ++bits_per_char) | 
 | 		n >>= 1; | 
 | 	/* n <- total # of bits needed, while setting p to end-of-string */ | 
 | 	n = 0; | 
 | 	for (;;) { | 
 | 		int k = -1; | 
 | 		char ch = *p; | 
 |  | 
 | 		if (ch <= '9') | 
 | 			k = ch - '0'; | 
 | 		else if (ch >= 'a') | 
 | 			k = ch - 'a' + 10; | 
 | 		else if (ch >= 'A') | 
 | 			k = ch - 'A' + 10; | 
 | 		if (k < 0 || k >= base) | 
 | 			break; | 
 | 		++p; | 
 | 	} | 
 | 	*str = p; | 
 | 	n = (p - start) * bits_per_char; | 
 | 	if (n / bits_per_char != p - start) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"long string too large to convert"); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* n <- # of Python digits needed, = ceiling(n/SHIFT). */ | 
 | 	n = (n + SHIFT - 1) / SHIFT; | 
 | 	z = _PyLong_New(n); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	/* Read string from right, and fill in long from left; i.e., | 
 | 	 * from least to most significant in both. | 
 | 	 */ | 
 | 	accum = 0; | 
 | 	bits_in_accum = 0; | 
 | 	pdigit = z->ob_digit; | 
 | 	while (--p >= start) { | 
 | 		unsigned char ch = (unsigned char)*p; | 
 | 		digit k; | 
 |  | 
 | 		if (ch <= '9') | 
 | 			k = ch - '0'; | 
 | 		else if (ch >= 'a') | 
 | 			k = ch - 'a' + 10; | 
 | 		else { | 
 | 			assert(ch >= 'A'); | 
 | 			k = ch - 'A' + 10; | 
 | 		} | 
 | 		assert(k < base); | 
 | 		accum |= k << bits_in_accum; | 
 | 		bits_in_accum += bits_per_char; | 
 | 		if (bits_in_accum >= SHIFT) { | 
 | 			*pdigit++ = (digit)(accum & MASK); | 
 | 			assert(pdigit - z->ob_digit <= n); | 
 | 			accum >>= SHIFT; | 
 | 			bits_in_accum -= SHIFT; | 
 | 			assert(bits_in_accum < SHIFT); | 
 | 		} | 
 | 	} | 
 | 	if (bits_in_accum) { | 
 | 		assert(bits_in_accum <= SHIFT); | 
 | 		*pdigit++ = (digit)accum; | 
 | 		assert(pdigit - z->ob_digit <= n); | 
 | 	} | 
 | 	while (pdigit - z->ob_digit < n) | 
 | 		*pdigit++ = 0; | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | PyObject * | 
 | PyLong_FromString(char *str, char **pend, int base) | 
 | { | 
 | 	int sign = 1; | 
 | 	char *start, *orig_str = str; | 
 | 	PyLongObject *z; | 
 |  | 
 | 	if ((base != 0 && base < 2) || base > 36) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"long() arg 2 must be >= 2 and <= 36"); | 
 | 		return NULL; | 
 | 	} | 
 | 	while (*str != '\0' && isspace(Py_CHARMASK(*str))) | 
 | 		str++; | 
 | 	if (*str == '+') | 
 | 		++str; | 
 | 	else if (*str == '-') { | 
 | 		++str; | 
 | 		sign = -1; | 
 | 	} | 
 | 	while (*str != '\0' && isspace(Py_CHARMASK(*str))) | 
 | 		str++; | 
 | 	if (base == 0) { | 
 | 		if (str[0] != '0') | 
 | 			base = 10; | 
 | 		else if (str[1] == 'x' || str[1] == 'X') | 
 | 			base = 16; | 
 | 		else | 
 | 			base = 8; | 
 | 	} | 
 | 	if (base == 16 && str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) | 
 | 		str += 2; | 
 | 	start = str; | 
 | 	if ((base & (base - 1)) == 0) | 
 | 		z = long_from_binary_base(&str, base); | 
 | 	else { | 
 | 		z = _PyLong_New(0); | 
 | 		for ( ; z != NULL; ++str) { | 
 | 			int k = -1; | 
 | 			PyLongObject *temp; | 
 |  | 
 | 			if (*str <= '9') | 
 | 				k = *str - '0'; | 
 | 			else if (*str >= 'a') | 
 | 				k = *str - 'a' + 10; | 
 | 			else if (*str >= 'A') | 
 | 				k = *str - 'A' + 10; | 
 | 			if (k < 0 || k >= base) | 
 | 				break; | 
 | 			temp = muladd1(z, (digit)base, (digit)k); | 
 | 			Py_DECREF(z); | 
 | 			z = temp; | 
 | 		} | 
 | 	} | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	if (str == start) | 
 | 		goto onError; | 
 | 	if (sign < 0 && z != NULL && z->ob_size != 0) | 
 | 		z->ob_size = -(z->ob_size); | 
 | 	if (*str == 'L' || *str == 'l') | 
 | 		str++; | 
 | 	while (*str && isspace(Py_CHARMASK(*str))) | 
 | 		str++; | 
 | 	if (*str != '\0') | 
 | 		goto onError; | 
 | 	if (pend) | 
 | 		*pend = str; | 
 | 	return (PyObject *) z; | 
 |  | 
 |  onError: | 
 | 	PyErr_Format(PyExc_ValueError, | 
 | 		     "invalid literal for long(): %.200s", orig_str); | 
 | 	Py_XDECREF(z); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifdef Py_USING_UNICODE | 
 | PyObject * | 
 | PyLong_FromUnicode(Py_UNICODE *u, int length, int base) | 
 | { | 
 | 	PyObject *result; | 
 | 	char *buffer = PyMem_MALLOC(length+1); | 
 |  | 
 | 	if (buffer == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { | 
 | 		PyMem_FREE(buffer); | 
 | 		return NULL; | 
 | 	} | 
 | 	result = PyLong_FromString(buffer, NULL, base); | 
 | 	PyMem_FREE(buffer); | 
 | 	return result; | 
 | } | 
 | #endif | 
 |  | 
 | /* forward */ | 
 | static PyLongObject *x_divrem | 
 | 	(PyLongObject *, PyLongObject *, PyLongObject **); | 
 | static PyObject *long_pos(PyLongObject *); | 
 | static int long_divrem(PyLongObject *, PyLongObject *, | 
 | 	PyLongObject **, PyLongObject **); | 
 |  | 
 | /* Long division with remainder, top-level routine */ | 
 |  | 
 | static int | 
 | long_divrem(PyLongObject *a, PyLongObject *b, | 
 | 	    PyLongObject **pdiv, PyLongObject **prem) | 
 | { | 
 | 	int size_a = ABS(a->ob_size), size_b = ABS(b->ob_size); | 
 | 	PyLongObject *z; | 
 |  | 
 | 	if (size_b == 0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 				"long division or modulo by zero"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (size_a < size_b || | 
 | 	    (size_a == size_b && | 
 | 	     a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { | 
 | 		/* |a| < |b|. */ | 
 | 		*pdiv = _PyLong_New(0); | 
 | 		Py_INCREF(a); | 
 | 		*prem = (PyLongObject *) a; | 
 | 		return 0; | 
 | 	} | 
 | 	if (size_b == 1) { | 
 | 		digit rem = 0; | 
 | 		z = divrem1(a, b->ob_digit[0], &rem); | 
 | 		if (z == NULL) | 
 | 			return -1; | 
 | 		*prem = (PyLongObject *) PyLong_FromLong((long)rem); | 
 | 	} | 
 | 	else { | 
 | 		z = x_divrem(a, b, prem); | 
 | 		if (z == NULL) | 
 | 			return -1; | 
 | 	} | 
 | 	/* Set the signs. | 
 | 	   The quotient z has the sign of a*b; | 
 | 	   the remainder r has the sign of a, | 
 | 	   so a = b*z + r. */ | 
 | 	if ((a->ob_size < 0) != (b->ob_size < 0)) | 
 | 		z->ob_size = -(z->ob_size); | 
 | 	if (a->ob_size < 0 && (*prem)->ob_size != 0) | 
 | 		(*prem)->ob_size = -((*prem)->ob_size); | 
 | 	*pdiv = z; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Unsigned long division with remainder -- the algorithm */ | 
 |  | 
 | static PyLongObject * | 
 | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) | 
 | { | 
