| |
| /* Integer object implementation */ |
| |
| #include "Python.h" |
| #include <ctype.h> |
| |
| long |
| PyInt_GetMax(void) |
| { |
| return LONG_MAX; /* To initialize sys.maxint */ |
| } |
| |
| /* Standard Booleans */ |
| |
| PyIntObject _Py_ZeroStruct = { |
| PyObject_HEAD_INIT(&PyInt_Type) |
| 0 |
| }; |
| |
| PyIntObject _Py_TrueStruct = { |
| PyObject_HEAD_INIT(&PyInt_Type) |
| 1 |
| }; |
| |
| static PyObject * |
| err_ovf(char *msg) |
| { |
| PyErr_SetString(PyExc_OverflowError, msg); |
| return NULL; |
| } |
| |
| /* Integers are quite normal objects, to make object handling uniform. |
| (Using odd pointers to represent integers would save much space |
| but require extra checks for this special case throughout the code.) |
| Since, a typical Python program spends much of its time allocating |
| and deallocating integers, these operations should be very fast. |
| Therefore we use a dedicated allocation scheme with a much lower |
| overhead (in space and time) than straight malloc(): a simple |
| dedicated free list, filled when necessary with memory from malloc(). |
| */ |
| |
| #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ |
| #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ |
| #define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject)) |
| |
| struct _intblock { |
| struct _intblock *next; |
| PyIntObject objects[N_INTOBJECTS]; |
| }; |
| |
| typedef struct _intblock PyIntBlock; |
| |
| static PyIntBlock *block_list = NULL; |
| static PyIntObject *free_list = NULL; |
| |
| static PyIntObject * |
| fill_free_list(void) |
| { |
| PyIntObject *p, *q; |
| /* XXX Int blocks escape the object heap. Use PyObject_MALLOC ??? */ |
| p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock)); |
| if (p == NULL) |
| return (PyIntObject *) PyErr_NoMemory(); |
| ((PyIntBlock *)p)->next = block_list; |
| block_list = (PyIntBlock *)p; |
| p = &((PyIntBlock *)p)->objects[0]; |
| q = p + N_INTOBJECTS; |
| while (--q > p) |
| q->ob_type = (struct _typeobject *)(q-1); |
| q->ob_type = NULL; |
| return p + N_INTOBJECTS - 1; |
| } |
| |
| #ifndef NSMALLPOSINTS |
| #define NSMALLPOSINTS 100 |
| #endif |
| #ifndef NSMALLNEGINTS |
| #define NSMALLNEGINTS 1 |
| #endif |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| /* References to small integers are saved in this array so that they |
| can be shared. |
| The integers that are saved are those in the range |
| -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). |
| */ |
| static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; |
| #endif |
| #ifdef COUNT_ALLOCS |
| int quick_int_allocs, quick_neg_int_allocs; |
| #endif |
| |
| PyObject * |
| PyInt_FromLong(long ival) |
| { |
| register PyIntObject *v; |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS && |
| (v = small_ints[ival + NSMALLNEGINTS]) != NULL) { |
| Py_INCREF(v); |
| #ifdef COUNT_ALLOCS |
| if (ival >= 0) |
| quick_int_allocs++; |
| else |
| quick_neg_int_allocs++; |
| #endif |
| return (PyObject *) v; |
| } |
| #endif |
| if (free_list == NULL) { |
