Untabify C files. Will watch buildbots.
diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c
index 788a19d..825f7ad 100644
--- a/Modules/cmathmodule.c
+++ b/Modules/cmathmodule.c
@@ -32,7 +32,7 @@
 #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
 #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
 
-/* 
+/*
    CM_SCALE_UP is an odd integer chosen such that multiplication by
    2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
    CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute
@@ -63,46 +63,46 @@
 */
 
 enum special_types {
-	ST_NINF,	/* 0, negative infinity */
-	ST_NEG,		/* 1, negative finite number (nonzero) */
-	ST_NZERO,	/* 2, -0. */
-	ST_PZERO,	/* 3, +0. */
-	ST_POS,		/* 4, positive finite number (nonzero) */
-	ST_PINF,	/* 5, positive infinity */
-	ST_NAN		/* 6, Not a Number */
+    ST_NINF,            /* 0, negative infinity */
+    ST_NEG,             /* 1, negative finite number (nonzero) */
+    ST_NZERO,           /* 2, -0. */
+    ST_PZERO,           /* 3, +0. */
+    ST_POS,             /* 4, positive finite number (nonzero) */
+    ST_PINF,            /* 5, positive infinity */
+    ST_NAN              /* 6, Not a Number */
 };
 
 static enum special_types
 special_type(double d)
 {
-	if (Py_IS_FINITE(d)) {
-		if (d != 0) {
-			if (copysign(1., d) == 1.)
-				return ST_POS;
-			else
-				return ST_NEG;
-		}
-		else {
-			if (copysign(1., d) == 1.)
-				return ST_PZERO;
-			else
-				return ST_NZERO;
-		}
-	}
-	if (Py_IS_NAN(d))
-		return ST_NAN;
-	if (copysign(1., d) == 1.)
-		return ST_PINF;
-	else
-		return ST_NINF;
+    if (Py_IS_FINITE(d)) {
+        if (d != 0) {
+            if (copysign(1., d) == 1.)
+                return ST_POS;
+            else
+                return ST_NEG;
+        }
+        else {
+            if (copysign(1., d) == 1.)
+                return ST_PZERO;
+            else
+                return ST_NZERO;
+        }
+    }
+    if (Py_IS_NAN(d))
+        return ST_NAN;
+    if (copysign(1., d) == 1.)
+        return ST_PINF;
+    else
+        return ST_NINF;
 }
 
-#define SPECIAL_VALUE(z, table)						\
-	if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {	\
-		errno = 0;                                              \
-		return table[special_type((z).real)]	                \
-			    [special_type((z).imag)];			\
-	}
+#define SPECIAL_VALUE(z, table)                                         \
+    if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {           \
+        errno = 0;                                              \
+        return table[special_type((z).real)]                            \
+                    [special_type((z).imag)];                           \
+    }
 
 #define P Py_MATH_PI
 #define P14 0.25*Py_MATH_PI
@@ -126,34 +126,34 @@
 static Py_complex
 c_acos(Py_complex z)
 {
-	Py_complex s1, s2, r;
+    Py_complex s1, s2, r;
 
-	SPECIAL_VALUE(z, acos_special_values);
+    SPECIAL_VALUE(z, acos_special_values);
 
-	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
-		/* avoid unnecessary overflow for large arguments */
-		r.real = atan2(fabs(z.imag), z.real);
-		/* split into cases to make sure that the branch cut has the
-		   correct continuity on systems with unsigned zeros */
-		if (z.real < 0.) {
-			r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
-					   M_LN2*2., z.imag);
-		} else {
-			r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
-					  M_LN2*2., -z.imag);
-		}
-	} else {
-		s1.real = 1.-z.real;
-		s1.imag = -z.imag;
-		s1 = c_sqrt(s1);
-		s2.real = 1.+z.real;
-		s2.imag = z.imag;
-		s2 = c_sqrt(s2);
-		r.real = 2.*atan2(s1.real, s2.real);
-		r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
-	}
-	errno = 0;
-	return r;
+    if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+        /* avoid unnecessary overflow for large arguments */
+        r.real = atan2(fabs(z.imag), z.real);
+        /* split into cases to make sure that the branch cut has the
+           correct continuity on systems with unsigned zeros */
+        if (z.real < 0.) {
+            r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+                               M_LN2*2., z.imag);
+        } else {
+            r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
+                              M_LN2*2., -z.imag);
+        }
+    } else {
+        s1.real = 1.-z.real;
+        s1.imag = -z.imag;
+        s1 = c_sqrt(s1);
+        s2.real = 1.+z.real;
+        s2.imag = z.imag;
+        s2 = c_sqrt(s2);
+        r.real = 2.*atan2(s1.real, s2.real);
+        r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
+    }
+    errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_acos_doc,
@@ -167,26 +167,26 @@
 static Py_complex
 c_acosh(Py_complex z)
 {
-	Py_complex s1, s2, r;
+    Py_complex s1, s2, r;
 