 | 	int size_v = ABS(v1->ob_size), size_w = ABS(w1->ob_size); | 
 | 	digit d = (digit) ((twodigits)BASE / (w1->ob_digit[size_w-1] + 1)); | 
 | 	PyLongObject *v = mul1(v1, d); | 
 | 	PyLongObject *w = mul1(w1, d); | 
 | 	PyLongObject *a; | 
 | 	int j, k; | 
 |  | 
 | 	if (v == NULL || w == NULL) { | 
 | 		Py_XDECREF(v); | 
 | 		Py_XDECREF(w); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	assert(size_v >= size_w && size_w > 1); /* Assert checks by div() */ | 
 | 	assert(v->ob_refcnt == 1); /* Since v will be used as accumulator! */ | 
 | 	assert(size_w == ABS(w->ob_size)); /* That's how d was calculated */ | 
 |  | 
 | 	size_v = ABS(v->ob_size); | 
 | 	a = _PyLong_New(size_v - size_w + 1); | 
 |  | 
 | 	for (j = size_v, k = a->ob_size-1; a != NULL && k >= 0; --j, --k) { | 
 | 		digit vj = (j >= size_v) ? 0 : v->ob_digit[j]; | 
 | 		twodigits q; | 
 | 		stwodigits carry = 0; | 
 | 		int i; | 
 |  | 
 | 		SIGCHECK({ | 
 | 			Py_DECREF(a); | 
 | 			a = NULL; | 
 | 			break; | 
 | 		}) | 
 | 		if (vj == w->ob_digit[size_w-1]) | 
 | 			q = MASK; | 
 | 		else | 
 | 			q = (((twodigits)vj << SHIFT) + v->ob_digit[j-1]) / | 
 | 				w->ob_digit[size_w-1]; | 
 |  | 
 | 		while (w->ob_digit[size_w-2]*q > | 
 | 				(( | 
 | 					((twodigits)vj << SHIFT) | 
 | 					+ v->ob_digit[j-1] | 
 | 					- q*w->ob_digit[size_w-1] | 
 | 								) << SHIFT) | 
 | 				+ v->ob_digit[j-2]) | 
 | 			--q; | 
 |  | 
 | 		for (i = 0; i < size_w && i+k < size_v; ++i) { | 
 | 			twodigits z = w->ob_digit[i] * q; | 
 | 			digit zz = (digit) (z >> SHIFT); | 
 | 			carry += v->ob_digit[i+k] - z | 
 | 				+ ((twodigits)zz << SHIFT); | 
 | 			v->ob_digit[i+k] = carry & MASK; | 
 | 			carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE, | 
 | 							  carry, SHIFT); | 
 | 			carry -= zz; | 
 | 		} | 
 |  | 
 | 		if (i+k < size_v) { | 
 | 			carry += v->ob_digit[i+k]; | 
 | 			v->ob_digit[i+k] = 0; | 
 | 		} | 
 |  | 
 | 		if (carry == 0) | 
 | 			a->ob_digit[k] = (digit) q; | 
 | 		else { | 
 | 			assert(carry == -1); | 
 | 			a->ob_digit[k] = (digit) q-1; | 
 | 			carry = 0; | 
 | 			for (i = 0; i < size_w && i+k < size_v; ++i) { | 
 | 				carry += v->ob_digit[i+k] + w->ob_digit[i]; | 
 | 				v->ob_digit[i+k] = carry & MASK; | 
 | 				carry = Py_ARITHMETIC_RIGHT_SHIFT( | 
 | 						BASE_TWODIGITS_TYPE, | 
 | 						carry, SHIFT); | 
 | 			} | 
 | 		} | 
 | 	} /* for j, k */ | 
 |  | 
 | 	if (a == NULL) | 
 | 		*prem = NULL; | 
 | 	else { | 
 | 		a = long_normalize(a); | 
 | 		*prem = divrem1(v, d, &d); | 
 | 		/* d receives the (unused) remainder */ | 
 | 		if (*prem == NULL) { | 
 | 			Py_DECREF(a); | 
 | 			a = NULL; | 
 | 		} | 
 | 	} | 
 | 	Py_DECREF(v); | 
 | 	Py_DECREF(w); | 
 | 	return a; | 
 | } | 
 |  | 
 | /* Methods */ | 
 |  | 
 | static void | 
 | long_dealloc(PyObject *v) | 
 | { | 
 | 	v->ob_type->tp_free(v); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_repr(PyObject *v) | 
 | { | 
 | 	return long_format(v, 10, 1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_str(PyObject *v) | 
 | { | 
 | 	return long_format(v, 10, 0); | 
 | } | 
 |  | 
 | static int | 
 | long_compare(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	int sign; | 
 |  | 
 | 	if (a->ob_size != b->ob_size) { | 
 | 		if (ABS(a->ob_size) == 0 && ABS(b->ob_size) == 0) | 
 | 			sign = 0; | 
 | 		else | 
 | 			sign = a->ob_size - b->ob_size; | 
 | 	} | 
 | 	else { | 
 | 		int i = ABS(a->ob_size); | 
 | 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | 
 | 			; | 
 | 		if (i < 0) | 
 | 			sign = 0; | 
 | 		else { | 
 | 			sign = (int)a->ob_digit[i] - (int)b->ob_digit[i]; | 
 | 			if (a->ob_size < 0) | 
 | 				sign = -sign; | 
 | 		} | 
 | 	} | 
 | 	return sign < 0 ? -1 : sign > 0 ? 1 : 0; | 
 | } | 
 |  | 
 | static long | 
 | long_hash(PyLongObject *v) | 
 | { | 
 | 	long x; | 
 | 	int i, sign; | 
 |  | 
 | 	/* This is designed so that Python ints and longs with the | 
 | 	   same value hash to the same value, otherwise comparisons | 
 | 	   of mapping keys will turn out weird */ | 
 | 	i = v->ob_size; | 
 | 	sign = 1; | 
 | 	x = 0; | 
 | 	if (i < 0) { | 
 | 		sign = -1; | 
 | 		i = -(i); | 
 | 	} | 
 | #define LONG_BIT_SHIFT	(8*sizeof(long) - SHIFT) | 
 | 	while (--i >= 0) { | 
 | 		/* Force a native long #-bits (32 or 64) circular shift */ | 
 | 		x = ((x << SHIFT) & ~MASK) | ((x >> LONG_BIT_SHIFT) & MASK); | 
 | 		x += v->ob_digit[i]; | 
 | 	} | 
 | #undef LONG_BIT_SHIFT | 
 | 	x = x * sign; | 
 | 	if (x == -1) | 
 | 		x = -2; | 
 | 	return x; | 
 | } | 
 |  | 
 |  | 
 | /* Add the absolute values of two long integers. */ | 
 |  | 
 | static PyLongObject * | 
 | x_add(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	int size_a = ABS(a->ob_size), size_b = ABS(b->ob_size); | 
 | 	PyLongObject *z; | 
 | 	int i; | 
 | 	digit carry = 0; | 
 |  | 
 | 	/* Ensure a is the larger of the two: */ | 
 | 	if (size_a < size_b) { | 
 | 		{ PyLongObject *temp = a; a = b; b = temp; } | 
 | 		{ int size_temp = size_a; | 
 | 		  size_a = size_b; | 
 | 		  size_b = size_temp; } | 
 | 	} | 
 | 	z = _PyLong_New(size_a+1); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; i < size_b; ++i) { | 
 | 		carry += a->ob_digit[i] + b->ob_digit[i]; | 
 | 		z->ob_digit[i] = carry & MASK; | 
 | 		carry >>= SHIFT; | 
 | 	} | 
 | 	for (; i < size_a; ++i) { | 
 | 		carry += a->ob_digit[i]; | 
 | 		z->ob_digit[i] = carry & MASK; | 
 | 		carry >>= SHIFT; | 
 | 	} | 
 | 	z->ob_digit[i] = carry; | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* Subtract the absolute values of two integers. */ | 
 |  | 
 | static PyLongObject * | 
 | x_sub(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	int size_a = ABS(a->ob_size), size_b = ABS(b->ob_size); | 
 | 	PyLongObject *z; | 
 | 	int i; | 
 | 	int sign = 1; | 
 | 	digit borrow = 0; | 
 |  | 
 | 	/* Ensure a is the larger of the two: */ | 
 | 	if (size_a < size_b) { | 
 | 		sign = -1; | 
 | 		{ PyLongObject *temp = a; a = b; b = temp; } | 
 | 		{ int size_temp = size_a; | 
 | 		  size_a = size_b; | 
 | 		  size_b = size_temp; } | 
 | 	} | 
 | 	else if (size_a == size_b) { | 
 | 		/* Find highest digit where a and b differ: */ | 
 | 		i = size_a; | 
 | 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | 
 | 			; | 
 | 		if (i < 0) | 
 | 			return _PyLong_New(0); | 
 | 		if (a->ob_digit[i] < b->ob_digit[i]) { | 
 | 			sign = -1; | 
