Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines

  Untabify C files. Will watch buildbots.
........
diff --git a/Python/pymath.c b/Python/pymath.c
index 2749688..1ba2e63 100644
--- a/Python/pymath.c
+++ b/Python/pymath.c
@@ -7,30 +7,30 @@
    thus rounding from extended precision to double precision. */
 double _Py_force_double(double x)
 {
-	volatile double y;
-	y = x;
-	return y;
+    volatile double y;
+    y = x;
+    return y;
 }
 #endif
 
 #ifndef HAVE_HYPOT
 double hypot(double x, double y)
 {
-	double yx;
+    double yx;
 
-	x = fabs(x);
-	y = fabs(y);
-	if (x < y) {
-		double temp = x;
-		x = y;
-		y = temp;
-	}
-	if (x == 0.)
-		return 0.;
-	else {
-		yx = y/x;
-		return x*sqrt(1.+yx*yx);
-	}
+    x = fabs(x);
+    y = fabs(y);
+    if (x < y) {
+        double temp = x;
+        x = y;
+        y = temp;
+    }
+    if (x == 0.)
+        return 0.;
+    else {
+        yx = y/x;
+        return x*sqrt(1.+yx*yx);
+    }
 }
 #endif /* HAVE_HYPOT */
 
@@ -38,12 +38,12 @@
 double
 copysign(double x, double y)
 {
-	/* use atan2 to distinguish -0. from 0. */
-	if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
-		return fabs(x);
-	} else {
-		return -fabs(x);
-	}
+    /* use atan2 to distinguish -0. from 0. */
+    if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
+        return fabs(x);
+    } else {
+        return -fabs(x);
+    }
 }
 #endif /* HAVE_COPYSIGN */
 
@@ -53,41 +53,41 @@
 double
 log1p(double x)
 {
-	/* For x small, we use the following approach.  Let y be the nearest
-	   float to 1+x, then
+    /* For x small, we use the following approach.  Let y be the nearest
+       float to 1+x, then
 
-	     1+x = y * (1 - (y-1-x)/y)
+         1+x = y * (1 - (y-1-x)/y)
 
-	   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
-	   the second term is well approximated by (y-1-x)/y.  If abs(x) >=
-	   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
-	   then y-1-x will be exactly representable, and is computed exactly
-	   by (y-1)-x.
+       so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
+       the second term is well approximated by (y-1-x)/y.  If abs(x) >=
+       DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
+       then y-1-x will be exactly representable, and is computed exactly
+       by (y-1)-x.
 
-	   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
-	   round-to-nearest then this method is slightly dangerous: 1+x could
-	   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
-	   case y-1-x will not be exactly representable any more and the
-	   result can be off by many ulps.  But this is easily fixed: for a
-	   floating-point number |x| < DBL_EPSILON/2., the closest
-	   floating-point number to log(1+x) is exactly x.
-	*/
+       If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
+       round-to-nearest then this method is slightly dangerous: 1+x could
+       be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
+       case y-1-x will not be exactly representable any more and the
+       result can be off by many ulps.  But this is easily fixed: for a
+       floating-point number |x| < DBL_EPSILON/2., the closest
+       floating-point number to log(1+x) is exactly x.
+    */
 
-	double y;
-	if (fabs(x) < DBL_EPSILON/2.) {
-		return x;
-	} else if (-0.5 <= x && x <= 1.) {
-		/* WARNING: it's possible than an overeager compiler
-		   will incorrectly optimize the following two lines
-		   to the equivalent of "return log(1.+x)". If this
-		   happens, then results from log1p will be inaccurate
-		   for small x. */
-		y = 1.+x;
-		return log(y)-((y-1.)-x)/y;
-	} else {
-		/* NaNs and infinities should end up here */
-		return log(1.+x);
-	}
+    double y;
+    if (fabs(x) < DBL_EPSILON/2.) {
+        return x;
+    } else if (-0.5 <= x && x <= 1.) {
+        /* WARNING: it's possible than an overeager compiler
+           will incorrectly optimize the following two lines
+           to the equivalent of "return log(1.+x)". If this
+           happens, then results from log1p will be inaccurate
+           for small x. */
+        y = 1.+x;
+        return log(y)-((y-1.)-x)/y;
+    } else {
+        /* NaNs and infinities should end up here */
+        return log(1.+x);
+    }
 }
 #endif /* HAVE_LOG1P */
 
@@ -97,7 +97,7 @@
  *
  * Developed at SunPro, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -109,51 +109,51 @@
 
 /* asinh(x)
  * Method :
- *	Based on 
- *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
- *	we have
- *	asinh(x) := x  if  1+x*x=1,
- *		 := sign(x)*(log(x)+ln2)) for large |x|, else
- *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
- *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
+ *      Based on
+ *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+ *      we have
+ *      asinh(x) := x  if  1+x*x=1,
+ *               := sign(x)*(log(x)+ln2)) for large |x|, else
+ *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
+ *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
  */
 
 #ifndef HAVE_ASINH
 double
 asinh(double x)
-{	
-	double w;
-	double absx = fabs(x);
+{
+    double w;
+    double absx = fabs(x);
 