| if ((free_list = fill_free_list()) == NULL) |
| return NULL; |
| } |
| /* PyObject_New is inlined */ |
| v = free_list; |
| free_list = (PyIntObject *)v->ob_type; |
| PyObject_INIT(v, &PyInt_Type); |
| v->ob_ival = ival; |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { |
| /* save this one for a following allocation */ |
| Py_INCREF(v); |
| small_ints[ival + NSMALLNEGINTS] = v; |
| } |
| #endif |
| return (PyObject *) v; |
| } |
| |
| static void |
| int_dealloc(PyIntObject *v) |
| { |
| v->ob_type = (struct _typeobject *)free_list; |
| free_list = v; |
| } |
| |
| long |
| PyInt_AsLong(register PyObject *op) |
| { |
| PyNumberMethods *nb; |
| PyIntObject *io; |
| long val; |
| |
| if (op && PyInt_Check(op)) |
| return PyInt_AS_LONG((PyIntObject*) op); |
| |
| if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || |
| nb->nb_int == NULL) { |
| PyErr_SetString(PyExc_TypeError, "an integer is required"); |
| return -1; |
| } |
| |
| io = (PyIntObject*) (*nb->nb_int) (op); |
| if (io == NULL) |
| return -1; |
| if (!PyInt_Check(io)) { |
| PyErr_SetString(PyExc_TypeError, |
| "nb_int should return int object"); |
| return -1; |
| } |
| |
| val = PyInt_AS_LONG(io); |
| Py_DECREF(io); |
| |
| return val; |
| } |
| |
| PyObject * |
| PyInt_FromString(char *s, char **pend, int base) |
| { |
| char *end; |
| long x; |
| char buffer[256]; /* For errors */ |
| |
| if ((base != 0 && base < 2) || base > 36) { |
| PyErr_SetString(PyExc_ValueError, "int() base must be >= 2 and <= 36"); |
| return NULL; |
| } |
| |
| while (*s && isspace(Py_CHARMASK(*s))) |
| s++; |
| errno = 0; |
| if (base == 0 && s[0] == '0') |
| x = (long) PyOS_strtoul(s, &end, base); |
| else |
| x = PyOS_strtol(s, &end, base); |
| if (end == s || !isalnum(Py_CHARMASK(end[-1]))) |
| goto bad; |
| while (*end && isspace(Py_CHARMASK(*end))) |
| end++; |
| if (*end != '\0') { |
| bad: |
| sprintf(buffer, "invalid literal for int(): %.200s", s); |
| PyErr_SetString(PyExc_ValueError, buffer); |
| return NULL; |
| } |
| else if (errno != 0) { |
| sprintf(buffer, "int() literal too large: %.200s", s); |
| PyErr_SetString(PyExc_ValueError, buffer); |
| return NULL; |
| } |
| if (pend) |
| *pend = end; |
| return PyInt_FromLong(x); |
| } |
| |
| PyObject * |
| PyInt_FromUnicode(Py_UNICODE *s, int length, int base) |
| { |
| char buffer[256]; |
| |
| if (length >= sizeof(buffer)) { |
| PyErr_SetString(PyExc_ValueError, |
| "int() literal too large to convert"); |
| return NULL; |
| } |
| if (PyUnicode_EncodeDecimal(s, length, buffer, NULL)) |
| return NULL; |
| return PyInt_FromString(buffer, NULL, base); |
| } |
| |
| /* Methods */ |
| |
| /* Integers are seen as the "smallest" of all numeric types and thus |
| don't have any knowledge about conversion of other types to |
| integers. */ |
| |
| #define CONVERT_TO_LONG(obj, lng) \ |
| if (PyInt_Check(obj)) { \ |
| lng = PyInt_AS_LONG(obj); \ |
| } \ |
| else { \ |
| Py_INCREF(Py_NotImplemented); \ |
| return Py_NotImplemented; \ |
| } |
| |
| /* ARGSUSED */ |
| static int |
| int_print(PyIntObject *v, FILE *fp, int flags) |