 | 			{ PyLongObject *temp = a; a = b; b = temp; } | 
 | 		} | 
 | 		size_a = size_b = i+1; | 
 | 	} | 
 | 	z = _PyLong_New(size_a); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 | 	for (i = 0; i < size_b; ++i) { | 
 | 		/* The following assumes unsigned arithmetic | 
 | 		   works module 2**N for some N>SHIFT. */ | 
 | 		borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; | 
 | 		z->ob_digit[i] = borrow & MASK; | 
 | 		borrow >>= SHIFT; | 
 | 		borrow &= 1; /* Keep only one sign bit */ | 
 | 	} | 
 | 	for (; i < size_a; ++i) { | 
 | 		borrow = a->ob_digit[i] - borrow; | 
 | 		z->ob_digit[i] = borrow & MASK; | 
 | 		borrow >>= SHIFT; | 
 | 		borrow &= 1; /* Keep only one sign bit */ | 
 | 	} | 
 | 	assert(borrow == 0); | 
 | 	if (sign < 0) | 
 | 		z->ob_size = -(z->ob_size); | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_add(PyLongObject *v, PyLongObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *z; | 
 |  | 
 | 	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | 
 |  | 
 | 	if (a->ob_size < 0) { | 
 | 		if (b->ob_size < 0) { | 
 | 			z = x_add(a, b); | 
 | 			if (z != NULL && z->ob_size != 0) | 
 | 				z->ob_size = -(z->ob_size); | 
 | 		} | 
 | 		else | 
 | 			z = x_sub(b, a); | 
 | 	} | 
 | 	else { | 
 | 		if (b->ob_size < 0) | 
 | 			z = x_sub(a, b); | 
 | 		else | 
 | 			z = x_add(a, b); | 
 | 	} | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_sub(PyLongObject *v, PyLongObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *z; | 
 |  | 
 | 	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | 
 |  | 
 | 	if (a->ob_size < 0) { | 
 | 		if (b->ob_size < 0) | 
 | 			z = x_sub(a, b); | 
 | 		else | 
 | 			z = x_add(a, b); | 
 | 		if (z != NULL && z->ob_size != 0) | 
 | 			z->ob_size = -(z->ob_size); | 
 | 	} | 
 | 	else { | 
 | 		if (b->ob_size < 0) | 
 | 			z = x_add(a, b); | 
 | 		else | 
 | 			z = x_sub(a, b); | 
 | 	} | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | /* Grade school multiplication, ignoring the signs. | 
 |  * Returns the absolute value of the product, or NULL if error. | 
 |  */ | 
 | static PyLongObject * | 
 | x_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	PyLongObject *z; | 
 | 	int size_a = ABS(a->ob_size); | 
 | 	int size_b = ABS(b->ob_size); | 
 | 	int i; | 
 |  | 
 |      	z = _PyLong_New(size_a + size_b); | 
 | 	if (z == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	memset(z->ob_digit, 0, z->ob_size * sizeof(digit)); | 
 | 	for (i = 0; i < size_a; ++i) { | 
 | 		twodigits carry = 0; | 
 | 		twodigits f = a->ob_digit[i]; | 
 | 		int j; | 
 | 		digit *pz = z->ob_digit + i; | 
 |  | 
 | 		SIGCHECK({ | 
 | 			Py_DECREF(z); | 
 | 			return NULL; | 
 | 		}) | 
 | 		for (j = 0; j < size_b; ++j) { | 
 | 			carry += *pz + b->ob_digit[j] * f; | 
 | 			*pz++ = (digit) (carry & MASK); | 
 | 			carry >>= SHIFT; | 
 | 		} | 
 | 		for (; carry != 0; ++j) { | 
 | 			assert(i+j < z->ob_size); | 
 | 			carry += *pz; | 
 | 			*pz++ = (digit) (carry & MASK); | 
 | 			carry >>= SHIFT; | 
 | 		} | 
 | 	} | 
 | 	return long_normalize(z); | 
 | } | 
 |  | 
 | /* A helper for Karatsuba multiplication (k_mul). | 
 |    Takes a long "n" and an integer "size" representing the place to | 
 |    split, and sets low and high such that abs(n) == (high << size) + low, | 
 |    viewing the shift as being by digits.  The sign bit is ignored, and | 
 |    the return values are >= 0. | 
 |    Returns 0 on success, -1 on failure. | 
 | */ | 
 | static int | 
 | kmul_split(PyLongObject *n, int size, PyLongObject **high, PyLongObject **low) | 
 | { | 
 | 	PyLongObject *hi, *lo; | 
 | 	int size_lo, size_hi; | 
 | 	const int size_n = ABS(n->ob_size); | 
 |  | 
 | 	size_lo = MIN(size_n, size); | 
 | 	size_hi = size_n - size_lo; | 
 |  | 
 | 	if ((hi = _PyLong_New(size_hi)) == NULL) | 
 | 		return -1; | 
 | 	if ((lo = _PyLong_New(size_lo)) == NULL) { | 
 | 		Py_DECREF(hi); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); | 
 | 	memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); | 
 |  | 
 | 	*high = long_normalize(hi); | 
 | 	*low = long_normalize(lo); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); | 
 |  | 
 | /* Karatsuba multiplication.  Ignores the input signs, and returns the | 
 |  * absolute value of the product (or NULL if error). | 
 |  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). | 
 |  */ | 
 | static PyLongObject * | 
 | k_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	int asize = ABS(a->ob_size); | 
 | 	int bsize = ABS(b->ob_size); | 
 | 	PyLongObject *ah = NULL; | 
 | 	PyLongObject *al = NULL; | 
 | 	PyLongObject *bh = NULL; | 
 | 	PyLongObject *bl = NULL; | 
 | 	PyLongObject *ret = NULL; | 
 | 	PyLongObject *t1, *t2, *t3; | 
 | 	int shift;	/* the number of digits we split off */ | 
 | 	int i; | 
 |  | 
 | 	/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl | 
 | 	 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl | 
 | 	 * Then the original product is | 
 | 	 *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl | 
 | 	 * By picking X to be a power of 2, "*X" is just shifting, and it's | 
 | 	 * been reduced to 3 multiplies on numbers half the size. | 
 | 	 */ | 
 |  | 
 | 	/* We want to split based on the larger number; fiddle so that b | 
 | 	 * is largest. | 
 | 	 */ | 
 | 	if (asize > bsize) { | 
 | 		t1 = a; | 
 | 		a = b; | 
 | 		b = t1; | 
 |  | 
 | 		i = asize; | 
 | 		asize = bsize; | 
 | 		bsize = i; | 
 | 	} | 
 |  | 
 | 	/* Use gradeschool math when either number is too small. */ | 
 | 	if (asize <= KARATSUBA_CUTOFF) { | 
 | 		if (asize == 0) | 
 | 			return _PyLong_New(0); | 
 | 		else | 
 | 			return x_mul(a, b); | 
 | 	} | 
 |  | 
 | 	/* If a is small compared to b, splitting on b gives a degenerate | 
 | 	 * case with ah==0, and Karatsuba may be (even much) less efficient | 
 | 	 * than "grade school" then.  However, we can still win, by viewing | 
 | 	 * b as a string of "big digits", each of width a->ob_size.  That | 
 | 	 * leads to a sequence of balanced calls to k_mul. | 
 | 	 */ | 
 | 	if (2 * asize <= bsize) | 
 | 		return k_lopsided_mul(a, b); | 
 |  | 
 | 	/* Split a & b into hi & lo pieces. */ | 
 | 	shift = bsize >> 1; | 
 | 	if (kmul_split(a, shift, &ah, &al) < 0) goto fail; | 
 | 	assert(ah->ob_size > 0);	/* the split isn't degenerate */ | 
 |  | 
 | 	if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; | 