-	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
-		return x+x;
-	}
-	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
-		return x;	/* return x inexact except 0 */
-	} 
-	if (absx > two_pow_p28) {	/* |x| > 2**28 */
-		w = log(absx)+ln2;
-	}
-	else if (absx > 2.0) {		/* 2 < |x| < 2**28 */
-		w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
-	}
-	else {				/* 2**-28 <= |x| < 2= */
-		double t = x*x;
-		w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
-	}
-	return copysign(w, x);
-	
+    if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
+        return x+x;
+    }
+    if (absx < two_pow_m28) {           /* |x| < 2**-28 */
+        return x;               /* return x inexact except 0 */
+    }
+    if (absx > two_pow_p28) {           /* |x| > 2**28 */
+        w = log(absx)+ln2;
+    }
+    else if (absx > 2.0) {              /* 2 < |x| < 2**28 */
+        w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
+    }
+    else {                              /* 2**-28 <= |x| < 2= */
+        double t = x*x;
+        w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
+    }
+    return copysign(w, x);
+
 }
 #endif /* HAVE_ASINH */
 
 /* acosh(x)
  * Method :
  *      Based on
- *	      acosh(x) = log [ x + sqrt(x*x-1) ]
+ *            acosh(x) = log [ x + sqrt(x*x-1) ]
  *      we have
- *	      acosh(x) := log(x)+ln2, if x is large; else
- *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
+ *            acosh(x) := log(x)+ln2, if x is large; else
+ *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
+ *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
  *
  * Special cases:
  *      acosh(x) is NaN with signal if x<1.
@@ -164,35 +164,35 @@
 double
 acosh(double x)
 {
-	if (Py_IS_NAN(x)) {
-		return x+x;
-	}
-	if (x < 1.) {			/* x < 1;  return a signaling NaN */
-		errno = EDOM;
+    if (Py_IS_NAN(x)) {
+        return x+x;
+    }
+    if (x < 1.) {                       /* x < 1;  return a signaling NaN */
+        errno = EDOM;
 #ifdef Py_NAN
-		return Py_NAN;
+        return Py_NAN;
 #else
-		return (x-x)/(x-x);
+        return (x-x)/(x-x);
 #endif
-	}
-	else if (x >= two_pow_p28) {	/* x > 2**28 */
-		if (Py_IS_INFINITY(x)) {
-			return x+x;
-		} else {
-			return log(x)+ln2;	/* acosh(huge)=log(2x) */
-		}
-	}
-	else if (x == 1.) {
-		return 0.0;			/* acosh(1) = 0 */
-	}
-	else if (x > 2.) {			/* 2 < x < 2**28 */
-		double t = x*x;
-		return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
-	}
-	else {				/* 1 < x <= 2 */
-		double t = x - 1.0;
-		return log1p(t + sqrt(2.0*t + t*t));
-	}
+    }
+    else if (x >= two_pow_p28) {        /* x > 2**28 */
+        if (Py_IS_INFINITY(x)) {
+            return x+x;
+        } else {
+            return log(x)+ln2;                  /* acosh(huge)=log(2x) */
+        }
+    }
+    else if (x == 1.) {
+        return 0.0;                             /* acosh(1) = 0 */
+    }
+    else if (x > 2.) {                          /* 2 < x < 2**28 */
+        double t = x*x;
+        return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
+    }
+    else {                              /* 1 < x <= 2 */
+        double t = x - 1.0;
+        return log1p(t + sqrt(2.0*t + t*t));
+    }
 }
 #endif /* HAVE_ACOSH */
 
@@ -200,9 +200,9 @@
  * Method :
  *    1.Reduced x to positive by atanh(-x) = -atanh(x)
  *    2.For x>=0.5
- *		  1	      2x			  x
+ *                1           2x                          x
  *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
- *		  2	     1 - x		      1 - x
+ *                2          1 - x                    1 - x
  *
  *      For x<0.5
  *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
@@ -217,31 +217,31 @@
 double
 atanh(double x)
 {
-	double absx;
-	double t;
+    double absx;
+    double t;
 
-	if (Py_IS_NAN(x)) {
-		return x+x;
-	}
-	absx = fabs(x);
-	if (absx >= 1.) {		/* |x| >= 1 */
-		errno = EDOM;
+    if (Py_IS_NAN(x)) {
+        return x+x;
+    }
+    absx = fabs(x);
+    if (absx >= 1.) {                   /* |x| >= 1 */
+        errno = EDOM;
 #ifdef Py_NAN
-		return Py_NAN;
+        return Py_NAN;
 #else
-		return x/zero;
+        return x/zero;
 #endif
-	}
-	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
-		return x;
-	}
-	if (absx < 0.5) {		/* |x| < 0.5 */
-		t = absx+absx;
-		t = 0.5 * log1p(t + t*absx / (1.0 - absx));
-	} 
-	else {				/* 0.5 <= |x| <= 1.0 */
-		t = 0.5 * log1p((absx + absx) / (1.0 - absx));
-	}
-	return copysign(t, x);
+    }
+    if (absx < two_pow_m28) {           /* |x| < 2**-28 */
+        return x;
+    }
+    if (absx < 0.5) {                   /* |x| < 0.5 */
+        t = absx+absx;
+        t = 0.5 * log1p(t + t*absx / (1.0 - absx));
+    }
+    else {                              /* 0.5 <= |x| <= 1.0 */
+        t = 0.5 * log1p((absx + absx) / (1.0 - absx));
+    }
+    return copysign(t, x);
 }
 #endif /* HAVE_ATANH */