-	SPECIAL_VALUE(z, acosh_special_values);
+    SPECIAL_VALUE(z, acosh_special_values);
 
-	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
-		/* avoid unnecessary overflow for large arguments */
-		r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
-		r.imag = atan2(z.imag, z.real);
-	} else {
-		s1.real = z.real - 1.;
-		s1.imag = z.imag;
-		s1 = c_sqrt(s1);
-		s2.real = z.real + 1.;
-		s2.imag = z.imag;
-		s2 = c_sqrt(s2);
-		r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
-		r.imag = 2.*atan2(s1.imag, s2.real);
-	}
-	errno = 0;
-	return r;
+    if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+        /* avoid unnecessary overflow for large arguments */
+        r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
+        r.imag = atan2(z.imag, z.real);
+    } else {
+        s1.real = z.real - 1.;
+        s1.imag = z.imag;
+        s1 = c_sqrt(s1);
+        s2.real = z.real + 1.;
+        s2.imag = z.imag;
+        s2 = c_sqrt(s2);
+        r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
+        r.imag = 2.*atan2(s1.imag, s2.real);
+    }
+    errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_acosh_doc,
@@ -198,14 +198,14 @@
 static Py_complex
 c_asin(Py_complex z)
 {
-	/* asin(z) = -i asinh(iz) */
-	Py_complex s, r;
-	s.real = -z.imag;
-	s.imag = z.real;
-	s = c_asinh(s);
-	r.real = s.imag;
-	r.imag = -s.real;
-	return r;
+    /* asin(z) = -i asinh(iz) */
+    Py_complex s, r;
+    s.real = -z.imag;
+    s.imag = z.real;
+    s = c_asinh(s);
+    r.real = s.imag;
+    r.imag = -s.real;
+    return r;
 }
 
 PyDoc_STRVAR(c_asin_doc,
@@ -219,31 +219,31 @@
 static Py_complex
 c_asinh(Py_complex z)
 {
-	Py_complex s1, s2, r;
+    Py_complex s1, s2, r;
 
-	SPECIAL_VALUE(z, asinh_special_values);
+    SPECIAL_VALUE(z, asinh_special_values);
 
-	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
-		if (z.imag >= 0.) {
-			r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
-					  M_LN2*2., z.real);
-		} else {
-			r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
-					   M_LN2*2., -z.real);
-		}
-		r.imag = atan2(z.imag, fabs(z.real));
-	} else {
-		s1.real = 1.+z.imag;
-		s1.imag = -z.real;
-		s1 = c_sqrt(s1);
-		s2.real = 1.-z.imag;
-		s2.imag = z.real;
-		s2 = c_sqrt(s2);
-		r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
-		r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
-	}
-	errno = 0;
-	return r;
+    if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+        if (z.imag >= 0.) {
+            r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
+                              M_LN2*2., z.real);
+        } else {
+            r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+                               M_LN2*2., -z.real);
+        }
+        r.imag = atan2(z.imag, fabs(z.real));
+    } else {
+        s1.real = 1.+z.imag;
+        s1.imag = -z.real;
+        s1 = c_sqrt(s1);
+        s2.real = 1.-z.imag;
+        s2.imag = z.real;
+        s2 = c_sqrt(s2);
+        r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
+        r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
+    }
+    errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_asinh_doc,
@@ -255,14 +255,14 @@
 static Py_complex
 c_atan(Py_complex z)
 {
-	/* atan(z) = -i atanh(iz) */
-	Py_complex s, r;
-	s.real = -z.imag;
-	s.imag = z.real;
-	s = c_atanh(s);
-	r.real = s.imag;
-	r.imag = -s.real;
-	return r;
+    /* atan(z) = -i atanh(iz) */
+    Py_complex s, r;
+    s.real = -z.imag;
+    s.imag = z.real;
+    s = c_atanh(s);
+    r.real = s.imag;
+    r.imag = -s.real;
+    return r;
 }
 