 |  | 
 | 	/* The plan: | 
 | 	 * 1. Allocate result space (asize + bsize digits:  that's always | 
 | 	 *    enough). | 
 | 	 * 2. Compute ah*bh, and copy into result at 2*shift. | 
 | 	 * 3. Compute al*bl, and copy into result at 0.  Note that this | 
 | 	 *    can't overlap with #2. | 
 | 	 * 4. Subtract al*bl from the result, starting at shift.  This may | 
 | 	 *    underflow (borrow out of the high digit), but we don't care: | 
 | 	 *    we're effectively doing unsigned arithmetic mod | 
 | 	 *    BASE**(sizea + sizeb), and so long as the *final* result fits, | 
 | 	 *    borrows and carries out of the high digit can be ignored. | 
 | 	 * 5. Subtract ah*bh from the result, starting at shift. | 
 | 	 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting | 
 | 	 *    at shift. | 
 | 	 */ | 
 |  | 
 | 	/* 1. Allocate result space. */ | 
 | 	ret = _PyLong_New(asize + bsize); | 
 | 	if (ret == NULL) goto fail; | 
 | #ifdef Py_DEBUG | 
 | 	/* Fill with trash, to catch reference to uninitialized digits. */ | 
 | 	memset(ret->ob_digit, 0xDF, ret->ob_size * sizeof(digit)); | 
 | #endif | 
 |  | 
 | 	/* 2. t1 <- ah*bh, and copy into high digits of result. */ | 
 | 	if ((t1 = k_mul(ah, bh)) == NULL) goto fail; | 
 | 	assert(t1->ob_size >= 0); | 
 | 	assert(2*shift + t1->ob_size <= ret->ob_size); | 
 | 	memcpy(ret->ob_digit + 2*shift, t1->ob_digit, | 
 | 	       t1->ob_size * sizeof(digit)); | 
 |  | 
 | 	/* Zero-out the digits higher than the ah*bh copy. */ | 
 | 	i = ret->ob_size - 2*shift - t1->ob_size; | 
 | 	if (i) | 
 | 		memset(ret->ob_digit + 2*shift + t1->ob_size, 0, | 
 | 		       i * sizeof(digit)); | 
 |  | 
 | 	/* 3. t2 <- al*bl, and copy into the low digits. */ | 
 | 	if ((t2 = k_mul(al, bl)) == NULL) { | 
 | 		Py_DECREF(t1); | 
 | 		goto fail; | 
 | 	} | 
 | 	assert(t2->ob_size >= 0); | 
 | 	assert(t2->ob_size <= 2*shift); /* no overlap with high digits */ | 
 | 	memcpy(ret->ob_digit, t2->ob_digit, t2->ob_size * sizeof(digit)); | 
 |  | 
 | 	/* Zero out remaining digits. */ | 
 | 	i = 2*shift - t2->ob_size;	/* number of uninitialized digits */ | 
 | 	if (i) | 
 | 		memset(ret->ob_digit + t2->ob_size, 0, i * sizeof(digit)); | 
 |  | 
 | 	/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first | 
 | 	 * because it's fresher in cache. | 
 | 	 */ | 
 | 	i = ret->ob_size - shift;  /* # digits after shift */ | 
 | 	(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, t2->ob_size); | 
 | 	Py_DECREF(t2); | 
 |  | 
 | 	(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, t1->ob_size); | 
 | 	Py_DECREF(t1); | 
 |  | 
 | 	/* 6. t3 <- (ah+al)(bh+bl), and add into result. */ | 
 | 	if ((t1 = x_add(ah, al)) == NULL) goto fail; | 
 | 	Py_DECREF(ah); | 
 | 	Py_DECREF(al); | 
 | 	ah = al = NULL; | 
 |  | 
 | 	if ((t2 = x_add(bh, bl)) == NULL) { | 
 | 		Py_DECREF(t1); | 
 | 		goto fail; | 
 | 	} | 
 | 	Py_DECREF(bh); | 
 | 	Py_DECREF(bl); | 
 | 	bh = bl = NULL; | 
 |  | 
 | 	t3 = k_mul(t1, t2); | 
 | 	Py_DECREF(t1); | 
 | 	Py_DECREF(t2); | 
 | 	if (t3 == NULL) goto fail; | 
 | 	assert(t3->ob_size >= 0); | 
 |  | 
 | 	/* Add t3.  It's not obvious why we can't run out of room here. | 
 | 	 * See the (*) comment after this function. | 
 | 	 */ | 
 | 	(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, t3->ob_size); | 
 | 	Py_DECREF(t3); | 
 |  | 
 | 	return long_normalize(ret); | 
 |  | 
 |  fail: | 
 |  	Py_XDECREF(ret); | 
 | 	Py_XDECREF(ah); | 
 | 	Py_XDECREF(al); | 
 | 	Py_XDECREF(bh); | 
 | 	Py_XDECREF(bl); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* (*) Why adding t3 can't "run out of room" above. | 
 |  | 
 | Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts | 
 | to start with: | 
 |  | 
 | 1. For any integer i, i = c(i/2) + f(i/2).  In particular, | 
 |    bsize = c(bsize/2) + f(bsize/2). | 
 | 2. shift = f(bsize/2) | 
 | 3. asize <= bsize | 
 | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this | 
 |    routine, so asize > bsize/2 >= f(bsize/2) in this routine. | 
 |  | 
 | We allocated asize + bsize result digits, and add t3 into them at an offset | 
 | of shift.  This leaves asize+bsize-shift allocated digit positions for t3 | 
 | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = | 
 | asize + c(bsize/2) available digit positions. | 
 |  | 
 | bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has | 
 | at most c(bsize/2) digits + 1 bit. | 
 |  | 
 | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) | 
 | digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at | 
 | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. | 
 |  | 
 | The product (ah+al)*(bh+bl) therefore has at most | 
 |  | 
 |     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits | 
 |  | 
 | and we have asize + c(bsize/2) available digit positions.  We need to show | 
 | this is always enough.  An instance of c(bsize/2) cancels out in both, so | 
 | the question reduces to whether asize digits is enough to hold | 
 | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize, | 
 | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4, | 
 | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 | 
 | digit is enough to hold 2 bits.  This is so since SHIFT=15 >= 2.  If | 
 | asize == bsize, then we're asking whether bsize digits is enough to hold | 
 | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits | 
 | is enough to hold 2 bits.  This is so if bsize >= 2, which holds because | 
 | bsize >= KARATSUBA_CUTOFF >= 2. | 
 |  | 
 | Note that since there's always enough room for (ah+al)*(bh+bl), and that's | 
 | clearly >= each of ah*bh and al*bl, there's always enough room to subtract | 
 | ah*bh and al*bl too. | 
 | */ | 
 |  | 
 | /* b has at least twice the digits of a, and a is big enough that Karatsuba | 
 |  * would pay off *if* the inputs had balanced sizes.  View b as a sequence | 
 |  * of slices, each with a->ob_size digits, and multiply the slices by a, | 
 |  * one at a time.  This gives k_mul balanced inputs to work with, and is | 
 |  * also cache-friendly (we compute one double-width slice of the result | 
 |  * at a time, then move on, never bactracking except for the helpful | 
 |  * single-width slice overlap between successive partial sums). | 
 |  */ | 
 | static PyLongObject * | 
 | k_lopsided_mul(PyLongObject *a, PyLongObject *b) | 
 | { | 