| /* flags -- not used but required by interface */ |
| { |
| fprintf(fp, "%ld", v->ob_ival); |
| return 0; |
| } |
| |
| static PyObject * |
| int_repr(PyIntObject *v) |
| { |
| char buf[20]; |
| sprintf(buf, "%ld", v->ob_ival); |
| return PyString_FromString(buf); |
| } |
| |
| static int |
| int_compare(PyIntObject *v, PyIntObject *w) |
| { |
| register long i = v->ob_ival; |
| register long j = w->ob_ival; |
| return (i < j) ? -1 : (i > j) ? 1 : 0; |
| } |
| |
| static long |
| int_hash(PyIntObject *v) |
| { |
| /* XXX If this is changed, you also need to change the way |
| Python's long, float and complex types are hashed. */ |
| long x = v -> ob_ival; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| static PyObject * |
| int_add(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b, x; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| x = a + b; |
| if ((x^a) < 0 && (x^b) < 0) |
| return err_ovf("integer addition"); |
| return PyInt_FromLong(x); |
| } |
| |
| static PyObject * |
| int_sub(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b, x; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| x = a - b; |
| if ((x^a) < 0 && (x^~b) < 0) |
| return err_ovf("integer subtraction"); |
| return PyInt_FromLong(x); |
| } |
| |
| /* |
| Integer overflow checking used to be done using a double, but on 64 |
| bit machines (where both long and double are 64 bit) this fails |
| because the double doesn't have enough precision. John Tromp suggests |
| the following algorithm: |
| |
| Suppose again we normalize a and b to be nonnegative. |
| Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.). |
| Now we test ah and bh against zero and get essentially 3 possible outcomes. |
| |
| 1) both ah and bh > 0 : then report overflow |
| |
| 2) both ah and bh = 0 : then compute a*b and report overflow if it comes out |
| negative |
| |
| 3) ah > 0 and bh = 0 : compute ah*bl and report overflow if it's >= 2^31 |
| compute al*bl and report overflow if it's negative |
| add (ah*bl)<<32 to al*bl and report overflow if |
| it's negative |
| |
| In case of no overflow the result is then negated if necessary. |
| |
| The majority of cases will be 2), in which case this method is the same as |
| what I suggested before. If multiplication is expensive enough, then the |
| other method is faster on case 3), but also more work to program, so I |
| guess the above is the preferred solution. |
| |
| */ |
| |
| static PyObject * |
| int_mul(PyObject *v, PyObject *w) |
| { |
| long a, b, ah, bh, x, y; |
| int s = 1; |
| |
| if (v->ob_type->tp_as_sequence && |
| v->ob_type->tp_as_sequence->sq_repeat) { |
| /* sequence * int */ |
| a = PyInt_AsLong(w); |
| return (*v->ob_type->tp_as_sequence->sq_repeat)(v, a); |
| } |
| else if (w->ob_type->tp_as_sequence && |
| w->ob_type->tp_as_sequence->sq_repeat) { |
| /* int * sequence */ |
| a = PyInt_AsLong(v); |
| return (*w->ob_type->tp_as_sequence->sq_repeat)(w, a); |
| } |
| |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| ah = a >> (LONG_BIT/2); |