 /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
@@ -270,29 +270,29 @@
 static double
 c_atan2(Py_complex z)
 {
-	if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
-		return Py_NAN;
-	if (Py_IS_INFINITY(z.imag)) {
-		if (Py_IS_INFINITY(z.real)) {
-			if (copysign(1., z.real) == 1.)
-				/* atan2(+-inf, +inf) == +-pi/4 */
-				return copysign(0.25*Py_MATH_PI, z.imag);
-			else
-				/* atan2(+-inf, -inf) == +-pi*3/4 */
-				return copysign(0.75*Py_MATH_PI, z.imag);
-		}
-		/* atan2(+-inf, x) == +-pi/2 for finite x */
-		return copysign(0.5*Py_MATH_PI, z.imag);
-	}
-	if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
-		if (copysign(1., z.real) == 1.)
-			/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
-			return copysign(0., z.imag);
-		else
-			/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
-			return copysign(Py_MATH_PI, z.imag);
-	}
-	return atan2(z.imag, z.real);
+    if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
+        return Py_NAN;
+    if (Py_IS_INFINITY(z.imag)) {
+        if (Py_IS_INFINITY(z.real)) {
+            if (copysign(1., z.real) == 1.)
+                /* atan2(+-inf, +inf) == +-pi/4 */
+                return copysign(0.25*Py_MATH_PI, z.imag);
+            else
+                /* atan2(+-inf, -inf) == +-pi*3/4 */
+                return copysign(0.75*Py_MATH_PI, z.imag);
+        }
+        /* atan2(+-inf, x) == +-pi/2 for finite x */
+        return copysign(0.5*Py_MATH_PI, z.imag);
+    }
+    if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
+        if (copysign(1., z.real) == 1.)
+            /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
+            return copysign(0., z.imag);
+        else
+            /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
+            return copysign(Py_MATH_PI, z.imag);
+    }
+    return atan2(z.imag, z.real);
 }
 
 PyDoc_STRVAR(c_atan_doc,
@@ -306,48 +306,48 @@
 static Py_complex
 c_atanh(Py_complex z)
 {
-	Py_complex r;
-	double ay, h;
+    Py_complex r;
+    double ay, h;
 
-	SPECIAL_VALUE(z, atanh_special_values);
+    SPECIAL_VALUE(z, atanh_special_values);
 
-	/* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
-	if (z.real < 0.) {
-		return c_neg(c_atanh(c_neg(z)));
-	}
+    /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
+    if (z.real < 0.) {
+        return c_neg(c_atanh(c_neg(z)));
+    }
 