 | 	const int asize = ABS(a->ob_size); | 
 | 	int bsize = ABS(b->ob_size); | 
 | 	int nbdone;	/* # of b digits already multiplied */ | 
 | 	PyLongObject *ret; | 
 | 	PyLongObject *bslice = NULL; | 
 |  | 
 | 	assert(asize > KARATSUBA_CUTOFF); | 
 | 	assert(2 * asize <= bsize); | 
 |  | 
 | 	/* Allocate result space, and zero it out. */ | 
 | 	ret = _PyLong_New(asize + bsize); | 
 | 	if (ret == NULL) | 
 | 		return NULL; | 
 | 	memset(ret->ob_digit, 0, ret->ob_size * sizeof(digit)); | 
 |  | 
 | 	/* Successive slices of b are copied into bslice. */ | 
 | 	bslice = _PyLong_New(asize); | 
 | 	if (bslice == NULL) | 
 | 		goto fail; | 
 |  | 
 | 	nbdone = 0; | 
 | 	while (bsize > 0) { | 
 | 		PyLongObject *product; | 
 | 		const int nbtouse = MIN(bsize, asize); | 
 |  | 
 | 		/* Multiply the next slice of b by a. */ | 
 | 		memcpy(bslice->ob_digit, b->ob_digit + nbdone, | 
 | 		       nbtouse * sizeof(digit)); | 
 | 		bslice->ob_size = nbtouse; | 
 | 		product = k_mul(a, bslice); | 
 | 		if (product == NULL) | 
 | 			goto fail; | 
 |  | 
 | 		/* Add into result. */ | 
 | 		(void)v_iadd(ret->ob_digit + nbdone, ret->ob_size - nbdone, | 
 | 			     product->ob_digit, product->ob_size); | 
 | 		Py_DECREF(product); | 
 |  | 
 | 		bsize -= nbtouse; | 
 | 		nbdone += nbtouse; | 
 | 	} | 
 |  | 
 | 	Py_DECREF(bslice); | 
 | 	return long_normalize(ret); | 
 |  | 
 |  fail: | 
 | 	Py_DECREF(ret); | 
 | 	Py_XDECREF(bslice); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_mul(PyLongObject *v, PyLongObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *z; | 
 |  | 
 | 	if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 |  | 
 | 	z = k_mul(a, b); | 
 | 	/* Negate if exactly one of the inputs is negative. */ | 
 | 	if (((a->ob_size ^ b->ob_size) < 0) && z) | 
 | 		z->ob_size = -(z->ob_size); | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | /* The / and % operators are now defined in terms of divmod(). | 
 |    The expression a mod b has the value a - b*floor(a/b). | 
 |    The long_divrem function gives the remainder after division of | 
 |    |a| by |b|, with the sign of a.  This is also expressed | 
 |    as a - b*trunc(a/b), if trunc truncates towards zero. | 
 |    Some examples: | 
 |    	 a	 b	a rem b		a mod b | 
 |    	 13	 10	 3		 3 | 
 |    	-13	 10	-3		 7 | 
 |    	 13	-10	 3		-7 | 
 |    	-13	-10	-3		-3 | 
 |    So, to get from rem to mod, we have to add b if a and b | 
 |    have different signs.  We then subtract one from the 'div' | 
 |    part of the outcome to keep the invariant intact. */ | 
 |  | 
 | static int | 
 | l_divmod(PyLongObject *v, PyLongObject *w, | 
 | 	 PyLongObject **pdiv, PyLongObject **pmod) | 
 | { | 
 | 	PyLongObject *div, *mod; | 
 |  | 
 | 	if (long_divrem(v, w, &div, &mod) < 0) | 
 | 		return -1; | 
 | 	if ((mod->ob_size < 0 && w->ob_size > 0) || | 
 | 	    (mod->ob_size > 0 && w->ob_size < 0)) { | 
 | 		PyLongObject *temp; | 
 | 		PyLongObject *one; | 
 | 		temp = (PyLongObject *) long_add(mod, w); | 
 | 		Py_DECREF(mod); | 
 | 		mod = temp; | 
 | 		if (mod == NULL) { | 
 | 			Py_DECREF(div); | 
 | 			return -1; | 
 | 		} | 
 | 		one = (PyLongObject *) PyLong_FromLong(1L); | 
 | 		if (one == NULL || | 
 | 		    (temp = (PyLongObject *) long_sub(div, one)) == NULL) { | 
 | 			Py_DECREF(mod); | 
 | 			Py_DECREF(div); | 
 | 			Py_XDECREF(one); | 
 | 			return -1; | 
 | 		} | 
 | 		Py_DECREF(one); | 
 | 		Py_DECREF(div); | 
 | 		div = temp; | 
 | 	} | 
 | 	*pdiv = div; | 
 | 	*pmod = mod; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *div, *mod; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 | 	if (l_divmod(a, b, &div, &mod) < 0) { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		return NULL; | 
 | 	} | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	Py_DECREF(mod); | 
 | 	return (PyObject *)div; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_classic_div(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *div, *mod; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 | 	if (Py_DivisionWarningFlag && | 
 | 	    PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0) | 
 | 		div = NULL; | 
 | 	else if (l_divmod(a, b, &div, &mod) < 0) | 
 | 		div = NULL; | 
 | 	else | 
 | 		Py_DECREF(mod); | 
 |  | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return (PyObject *)div; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_true_divide(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b; | 
 | 	double ad, bd; | 
 | 	int aexp, bexp, failed; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 | 	ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp); | 
 | 	bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp); | 
 | 	failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred(); | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	if (failed) | 
 | 		return NULL; | 
 |  | 
 | 	if (bd == 0.0) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, | 
 | 			"long division or modulo by zero"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* True value is very close to ad/bd * 2**(SHIFT*(aexp-bexp)) */ | 
 | 	ad /= bd;	/* overflow/underflow impossible here */ | 
 | 	aexp -= bexp; | 
 | 	if (aexp > INT_MAX / SHIFT) | 
 | 		goto overflow; | 
 | 	else if (aexp < -(INT_MAX / SHIFT)) | 
 | 		return PyFloat_FromDouble(0.0);	/* underflow to 0 */ | 
 | 	errno = 0; | 
 | 	ad = ldexp(ad, aexp * SHIFT); | 
 | 	if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */ | 
 | 		goto overflow; | 
 | 	return PyFloat_FromDouble(ad); | 
 |  | 
 | overflow: | 
 | 	PyErr_SetString(PyExc_OverflowError, | 
 | 		"long/long too large for a float"); | 
 | 	return NULL; | 
 |  | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_mod(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *div, *mod; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 | 	if (l_divmod(a, b, &div, &mod) < 0) { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		return NULL; | 
 | 	} | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	Py_DECREF(div); | 
 | 	return (PyObject *)mod; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_divmod(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b, *div, *mod; | 
 | 	PyObject *z; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 | 	if (l_divmod(a, b, &div, &mod) < 0) { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		return NULL; | 