| bh = b >> (LONG_BIT/2); |
| |
| /* Quick test for common case: two small positive ints */ |
| |
| if (ah == 0 && bh == 0) { |
| x = a*b; |
| if (x < 0) |
| goto bad; |
| return PyInt_FromLong(x); |
| } |
| |
| /* Arrange that a >= b >= 0 */ |
| |
| if (a < 0) { |
| a = -a; |
| if (a < 0) { |
| /* Largest negative */ |
| if (b == 0 || b == 1) { |
| x = a*b; |
| goto ok; |
| } |
| else |
| goto bad; |
| } |
| s = -s; |
| ah = a >> (LONG_BIT/2); |
| } |
| if (b < 0) { |
| b = -b; |
| if (b < 0) { |
| /* Largest negative */ |
| if (a == 0 || (a == 1 && s == 1)) { |
| x = a*b; |
| goto ok; |
| } |
| else |
| goto bad; |
| } |
| s = -s; |
| bh = b >> (LONG_BIT/2); |
| } |
| |
| /* 1) both ah and bh > 0 : then report overflow */ |
| |
| if (ah != 0 && bh != 0) |
| goto bad; |
| |
| /* 2) both ah and bh = 0 : then compute a*b and report |
| overflow if it comes out negative */ |
| |
| if (ah == 0 && bh == 0) { |
| x = a*b; |
| if (x < 0) |
| goto bad; |
| return PyInt_FromLong(x*s); |
| } |
| |
| if (a < b) { |
| /* Swap */ |
| x = a; |
| a = b; |
| b = x; |
| ah = bh; |
| /* bh not used beyond this point */ |
| } |
| |
| /* 3) ah > 0 and bh = 0 : compute ah*bl and report overflow if |
| it's >= 2^31 |
| compute al*bl and report overflow if it's negative |
| add (ah*bl)<<32 to al*bl and report overflow if |
| it's negative |
| (NB b == bl in this case, and we make a = al) */ |
| |
| y = ah*b; |
| if (y >= (1L << (LONG_BIT/2 - 1))) |
| goto bad; |
| a &= (1L << (LONG_BIT/2)) - 1; |
| x = a*b; |
| if (x < 0) |
| goto bad; |
| x += y << (LONG_BIT/2); |
| if (x < 0) |
| goto bad; |
| ok: |
| return PyInt_FromLong(x * s); |
| |
| bad: |
| return err_ovf("integer multiplication"); |
| } |
| |
| static int |
| i_divmod(register long xi, register long yi, |
| long *p_xdivy, long *p_xmody) |
| { |
| long xdivy, xmody; |
| |
| if (yi == 0) { |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "integer division or modulo by zero"); |
| return -1; |
| } |
| if (yi < 0) { |
| if (xi < 0) { |
| if (yi == -1 && -xi < 0) { |
| /* most negative / -1 */ |
| err_ovf("integer division"); |
| return -1; |
| } |
| xdivy = -xi / -yi; |
| } |
| else |
| xdivy = - (xi / -yi); |
| } |
| else { |
| if (xi < 0) |
| xdivy = - (-xi / yi); |
| else |
| xdivy = xi / yi; |
| } |
| xmody = xi - xdivy*yi; |
| if ((xmody < 0 && yi > 0) || (xmody > 0 && yi < 0)) { |
| xmody += yi; |
| xdivy -= 1; |
| } |
| *p_xdivy = xdivy; |
| *p_xmody = xmody; |
| return 0; |
| } |
| |
| static PyObject * |
| int_div(PyIntObject *x, PyIntObject *y) |
| { |
| long xi, yi; |
| long d, m; |
| CONVERT_TO_LONG(x, xi); |
| CONVERT_TO_LONG(y, yi); |
| if (i_divmod(xi, yi, &d, &m) < 0) |
| return NULL; |
| return PyInt_FromLong(d); |
| } |
| |
| static PyObject * |
| int_mod(PyIntObject *x, PyIntObject *y) |
| { |
| long xi, yi; |
| long d, m; |
| CONVERT_TO_LONG(x, xi); |
| CONVERT_TO_LONG(y, yi); |
| if (i_divmod(xi, yi, &d, &m) < 0) |
| return NULL; |
| return PyInt_FromLong(m); |
| } |
| |
| static PyObject * |
| int_divmod(PyIntObject *x, PyIntObject *y) |
| { |