-	ay = fabs(z.imag);
-	if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
-		/*
-		   if abs(z) is large then we use the approximation
-		   atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
-		   of z.imag)
-		*/
-		h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
-		r.real = z.real/4./h/h;
-		/* the two negations in the next line cancel each other out
-		   except when working with unsigned zeros: they're there to
-		   ensure that the branch cut has the correct continuity on
-		   systems that don't support signed zeros */
-		r.imag = -copysign(Py_MATH_PI/2., -z.imag);
-		errno = 0;
-	} else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
-		/* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
-		if (ay == 0.) {
-			r.real = INF;
-			r.imag = z.imag;
-			errno = EDOM;
-		} else {
-			r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
-			r.imag = copysign(atan2(2., -ay)/2, z.imag);
-			errno = 0;
-		}
-	} else {
-		r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
-		r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
-		errno = 0;
-	}
-	return r;
+    ay = fabs(z.imag);
+    if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
+        /*
+           if abs(z) is large then we use the approximation
+           atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
+           of z.imag)
+        */
+        h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
+        r.real = z.real/4./h/h;
+        /* the two negations in the next line cancel each other out
+           except when working with unsigned zeros: they're there to
+           ensure that the branch cut has the correct continuity on
+           systems that don't support signed zeros */
+        r.imag = -copysign(Py_MATH_PI/2., -z.imag);
+        errno = 0;
+    } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
+        /* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
+        if (ay == 0.) {
+            r.real = INF;
+            r.imag = z.imag;
+            errno = EDOM;
+        } else {
+            r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
+            r.imag = copysign(atan2(2., -ay)/2, z.imag);
+            errno = 0;
+        }
+    } else {
+        r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
+        r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
+        errno = 0;
+    }
+    return r;
 }
 
 PyDoc_STRVAR(c_atanh_doc,
@@ -359,12 +359,12 @@
 static Py_complex
 c_cos(Py_complex z)
 {
-	/* cos(z) = cosh(iz) */
-	Py_complex r;
-	r.real = -z.imag;
-	r.imag = z.real;
-	r = c_cosh(r);
-	return r;
+    /* cos(z) = cosh(iz) */
+    Py_complex r;
+    r.real = -z.imag;
+    r.imag = z.real;
+    r = c_cosh(r);
+    return r;
 }
 
 PyDoc_STRVAR(c_cos_doc,
@@ -379,51 +379,51 @@
 static Py_complex
 c_cosh(Py_complex z)
 {
-	Py_complex r;
-	double x_minus_one;
+    Py_complex r;
+    double x_minus_one;
 
-	/* special treatment for cosh(+/-inf + iy) if y is not a NaN */
-	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
-		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
-		    (z.imag != 0.)) {
-			if (z.real > 0) {
-				r.real = copysign(INF, cos(z.imag));
-				r.imag = copysign(INF, sin(z.imag));
-			}
-			else {
-				r.real = copysign(INF, cos(z.imag));
-				r.imag = -copysign(INF, sin(z.imag));
-			}
-		}
-		else {
-			r = cosh_special_values[special_type(z.real)]
-				               [special_type(z.imag)];
-		}
-		/* need to set errno = EDOM if y is +/- infinity and x is not
-		   a NaN */
-		if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
-			errno = EDOM;
-		else
-			errno = 0;
-		return r;
-	}
+    /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
+    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
+            (z.imag != 0.)) {
+            if (z.real > 0) {
+                r.real = copysign(INF, cos(z.imag));
+                r.imag = copysign(INF, sin(z.imag));
+            }
+            else {
+                r.real = copysign(INF, cos(z.imag));
+                r.imag = -copysign(INF, sin(z.imag));
+            }
+        }
+        else {
+            r = cosh_special_values[special_type(z.real)]
+                                   [special_type(z.imag)];
+        }
+        /* need to set errno = EDOM if y is +/- infinity and x is not
+           a NaN */
+        if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+            errno = EDOM;
+        else
+            errno = 0;
+        return r;
+    }
 
-	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
-		/* deal correctly with cases where cosh(z.real) overflows but
-		   cosh(z) does not. */
-		x_minus_one = z.real - copysign(1., z.real);
-		r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
-		r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
-	} else {
-		r.real = cos(z.imag) * cosh(z.real);
-		r.imag = sin(z.imag) * sinh(z.real);
-	}
-	/* detect overflow, and set errno accordingly */
-	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
-		errno = ERANGE;
-	else
-		errno = 0;
-	return r;
+    if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+        /* deal correctly with cases where cosh(z.real) overflows but
+           cosh(z) does not. */
+        x_minus_one = z.real - copysign(1., z.real);
+        r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+        r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+    } else {
+        r.real = cos(z.imag) * cosh(z.real);
+        r.imag = sin(z.imag) * sinh(z.real);
+    }
+    /* detect overflow, and set errno accordingly */
+    if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+        errno = ERANGE;
+    else
+        errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_cosh_doc,
@@ -439,51 +439,51 @@
 static Py_complex
 c_exp(Py_complex z)
 {
-	Py_complex r;
-	double l;
+    Py_complex r;
+    double l;
 