 | 	} | 
 | 	z = PyTuple_New(2); | 
 | 	if (z != NULL) { | 
 | 		PyTuple_SetItem(z, 0, (PyObject *) div); | 
 | 		PyTuple_SetItem(z, 1, (PyObject *) mod); | 
 | 	} | 
 | 	else { | 
 | 		Py_DECREF(div); | 
 | 		Py_DECREF(mod); | 
 | 	} | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_pow(PyObject *v, PyObject *w, PyObject *x) | 
 | { | 
 | 	PyLongObject *a, *b; | 
 | 	PyObject *c; | 
 | 	PyLongObject *z, *div, *mod; | 
 | 	int size_b, i; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 | 	if (PyLong_Check(x) || Py_None == x) { | 
 | 		c = x; | 
 | 		Py_INCREF(x); | 
 | 	} | 
 | 	else if (PyInt_Check(x)) { | 
 | 		c = PyLong_FromLong(PyInt_AS_LONG(x)); | 
 | 	} | 
 | 	else { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 |  | 
 | 	if (c != Py_None && ((PyLongObject *)c)->ob_size == 0) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"pow() 3rd argument cannot be 0"); | 
 | 		z = NULL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	size_b = b->ob_size; | 
 | 	if (size_b < 0) { | 
 | 		Py_DECREF(a); | 
 | 		Py_DECREF(b); | 
 | 		Py_DECREF(c); | 
 | 		if (x != Py_None) { | 
 | 			PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " | 
 | 			     "cannot be negative when 3rd argument specified"); | 
 | 			return NULL; | 
 | 		} | 
 | 		/* Return a float.  This works because we know that | 
 | 		   this calls float_pow() which converts its | 
 | 		   arguments to double. */ | 
 | 		return PyFloat_Type.tp_as_number->nb_power(v, w, x); | 
 | 	} | 
 | 	z = (PyLongObject *)PyLong_FromLong(1L); | 
 | 	for (i = 0; i < size_b; ++i) { | 
 | 		digit bi = b->ob_digit[i]; | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < SHIFT; ++j) { | 
 | 			PyLongObject *temp; | 
 |  | 
 | 			if (bi & 1) { | 
 | 				temp = (PyLongObject *)long_mul(z, a); | 
 | 				Py_DECREF(z); | 
 | 			 	if (c!=Py_None && temp!=NULL) { | 
 | 			 		if (l_divmod(temp,(PyLongObject *)c, | 
 | 							&div,&mod) < 0) { | 
 | 						Py_DECREF(temp); | 
 | 						z = NULL; | 
 | 						goto error; | 
 | 					} | 
 | 				 	Py_XDECREF(div); | 
 | 				 	Py_DECREF(temp); | 
 | 				 	temp = mod; | 
 | 				} | 
 | 			 	z = temp; | 
 | 				if (z == NULL) | 
 | 					break; | 
 | 			} | 
 | 			bi >>= 1; | 
 | 			if (bi == 0 && i+1 == size_b) | 
 | 				break; | 
 | 			temp = (PyLongObject *)long_mul(a, a); | 
 | 			Py_DECREF(a); | 
 | 		 	if (c!=Py_None && temp!=NULL) { | 
 | 			 	if (l_divmod(temp, (PyLongObject *)c, &div, | 
 | 							&mod) < 0) { | 
 | 					Py_DECREF(temp); | 
 | 					z = NULL; | 
 | 					goto error; | 
 | 				} | 
 | 			 	Py_XDECREF(div); | 
 | 			 	Py_DECREF(temp); | 
 | 			 	temp = mod; | 
 | 			} | 
 | 			a = temp; | 
 | 			if (a == NULL) { | 
 | 				Py_DECREF(z); | 
 | 				z = NULL; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (a == NULL || z == NULL) | 
 | 			break; | 
 | 	} | 
 | 	if (c!=Py_None && z!=NULL) { | 
 | 		if (l_divmod(z, (PyLongObject *)c, &div, &mod) < 0) { | 
 | 			Py_DECREF(z); | 
 | 			z = NULL; | 
 | 		} | 
 | 		else { | 
 | 			Py_XDECREF(div); | 
 | 			Py_DECREF(z); | 
 | 			z = mod; | 
 | 		} | 
 | 	} | 
 |   error: | 
 | 	Py_XDECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	Py_DECREF(c); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_invert(PyLongObject *v) | 
 | { | 
 | 	/* Implement ~x as -(x+1) */ | 
 | 	PyLongObject *x; | 
 | 	PyLongObject *w; | 
 | 	w = (PyLongObject *)PyLong_FromLong(1L); | 
 | 	if (w == NULL) | 
 | 		return NULL; | 
 | 	x = (PyLongObject *) long_add(v, w); | 
 | 	Py_DECREF(w); | 
 | 	if (x == NULL) | 
 | 		return NULL; | 
 | 	x->ob_size = -(x->ob_size); | 
 | 	return (PyObject *)x; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_pos(PyLongObject *v) | 
 | { | 
 | 	if (PyLong_CheckExact(v)) { | 
 | 		Py_INCREF(v); | 
 | 		return (PyObject *)v; | 
 | 	} | 
 | 	else | 
 | 		return _PyLong_Copy(v); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_neg(PyLongObject *v) | 
 | { | 
 | 	PyLongObject *z; | 
 | 	if (v->ob_size == 0 && PyLong_CheckExact(v)) { | 
 | 		/* -0 == 0 */ | 
 | 		Py_INCREF(v); | 
 | 		return (PyObject *) v; | 
 | 	} | 
 | 	z = (PyLongObject *)_PyLong_Copy(v); | 
 | 	if (z != NULL) | 
 | 		z->ob_size = -(v->ob_size); | 
 | 	return (PyObject *)z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_abs(PyLongObject *v) | 
 | { | 
 | 	if (v->ob_size < 0) | 
 | 		return long_neg(v); | 
 | 	else | 
 | 		return long_pos(v); | 
 | } | 
 |  | 
 | static int | 
 | long_nonzero(PyLongObject *v) | 
 | { | 
 | 	return ABS(v->ob_size) != 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_rshift(PyLongObject *v, PyLongObject *w) | 
 | { | 
 | 	PyLongObject *a, *b; | 
 | 	PyLongObject *z = NULL; | 
 | 	long shiftby; | 
 | 	int newsize, wordshift, loshift, hishift, i, j; | 
 | 	digit lomask, himask; | 
 |  | 
 | 	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | 
 |  | 
 | 	if (a->ob_size < 0) { | 
 | 		/* Right shifting negative numbers is harder */ | 
 | 		PyLongObject *a1, *a2; | 
 | 		a1 = (PyLongObject *) long_invert(a); | 
 | 		if (a1 == NULL) | 
 | 			goto rshift_error; | 
 | 		a2 = (PyLongObject *) long_rshift(a1, b); | 
 | 		Py_DECREF(a1); | 
 | 		if (a2 == NULL) | 
 | 			goto rshift_error; | 
 | 		z = (PyLongObject *) long_invert(a2); | 
 | 		Py_DECREF(a2); | 
 | 	} | 
 | 	else { | 
 |  | 
 | 		shiftby = PyLong_AsLong((PyObject *)b); | 
 | 		if (shiftby == -1L && PyErr_Occurred()) | 
 | 			goto rshift_error; | 
 | 		if (shiftby < 0) { | 
 | 			PyErr_SetString(PyExc_ValueError, | 
 | 					"negative shift count"); | 
 | 			goto rshift_error; | 
 | 		} | 
 | 		wordshift = shiftby / SHIFT; | 
 | 		newsize = ABS(a->ob_size) - wordshift; | 
 | 		if (newsize <= 0) { | 
 | 			z = _PyLong_New(0); | 
 | 			Py_DECREF(a); | 
 | 			Py_DECREF(b); | 
 | 			return (PyObject *)z; | 
 | 		} | 
 | 		loshift = shiftby % SHIFT; | 
 | 		hishift = SHIFT - loshift; | 
 | 		lomask = ((digit)1 << hishift) - 1; | 
 | 		himask = MASK ^ lomask; | 
 | 		z = _PyLong_New(newsize); | 
 | 		if (z == NULL) | 
 | 			goto rshift_error; | 
 | 		if (a->ob_size < 0) | 
 | 			z->ob_size = -(z->ob_size); | 
 | 		for (i = 0, j = wordshift; i < newsize; i++, j++) { | 
 | 			z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; | 
 | 			if (i+1 < newsize) | 
 | 				z->ob_digit[i] |= | 
 | 				  (a->ob_digit[j+1] << hishift) & himask; | 
 | 		} | 
 | 		z = long_normalize(z); | 
 | 	} | 