| long xi, yi; |
| long d, m; |
| CONVERT_TO_LONG(x, xi); |
| CONVERT_TO_LONG(y, yi); |
| if (i_divmod(xi, yi, &d, &m) < 0) |
| return NULL; |
| return Py_BuildValue("(ll)", d, m); |
| } |
| |
| static PyObject * |
| int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z) |
| { |
| #if 1 |
| register long iv, iw, iz=0, ix, temp, prev; |
| CONVERT_TO_LONG(v, iv); |
| CONVERT_TO_LONG(w, iw); |
| if (iw < 0) { |
| if (iv) |
| PyErr_SetString(PyExc_ValueError, |
| "cannot raise integer to a negative power"); |
| else |
| PyErr_SetString(PyExc_ZeroDivisionError, |
| "cannot raise 0 to a negative power"); |
| return NULL; |
| } |
| if ((PyObject *)z != Py_None) { |
| CONVERT_TO_LONG(z, iz); |
| if (iz == 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "pow() arg 3 cannot be 0"); |
| return NULL; |
| } |
| } |
| /* |
| * XXX: The original exponentiation code stopped looping |
| * when temp hit zero; this code will continue onwards |
| * unnecessarily, but at least it won't cause any errors. |
| * Hopefully the speed improvement from the fast exponentiation |
| * will compensate for the slight inefficiency. |
| * XXX: Better handling of overflows is desperately needed. |
| */ |
| temp = iv; |
| ix = 1; |
| while (iw > 0) { |
| prev = ix; /* Save value for overflow check */ |
| if (iw & 1) { |
| ix = ix*temp; |
| if (temp == 0) |
| break; /* Avoid ix / 0 */ |
| if (ix / temp != prev) |
| return err_ovf("integer exponentiation"); |
| } |
| iw >>= 1; /* Shift exponent down by 1 bit */ |
| if (iw==0) break; |
| prev = temp; |
| temp *= temp; /* Square the value of temp */ |
| if (prev!=0 && temp/prev!=prev) |
| return err_ovf("integer exponentiation"); |
| if (iz) { |
| /* If we did a multiplication, perform a modulo */ |
| ix = ix % iz; |
| temp = temp % iz; |
| } |
| } |
| if (iz) { |
| long div, mod; |
| if (i_divmod(ix, iz, &div, &mod) < 0) |
| return(NULL); |
| ix=mod; |
| } |
| return PyInt_FromLong(ix); |
| #else |
| register long iv, iw, ix; |
| CONVERT_TO_LONG(v, iv); |
| CONVERT_TO_LONG(w, iw); |
| if (iw < 0) { |
| PyErr_SetString(PyExc_ValueError, |
| "integer to the negative power"); |
| return NULL; |
| } |
| if ((PyObject *)z != Py_None) { |
| PyErr_SetString(PyExc_TypeError, |
| "pow(int, int, int) not yet supported"); |
| return NULL; |
| } |
| ix = 1; |
| while (--iw >= 0) { |
| long prev = ix; |
| ix = ix * iv; |
| if (iv == 0) |
| break; /* 0 to some power -- avoid ix / 0 */ |
| if (ix / iv != prev) |
| return err_ovf("integer exponentiation"); |
| } |
| return PyInt_FromLong(ix); |
| #endif |
| } |
| |
| static PyObject * |
| int_neg(PyIntObject *v) |
| { |
| register long a, x; |
| a = v->ob_ival; |
| x = -a; |
| if (a < 0 && x < 0) |
| return err_ovf("integer negation"); |
| return PyInt_FromLong(x); |
| } |
| |
| static PyObject * |
| int_pos(PyIntObject *v) |
| { |
| Py_INCREF(v); |
| return (PyObject *)v; |
| } |
| |
| static PyObject * |
| int_abs(PyIntObject *v) |
| { |
| if (v->ob_ival >= 0) |
| return int_pos(v); |
| else |
| return int_neg(v); |
| } |
| |
| static int |
| int_nonzero(PyIntObject *v) |