-	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
-		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
-		    && (z.imag != 0.)) {
-			if (z.real > 0) {
-				r.real = copysign(INF, cos(z.imag));
-				r.imag = copysign(INF, sin(z.imag));
-			}
-			else {
-				r.real = copysign(0., cos(z.imag));
-				r.imag = copysign(0., sin(z.imag));
-			}
-		}
-		else {
-			r = exp_special_values[special_type(z.real)]
-				              [special_type(z.imag)];
-		}
-		/* need to set errno = EDOM if y is +/- infinity and x is not
-		   a NaN and not -infinity */
-		if (Py_IS_INFINITY(z.imag) &&
-		    (Py_IS_FINITE(z.real) ||
-		     (Py_IS_INFINITY(z.real) && z.real > 0)))
-			errno = EDOM;
-		else
-			errno = 0;
-		return r;
-	}
+    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+            && (z.imag != 0.)) {
+            if (z.real > 0) {
+                r.real = copysign(INF, cos(z.imag));
+                r.imag = copysign(INF, sin(z.imag));
+            }
+            else {
+                r.real = copysign(0., cos(z.imag));
+                r.imag = copysign(0., sin(z.imag));
+            }
+        }
+        else {
+            r = exp_special_values[special_type(z.real)]
+                                  [special_type(z.imag)];
+        }
+        /* need to set errno = EDOM if y is +/- infinity and x is not
+           a NaN and not -infinity */
+        if (Py_IS_INFINITY(z.imag) &&
+            (Py_IS_FINITE(z.real) ||
+             (Py_IS_INFINITY(z.real) && z.real > 0)))
+            errno = EDOM;
+        else
+            errno = 0;
+        return r;
+    }
 
-	if (z.real > CM_LOG_LARGE_DOUBLE) {
-		l = exp(z.real-1.);
-		r.real = l*cos(z.imag)*Py_MATH_E;
-		r.imag = l*sin(z.imag)*Py_MATH_E;
-	} else {
-		l = exp(z.real);
-		r.real = l*cos(z.imag);
-		r.imag = l*sin(z.imag);
-	}
-	/* detect overflow, and set errno accordingly */
-	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
-		errno = ERANGE;
-	else
-		errno = 0;
-	return r;
+    if (z.real > CM_LOG_LARGE_DOUBLE) {
+        l = exp(z.real-1.);
+        r.real = l*cos(z.imag)*Py_MATH_E;
+        r.imag = l*sin(z.imag)*Py_MATH_E;
+    } else {
+        l = exp(z.real);
+        r.real = l*cos(z.imag);
+        r.imag = l*sin(z.imag);
+    }
+    /* detect overflow, and set errno accordingly */
+    if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+        errno = ERANGE;
+    else
+        errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_exp_doc,
@@ -497,85 +497,85 @@
 static Py_complex
 c_log(Py_complex z)
 {
-	/*
-	   The usual formula for the real part is log(hypot(z.real, z.imag)).
-	   There are four situations where this formula is potentially
-	   problematic:
+    /*
+       The usual formula for the real part is log(hypot(z.real, z.imag)).
+       There are four situations where this formula is potentially
+       problematic:
 
-	   (1) the absolute value of z is subnormal.  Then hypot is subnormal,
-	   so has fewer than the usual number of bits of accuracy, hence may
-	   have large relative error.  This then gives a large absolute error
-	   in the log.  This can be solved by rescaling z by a suitable power
-	   of 2.
+       (1) the absolute value of z is subnormal.  Then hypot is subnormal,
+       so has fewer than the usual number of bits of accuracy, hence may
+       have large relative error.  This then gives a large absolute error
+       in the log.  This can be solved by rescaling z by a suitable power
+       of 2.
 
-	   (2) the absolute value of z is greater than DBL_MAX (e.g. when both
-	   z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
-	   Again, rescaling solves this.
+       (2) the absolute value of z is greater than DBL_MAX (e.g. when both
+       z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
+       Again, rescaling solves this.
 