 | rshift_error: | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return (PyObject *) z; | 
 |  | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_lshift(PyObject *v, PyObject *w) | 
 | { | 
 | 	/* This version due to Tim Peters */ | 
 | 	PyLongObject *a, *b; | 
 | 	PyLongObject *z = NULL; | 
 | 	long shiftby; | 
 | 	int oldsize, newsize, wordshift, remshift, i, j; | 
 | 	twodigits accum; | 
 |  | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 |  | 
 | 	shiftby = PyLong_AsLong((PyObject *)b); | 
 | 	if (shiftby == -1L && PyErr_Occurred()) | 
 | 		goto lshift_error; | 
 | 	if (shiftby < 0) { | 
 | 		PyErr_SetString(PyExc_ValueError, "negative shift count"); | 
 | 		goto lshift_error; | 
 | 	} | 
 | 	if ((long)(int)shiftby != shiftby) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"outrageous left shift count"); | 
 | 		goto lshift_error; | 
 | 	} | 
 | 	/* wordshift, remshift = divmod(shiftby, SHIFT) */ | 
 | 	wordshift = (int)shiftby / SHIFT; | 
 | 	remshift  = (int)shiftby - wordshift * SHIFT; | 
 |  | 
 | 	oldsize = ABS(a->ob_size); | 
 | 	newsize = oldsize + wordshift; | 
 | 	if (remshift) | 
 | 		++newsize; | 
 | 	z = _PyLong_New(newsize); | 
 | 	if (z == NULL) | 
 | 		goto lshift_error; | 
 | 	if (a->ob_size < 0) | 
 | 		z->ob_size = -(z->ob_size); | 
 | 	for (i = 0; i < wordshift; i++) | 
 | 		z->ob_digit[i] = 0; | 
 | 	accum = 0; | 
 | 	for (i = wordshift, j = 0; j < oldsize; i++, j++) { | 
 | 		accum |= (twodigits)a->ob_digit[j] << remshift; | 
 | 		z->ob_digit[i] = (digit)(accum & MASK); | 
 | 		accum >>= SHIFT; | 
 | 	} | 
 | 	if (remshift) | 
 | 		z->ob_digit[newsize-1] = (digit)accum; | 
 | 	else | 
 | 		assert(!accum); | 
 | 	z = long_normalize(z); | 
 | lshift_error: | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return (PyObject *) z; | 
 | } | 
 |  | 
 |  | 
 | /* Bitwise and/xor/or operations */ | 
 |  | 
 | static PyObject * | 
 | long_bitwise(PyLongObject *a, | 
 | 	     int op,  /* '&', '|', '^' */ | 
 | 	     PyLongObject *b) | 
 | { | 
 | 	digit maska, maskb; /* 0 or MASK */ | 
 | 	int negz; | 
 | 	int size_a, size_b, size_z; | 
 | 	PyLongObject *z; | 
 | 	int i; | 
 | 	digit diga, digb; | 
 | 	PyObject *v; | 
 |  | 
 | 	if (a->ob_size < 0) { | 
 | 		a = (PyLongObject *) long_invert(a); | 
 | 		maska = MASK; | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(a); | 
 | 		maska = 0; | 
 | 	} | 
 | 	if (b->ob_size < 0) { | 
 | 		b = (PyLongObject *) long_invert(b); | 
 | 		maskb = MASK; | 
 | 	} | 
 | 	else { | 
 | 		Py_INCREF(b); | 
 | 		maskb = 0; | 
 | 	} | 
 |  | 
 | 	negz = 0; | 
 | 	switch (op) { | 
 | 	case '^': | 
 | 		if (maska != maskb) { | 
 | 			maska ^= MASK; | 
 | 			negz = -1; | 
 | 		} | 
 | 		break; | 
 | 	case '&': | 
 | 		if (maska && maskb) { | 
 | 			op = '|'; | 
 | 			maska ^= MASK; | 
 | 			maskb ^= MASK; | 
 | 			negz = -1; | 
 | 		} | 
 | 		break; | 
 | 	case '|': | 
 | 		if (maska || maskb) { | 
 | 			op = '&'; | 
 | 			maska ^= MASK; | 
 | 			maskb ^= MASK; | 
 | 			negz = -1; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* JRH: The original logic here was to allocate the result value (z) | 
 | 	   as the longer of the two operands.  However, there are some cases | 
 | 	   where the result is guaranteed to be shorter than that: AND of two | 
 | 	   positives, OR of two negatives: use the shorter number.  AND with | 
 | 	   mixed signs: use the positive number.  OR with mixed signs: use the | 
 | 	   negative number.  After the transformations above, op will be '&' | 
 | 	   iff one of these cases applies, and mask will be non-0 for operands | 
 | 	   whose length should be ignored. | 
 | 	*/ | 
 |  | 
 | 	size_a = a->ob_size; | 
 | 	size_b = b->ob_size; | 
 | 	size_z = op == '&' | 
 | 		? (maska | 
 | 		   ? size_b | 
 | 		   : (maskb ? size_a : MIN(size_a, size_b))) | 
 | 		: MAX(size_a, size_b); | 
 | 	z = _PyLong_New(size_z); | 
 | 	if (a == NULL || b == NULL || z == NULL) { | 
 | 		Py_XDECREF(a); | 
 | 		Py_XDECREF(b); | 
 | 		Py_XDECREF(z); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < size_z; ++i) { | 
 | 		diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska; | 
 | 		digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb; | 
 | 		switch (op) { | 
 | 		case '&': z->ob_digit[i] = diga & digb; break; | 
 | 		case '|': z->ob_digit[i] = diga | digb; break; | 
 | 		case '^': z->ob_digit[i] = diga ^ digb; break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	z = long_normalize(z); | 
 | 	if (negz == 0) | 
 | 		return (PyObject *) z; | 
 | 	v = long_invert(z); | 
 | 	Py_DECREF(z); | 
 | 	return v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_and(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b; | 
 | 	PyObject *c; | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 | 	c = long_bitwise(a, '&', b); | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_xor(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b; | 
 | 	PyObject *c; | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 | 	c = long_bitwise(a, '^', b); | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return c; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_or(PyObject *v, PyObject *w) | 
 | { | 
 | 	PyLongObject *a, *b; | 
 | 	PyObject *c; | 
 | 	CONVERT_BINOP(v, w, &a, &b); | 
 | 	c = long_bitwise(a, '|', b); | 
 | 	Py_DECREF(a); | 
 | 	Py_DECREF(b); | 
 | 	return c; | 
 | } | 
 |  | 
 | static int | 
 | long_coerce(PyObject **pv, PyObject **pw) | 
 | { | 
 | 	if (PyInt_Check(*pw)) { | 
 | 		*pw = PyLong_FromLong(PyInt_AS_LONG(*pw)); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (PyLong_Check(*pw)) { | 
 | 		Py_INCREF(*pv); | 
 | 		Py_INCREF(*pw); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; /* Can't do it */ | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_long(PyObject *v) | 
 | { | 
 | 	Py_INCREF(v); | 
 | 	return v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_int(PyObject *v) | 
 | { | 
 | 	long x; | 
 | 	x = PyLong_AsLong(v); | 
 | 	if (PyErr_Occurred()) { | 
 | 		if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
 | 				PyErr_Clear(); | 
 | 				if (PyLong_CheckExact(v)) { | 
 | 					Py_INCREF(v); | 
 | 					return v; | 
 | 				} | 
 | 				else | 
 | 					return _PyLong_Copy((PyLongObject *)v); | 
 | 		} | 
 | 		else | 
 | 			return NULL; | 
 | 	} | 