| { |
| return v->ob_ival != 0; |
| } |
| |
| static PyObject * |
| int_invert(PyIntObject *v) |
| { |
| return PyInt_FromLong(~v->ob_ival); |
| } |
| |
| static PyObject * |
| int_lshift(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| if (b < 0) { |
| PyErr_SetString(PyExc_ValueError, "negative shift count"); |
| return NULL; |
| } |
| if (a == 0 || b == 0) { |
| Py_INCREF(v); |
| return (PyObject *) v; |
| } |
| if (b >= LONG_BIT) { |
| return PyInt_FromLong(0L); |
| } |
| a = (unsigned long)a << b; |
| return PyInt_FromLong(a); |
| } |
| |
| static PyObject * |
| int_rshift(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| if (b < 0) { |
| PyErr_SetString(PyExc_ValueError, "negative shift count"); |
| return NULL; |
| } |
| if (a == 0 || b == 0) { |
| Py_INCREF(v); |
| return (PyObject *) v; |
| } |
| if (b >= LONG_BIT) { |
| if (a < 0) |
| a = -1; |
| else |
| a = 0; |
| } |
| else { |
| a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b); |
| } |
| return PyInt_FromLong(a); |
| } |
| |
| static PyObject * |
| int_and(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| return PyInt_FromLong(a & b); |
| } |
| |
| static PyObject * |
| int_xor(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| return PyInt_FromLong(a ^ b); |
| } |
| |
| static PyObject * |
| int_or(PyIntObject *v, PyIntObject *w) |
| { |
| register long a, b; |
| CONVERT_TO_LONG(v, a); |
| CONVERT_TO_LONG(w, b); |
| return PyInt_FromLong(a | b); |
| } |
| |
| static PyObject * |
| int_int(PyIntObject *v) |
| { |
| Py_INCREF(v); |
| return (PyObject *)v; |
| } |
| |
| static PyObject * |
| int_long(PyIntObject *v) |
| { |
| return PyLong_FromLong((v -> ob_ival)); |
| } |
| |
| static PyObject * |
| int_float(PyIntObject *v) |
| { |
| return PyFloat_FromDouble((double)(v -> ob_ival)); |
| } |
| |
| static PyObject * |
| int_oct(PyIntObject *v) |
| { |
| char buf[100]; |
| long x = v -> ob_ival; |
| if (x == 0) |
| strcpy(buf, "0"); |
| else |
| sprintf(buf, "0%lo", x); |
| return PyString_FromString(buf); |
| } |
| |
| static PyObject * |
| int_hex(PyIntObject *v) |
| { |
| char buf[100]; |
| long x = v -> ob_ival; |
| sprintf(buf, "0x%lx", x); |
| return PyString_FromString(buf); |
| } |
| |
| static PyNumberMethods int_as_number = { |
| (binaryfunc)int_add, /*nb_add*/ |
| (binaryfunc)int_sub, /*nb_subtract*/ |
| (binaryfunc)int_mul, /*nb_multiply*/ |
| (binaryfunc)int_div, /*nb_divide*/ |
| (binaryfunc)int_mod, /*nb_remainder*/ |
| (binaryfunc)int_divmod, /*nb_divmod*/ |
| (ternaryfunc)int_pow, /*nb_power*/ |
| (unaryfunc)int_neg, /*nb_negative*/ |
| (unaryfunc)int_pos, /*nb_positive*/ |
| (unaryfunc)int_abs, /*nb_absolute*/ |
| (inquiry)int_nonzero, /*nb_nonzero*/ |
| (unaryfunc)int_invert, /*nb_invert*/ |
| (binaryfunc)int_lshift, /*nb_lshift*/ |
| (binaryfunc)int_rshift, /*nb_rshift*/ |
| (binaryfunc)int_and, /*nb_and*/ |
| (binaryfunc)int_xor, /*nb_xor*/ |
| (binaryfunc)int_or, /*nb_or*/ |
| 0, /*nb_coerce*/ |
| (unaryfunc)int_int, /*nb_int*/ |
| (unaryfunc)int_long, /*nb_long*/ |