-	   (3) the absolute value of z is close to 1.  In this case it's
-	   difficult to achieve good accuracy, at least in part because a
-	   change of 1ulp in the real or imaginary part of z can result in a
-	   change of billions of ulps in the correctly rounded answer.
+       (3) the absolute value of z is close to 1.  In this case it's
+       difficult to achieve good accuracy, at least in part because a
+       change of 1ulp in the real or imaginary part of z can result in a
+       change of billions of ulps in the correctly rounded answer.
 
-	   (4) z = 0.  The simplest thing to do here is to call the
-	   floating-point log with an argument of 0, and let its behaviour
-	   (returning -infinity, signaling a floating-point exception, setting
-	   errno, or whatever) determine that of c_log.  So the usual formula
-	   is fine here.
+       (4) z = 0.  The simplest thing to do here is to call the
+       floating-point log with an argument of 0, and let its behaviour
+       (returning -infinity, signaling a floating-point exception, setting
+       errno, or whatever) determine that of c_log.  So the usual formula
+       is fine here.
 
-	 */
+     */
 
-	Py_complex r;
-	double ax, ay, am, an, h;
+    Py_complex r;
+    double ax, ay, am, an, h;
 
-	SPECIAL_VALUE(z, log_special_values);
+    SPECIAL_VALUE(z, log_special_values);
 
-	ax = fabs(z.real);
-	ay = fabs(z.imag);
+    ax = fabs(z.real);
+    ay = fabs(z.imag);
 
-	if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
-		r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
-	} else if (ax < DBL_MIN && ay < DBL_MIN) {
-		if (ax > 0. || ay > 0.) {
-			/* catch cases where hypot(ax, ay) is subnormal */
-			r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
-				 ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
-		}
-		else {
-			/* log(+/-0. +/- 0i) */
-			r.real = -INF;
-			r.imag = atan2(z.imag, z.real);
-			errno = EDOM;
-			return r;
-		}
-	} else {
-		h = hypot(ax, ay);
-		if (0.71 <= h && h <= 1.73) {
-			am = ax > ay ? ax : ay;  /* max(ax, ay) */
-			an = ax > ay ? ay : ax;  /* min(ax, ay) */
-			r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
-		} else {
-			r.real = log(h);
-		}
-	}
-	r.imag = atan2(z.imag, z.real);
-	errno = 0;
-	return r;
+    if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
+        r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
+    } else if (ax < DBL_MIN && ay < DBL_MIN) {
+        if (ax > 0. || ay > 0.) {
+            /* catch cases where hypot(ax, ay) is subnormal */
+            r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
+                     ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
+        }
+        else {
+            /* log(+/-0. +/- 0i) */
+            r.real = -INF;
+            r.imag = atan2(z.imag, z.real);
+            errno = EDOM;
+            return r;
+        }
+    } else {
+        h = hypot(ax, ay);
+        if (0.71 <= h && h <= 1.73) {
+            am = ax > ay ? ax : ay;  /* max(ax, ay) */
+            an = ax > ay ? ay : ax;  /* min(ax, ay) */
+            r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
+        } else {
+            r.real = log(h);
+        }
+    }
+    r.imag = atan2(z.imag, z.real);
+    errno = 0;
+    return r;
 }
 
 
 static Py_complex
 c_log10(Py_complex z)
 {
-	Py_complex r;
-	int errno_save;
+    Py_complex r;
+    int errno_save;
 
-	r = c_log(z);
-	errno_save = errno; /* just in case the divisions affect errno */
-	r.real = r.real / M_LN10;
-	r.imag = r.imag / M_LN10;
-	errno = errno_save;
-	return r;
+    r = c_log(z);
+    errno_save = errno; /* just in case the divisions affect errno */
+    r.real = r.real / M_LN10;
+    r.imag = r.imag / M_LN10;
+    errno = errno_save;
+    return r;
 }
 