 | 	return PyInt_FromLong(x); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_float(PyObject *v) | 
 | { | 
 | 	double result; | 
 | 	result = PyLong_AsDouble(v); | 
 | 	if (result == -1.0 && PyErr_Occurred()) | 
 | 		return NULL; | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_oct(PyObject *v) | 
 | { | 
 | 	return long_format(v, 8, 1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_hex(PyObject *v) | 
 | { | 
 | 	return long_format(v, 16, 1); | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | 
 |  | 
 | static PyObject * | 
 | long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyObject *x = NULL; | 
 | 	int base = -909;		     /* unlikely! */ | 
 | 	static char *kwlist[] = {"x", "base", 0}; | 
 |  | 
 | 	if (type != &PyLong_Type) | 
 | 		return long_subtype_new(type, args, kwds); /* Wimp out */ | 
 | 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist, | 
 | 					 &x, &base)) | 
 | 		return NULL; | 
 | 	if (x == NULL) | 
 | 		return PyLong_FromLong(0L); | 
 | 	if (base == -909) | 
 | 		return PyNumber_Long(x); | 
 | 	else if (PyString_Check(x)) | 
 | 		return PyLong_FromString(PyString_AS_STRING(x), NULL, base); | 
 | #ifdef Py_USING_UNICODE | 
 | 	else if (PyUnicode_Check(x)) | 
 | 		return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), | 
 | 					  PyUnicode_GET_SIZE(x), | 
 | 					  base); | 
 | #endif | 
 | 	else { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 			"long() can't convert non-string with explicit base"); | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* Wimpy, slow approach to tp_new calls for subtypes of long: | 
 |    first create a regular long from whatever arguments we got, | 
 |    then allocate a subtype instance and initialize it from | 
 |    the regular long.  The regular long is then thrown away. | 
 | */ | 
 | static PyObject * | 
 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | 
 | { | 
 | 	PyLongObject *tmp, *new; | 
 | 	int i, n; | 
 |  | 
 | 	assert(PyType_IsSubtype(type, &PyLong_Type)); | 
 | 	tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); | 
 | 	if (tmp == NULL) | 
 | 		return NULL; | 
 | 	assert(PyLong_CheckExact(tmp)); | 
 | 	n = tmp->ob_size; | 
 | 	if (n < 0) | 
 | 		n = -n; | 
 | 	new = (PyLongObject *)type->tp_alloc(type, n); | 
 | 	if (new == NULL) | 
 | 		return NULL; | 
 | 	assert(PyLong_Check(new)); | 
 | 	new->ob_size = tmp->ob_size; | 
 | 	for (i = 0; i < n; i++) | 
 | 		new->ob_digit[i] = tmp->ob_digit[i]; | 
 | 	Py_DECREF(tmp); | 
 | 	return (PyObject *)new; | 
 | } | 
 |  | 
 | static PyObject * | 
 | long_getnewargs(PyLongObject *v) | 
 | { | 
 | 	return Py_BuildValue("(N)", _PyLong_Copy(v)); | 
 | } | 
 |  | 
 | static PyMethodDef long_methods[] = { | 
 | 	{"__getnewargs__",	(PyCFunction)long_getnewargs,	METH_NOARGS}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 | PyDoc_STRVAR(long_doc, | 
 | "long(x[, base]) -> integer\n\ | 
 | \n\ | 
 | Convert a string or number to a long integer, if possible.  A floating\n\ | 
 | point argument will be truncated towards zero (this does not include a\n\ | 
 | string representation of a floating point number!)  When converting a\n\ | 
 | string, use the optional base.  It is an error to supply a base when\n\ | 
 | converting a non-string."); | 
 |  | 
 | static PyNumberMethods long_as_number = { | 
 | 	(binaryfunc)	long_add,	/*nb_add*/ | 
 | 	(binaryfunc)	long_sub,	/*nb_subtract*/ | 
 | 	(binaryfunc)	long_mul,	/*nb_multiply*/ | 
 | 	(binaryfunc)	long_classic_div, /*nb_divide*/ | 
 | 	(binaryfunc)	long_mod,	/*nb_remainder*/ | 
 | 	(binaryfunc)	long_divmod,	/*nb_divmod*/ | 
 | 	(ternaryfunc)	long_pow,	/*nb_power*/ | 
 | 	(unaryfunc) 	long_neg,	/*nb_negative*/ | 
 | 	(unaryfunc) 	long_pos,	/*tp_positive*/ | 
 | 	(unaryfunc) 	long_abs,	/*tp_absolute*/ | 
 | 	(inquiry)	long_nonzero,	/*tp_nonzero*/ | 
 | 	(unaryfunc)	long_invert,	/*nb_invert*/ | 
 | 	(binaryfunc)	long_lshift,	/*nb_lshift*/ | 
 | 	(binaryfunc)	long_rshift,	/*nb_rshift*/ | 
 | 	(binaryfunc)	long_and,	/*nb_and*/ | 
 | 	(binaryfunc)	long_xor,	/*nb_xor*/ | 
 | 	(binaryfunc)	long_or,	/*nb_or*/ | 
 | 	(coercion)	long_coerce,	/*nb_coerce*/ | 
 | 	(unaryfunc)	long_int,	/*nb_int*/ | 
 | 	(unaryfunc)	long_long,	/*nb_long*/ | 
 | 	(unaryfunc)	long_float,	/*nb_float*/ | 
 | 	(unaryfunc)	long_oct,	/*nb_oct*/ | 
 | 	(unaryfunc)	long_hex,	/*nb_hex*/ | 
 | 	0,				/* nb_inplace_add */ | 
 | 	0,				/* nb_inplace_subtract */ | 
 | 	0,				/* nb_inplace_multiply */ | 
 | 	0,				/* nb_inplace_divide */ | 
 | 	0,				/* nb_inplace_remainder */ | 
 | 	0,				/* nb_inplace_power */ | 
 | 	0,				/* nb_inplace_lshift */ | 
 | 	0,				/* nb_inplace_rshift */ | 
 | 	0,				/* nb_inplace_and */ | 
 | 	0,				/* nb_inplace_xor */ | 
 | 	0,				/* nb_inplace_or */ | 
 | 	(binaryfunc)long_div,		/* nb_floor_divide */ | 
 | 	long_true_divide,		/* nb_true_divide */ | 
 | 	0,				/* nb_inplace_floor_divide */ | 
 | 	0,				/* nb_inplace_true_divide */ | 
 | }; | 
 |  | 
 | PyTypeObject PyLong_Type = { | 
 | 	PyObject_HEAD_INIT(&PyType_Type) | 
 | 	0,					/* ob_size */ | 
 | 	"long",					/* tp_name */ | 
 | 	sizeof(PyLongObject) - sizeof(digit),	/* tp_basicsize */ | 
 | 	sizeof(digit),				/* tp_itemsize */ | 
 | 	(destructor)long_dealloc,		/* tp_dealloc */ | 
 | 	0,					/* tp_print */ | 
 | 	0,					/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	(cmpfunc)long_compare,			/* tp_compare */ | 
 | 	(reprfunc)long_repr,			/* tp_repr */ | 
 | 	&long_as_number,			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)long_hash,			/* tp_hash */ | 
 |         0,              			/* tp_call */ | 
 |         (reprfunc)long_str,			/* tp_str */ | 
 | 	PyObject_GenericGetAttr,		/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | | 
 | 		Py_TPFLAGS_BASETYPE,		/* tp_flags */ | 
 | 	long_doc,				/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	0,					/* tp_richcompare */ | 
 | 	0,					/* tp_weaklistoffset */ | 
 | 	0,					/* tp_iter */ | 
 | 	0,					/* tp_iternext */ | 
 | 	long_methods,				/* tp_methods */ | 
 | 	0,					/* tp_members */ | 
 | 	0,					/* tp_getset */ | 
 | 	0,					/* tp_base */ | 
 | 	0,					/* tp_dict */ | 
 | 	0,					/* tp_descr_get */ | 
 | 	0,					/* tp_descr_set */ | 
 | 	0,					/* tp_dictoffset */ | 
 | 	0,					/* tp_init */ | 
 | 	0,					/* tp_alloc */ | 
 | 	long_new,				/* tp_new */ | 
 | 	PyObject_Del,                           /* tp_free */ | 
 | }; |