| (unaryfunc)int_float, /*nb_float*/ |
| (unaryfunc)int_oct, /*nb_oct*/ |
| (unaryfunc)int_hex, /*nb_hex*/ |
| 0, /*nb_inplace_add*/ |
| 0, /*nb_inplace_subtract*/ |
| 0, /*nb_inplace_multiply*/ |
| 0, /*nb_inplace_divide*/ |
| 0, /*nb_inplace_remainder*/ |
| 0, /*nb_inplace_power*/ |
| 0, /*nb_inplace_lshift*/ |
| 0, /*nb_inplace_rshift*/ |
| 0, /*nb_inplace_and*/ |
| 0, /*nb_inplace_xor*/ |
| 0, /*nb_inplace_or*/ |
| }; |
| |
| PyTypeObject PyInt_Type = { |
| PyObject_HEAD_INIT(&PyType_Type) |
| 0, |
| "int", |
| sizeof(PyIntObject), |
| 0, |
| (destructor)int_dealloc, /*tp_dealloc*/ |
| (printfunc)int_print, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| (cmpfunc)int_compare, /*tp_compare*/ |
| (reprfunc)int_repr, /*tp_repr*/ |
| &int_as_number, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| (hashfunc)int_hash, /*tp_hash*/ |
| 0, /*tp_call*/ |
| 0, /*tp_str*/ |
| 0, /*tp_getattro*/ |
| 0, /*tp_setattro*/ |
| 0, /*tp_as_buffer*/ |
| Py_TPFLAGS_CHECKTYPES /*tp_flags*/ |
| }; |
| |
| void |
| PyInt_Fini(void) |
| { |
| PyIntObject *p; |
| PyIntBlock *list, *next; |
| int i; |
| int bc, bf; /* block count, number of freed blocks */ |
| int irem, isum; /* remaining unfreed ints per block, total */ |
| |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| PyIntObject **q; |
| |
| i = NSMALLNEGINTS + NSMALLPOSINTS; |
| q = small_ints; |
| while (--i >= 0) { |
| Py_XDECREF(*q); |
| *q++ = NULL; |
| } |
| #endif |
| bc = 0; |
| bf = 0; |
| isum = 0; |
| list = block_list; |
| block_list = NULL; |
| free_list = NULL; |
| while (list != NULL) { |
| bc++; |
| irem = 0; |
| for (i = 0, p = &list->objects[0]; |
| i < N_INTOBJECTS; |
| i++, p++) { |
| if (PyInt_Check(p) && p->ob_refcnt != 0) |
| irem++; |
| } |
| next = list->next; |
| if (irem) { |
| list->next = block_list; |
| block_list = list; |
| for (i = 0, p = &list->objects[0]; |
| i < N_INTOBJECTS; |
| i++, p++) { |
| if (!PyInt_Check(p) || p->ob_refcnt == 0) { |
| p->ob_type = (struct _typeobject *) |
| free_list; |
| free_list = p; |
| } |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
| else if (-NSMALLNEGINTS <= p->ob_ival && |
| p->ob_ival < NSMALLPOSINTS && |
| small_ints[p->ob_ival + |
| NSMALLNEGINTS] == NULL) { |
| Py_INCREF(p); |
| small_ints[p->ob_ival + |
| NSMALLNEGINTS] = p; |
| } |
| #endif |
| } |
| } |
| else { |
| PyMem_FREE(list); /* XXX PyObject_FREE ??? */ |
| bf++; |
| } |
| isum += irem; |
| list = next; |
| } |
| if (!Py_VerboseFlag) |
| return; |
| fprintf(stderr, "# cleanup ints"); |
| if (!isum) { |
| fprintf(stderr, "\n"); |
| } |
| else { |
| fprintf(stderr, |
| ": %d unfreed int%s in %d out of %d block%s\n", |
| isum, isum == 1 ? "" : "s", |
| bc - bf, bc, bc == 1 ? "" : "s"); |
| } |
| if (Py_VerboseFlag > 1) { |
| list = block_list; |
| while (list != NULL) { |
| for (i = 0, p = &list->objects[0]; |
| i < N_INTOBJECTS; |
| i++, p++) { |
| if (PyInt_Check(p) && p->ob_refcnt != 0) |
| fprintf(stderr, |
| "# <int at %p, refcnt=%d, val=%ld>\n", |
| p, p->ob_refcnt, p->ob_ival); |
| } |
| list = list->next; |
| } |
| } |
| } |