 PyDoc_STRVAR(c_log10_doc,
@@ -587,14 +587,14 @@
 static Py_complex
 c_sin(Py_complex z)
 {
-	/* sin(z) = -i sin(iz) */
-	Py_complex s, r;
-	s.real = -z.imag;
-	s.imag = z.real;
-	s = c_sinh(s);
-	r.real = s.imag;
-	r.imag = -s.real;
-	return r;
+    /* sin(z) = -i sin(iz) */
+    Py_complex s, r;
+    s.real = -z.imag;
+    s.imag = z.real;
+    s = c_sinh(s);
+    r.real = s.imag;
+    r.imag = -s.real;
+    return r;
 }
 
 PyDoc_STRVAR(c_sin_doc,
@@ -609,50 +609,50 @@
 static Py_complex
 c_sinh(Py_complex z)
 {
-	Py_complex r;
-	double x_minus_one;
+    Py_complex r;
+    double x_minus_one;
 
-	/* special treatment for sinh(+/-inf + iy) if y is finite and
-	   nonzero */
-	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
-		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
-		    && (z.imag != 0.)) {
-			if (z.real > 0) {
-				r.real = copysign(INF, cos(z.imag));
-				r.imag = copysign(INF, sin(z.imag));
-			}
-			else {
-				r.real = -copysign(INF, cos(z.imag));
-				r.imag = copysign(INF, sin(z.imag));
-			}
-		}
-		else {
-			r = sinh_special_values[special_type(z.real)]
-				               [special_type(z.imag)];
-		}
-		/* need to set errno = EDOM if y is +/- infinity and x is not
-		   a NaN */
-		if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
-			errno = EDOM;
-		else
-			errno = 0;
-		return r;
-	}
+    /* special treatment for sinh(+/-inf + iy) if y is finite and
+       nonzero */
+    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+            && (z.imag != 0.)) {
+            if (z.real > 0) {
+                r.real = copysign(INF, cos(z.imag));
+                r.imag = copysign(INF, sin(z.imag));
+            }
+            else {
+                r.real = -copysign(INF, cos(z.imag));
+                r.imag = copysign(INF, sin(z.imag));
+            }
+        }
+        else {
+            r = sinh_special_values[special_type(z.real)]
+                                   [special_type(z.imag)];
+        }
+        /* need to set errno = EDOM if y is +/- infinity and x is not
+           a NaN */
+        if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+            errno = EDOM;
+        else
+            errno = 0;
+        return r;
+    }
 
-	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
-		x_minus_one = z.real - copysign(1., z.real);
-		r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
-		r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
-	} else {
-		r.real = cos(z.imag) * sinh(z.real);
-		r.imag = sin(z.imag) * cosh(z.real);
-	}
-	/* detect overflow, and set errno accordingly */
-	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
-		errno = ERANGE;
-	else
-		errno = 0;
-	return r;
+    if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+        x_minus_one = z.real - copysign(1., z.real);
+        r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+        r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+    } else {
+        r.real = cos(z.imag) * sinh(z.real);
+        r.imag = sin(z.imag) * cosh(z.real);
+    }
+    /* detect overflow, and set errno accordingly */
+    if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+        errno = ERANGE;
+    else
+        errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_sinh_doc,
@@ -666,68 +666,68 @@
 static Py_complex
 c_sqrt(Py_complex z)
 {
-	/*
-	   Method: use symmetries to reduce to the case when x = z.real and y
-	   = z.imag are nonnegative.  Then the real part of the result is
-	   given by
+    /*
+       Method: use symmetries to reduce to the case when x = z.real and y
+       = z.imag are nonnegative.  Then the real part of the result is
+       given by
 
-	     s = sqrt((x + hypot(x, y))/2)
+         s = sqrt((x + hypot(x, y))/2)
 
-	   and the imaginary part is
+       and the imaginary part is
 
-	     d = (y/2)/s
+         d = (y/2)/s
 
-	   If either x or y is very large then there's a risk of overflow in
-	   computation of the expression x + hypot(x, y).  We can avoid this
-	   by rewriting the formula for s as:
+       If either x or y is very large then there's a risk of overflow in
+       computation of the expression x + hypot(x, y).  We can avoid this
+       by rewriting the formula for s as:
 
-	     s = 2*sqrt(x/8 + hypot(x/8, y/8))
+         s = 2*sqrt(x/8 + hypot(x/8, y/8))
 
-	   This costs us two extra multiplications/divisions, but avoids the
-	   overhead of checking for x and y large.
+       This costs us two extra multiplications/divisions, but avoids the
+       overhead of checking for x and y large.
 
-	   If both x and y are subnormal then hypot(x, y) may also be
-	   subnormal, so will lack full precision.  We solve this by rescaling
-	   x and y by a sufficiently large power of 2 to ensure that x and y
-	   are normal.
-	*/
+       If both x and y are subnormal then hypot(x, y) may also be
+       subnormal, so will lack full precision.  We solve this by rescaling
+       x and y by a sufficiently large power of 2 to ensure that x and y
+       are normal.
+    */
 
 
-	Py_complex r;
-	double s,d;
-	double ax, ay;
+    Py_complex r;
+    double s,d;
+    double ax, ay;
 
-	SPECIAL_VALUE(z, sqrt_special_values);
+    SPECIAL_VALUE(z, sqrt_special_values);
 
-	if (z.real == 0. && z.imag == 0.) {
-		r.real = 0.;
-		r.imag = z.imag;
-		return r;
-	}
+    if (z.real == 0. && z.imag == 0.) {
+        r.real = 0.;
+        r.imag = z.imag;
+        return r;
+    }
 
-	ax = fabs(z.real);
-	ay = fabs(z.imag);
+    ax = fabs(z.real);
+    ay = fabs(z.imag);
 
-	if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
-		/* here we catch cases where hypot(ax, ay) is subnormal */
-		ax = ldexp(ax, CM_SCALE_UP);
-		s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
-			  CM_SCALE_DOWN);
-	} else {
-		ax /= 8.;
-		s = 2.*sqrt(ax + hypot(ax, ay/8.));
-	}
-	d = ay/(2.*s);
+    if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
+        /* here we catch cases where hypot(ax, ay) is subnormal */
+        ax = ldexp(ax, CM_SCALE_UP);
+        s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
+                  CM_SCALE_DOWN);
+    } else {
+        ax /= 8.;
+        s = 2.*sqrt(ax + hypot(ax, ay/8.));
+    }
+    d = ay/(2.*s);
 
-	if (z.real >= 0.) {
-		r.real = s;
-		r.imag = copysign(d, z.imag);
-	} else {
-		r.real = d;
-		r.imag = copysign(s, z.imag);
-	}
-	errno = 0;
-	return r;
+    if (z.real >= 0.) {
+        r.real = s;
+        r.imag = copysign(d, z.imag);
+    } else {
+        r.real = d;
+        r.imag = copysign(s, z.imag);
+    }
+    errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_sqrt_doc,
@@ -739,14 +739,14 @@
 static Py_complex
 c_tan(Py_complex z)
 {
-	/* tan(z) = -i tanh(iz) */
-	Py_complex s, r;
-	s.real = -z.imag;
-	s.imag = z.real;
-	s = c_tanh(s);
-	r.real = s.imag;
-	r.imag = -s.real;
-	return r;
+    /* tan(z) = -i tanh(iz) */
+    Py_complex s, r;
+    s.real = -z.imag;
+    s.imag = z.real;
+    s = c_tanh(s);
+    r.real = s.imag;
+    r.imag = -s.real;
+    return r;
 }
 
 PyDoc_STRVAR(c_tan_doc,
@@ -761,65 +761,65 @@
 static Py_complex
 c_tanh(Py_complex z)
 {
-	/* Formula:
+    /* Formula:
 
-	   tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
-	   (1+tan(y)^2 tanh(x)^2)
+       tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
+       (1+tan(y)^2 tanh(x)^2)
 
-	   To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
-	   as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
-	   by 4 exp(-2*x) instead, to avoid possible overflow in the
-	   computation of cosh(x).
+       To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
+       as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
+       by 4 exp(-2*x) instead, to avoid possible overflow in the
+       computation of cosh(x).
 
-	*/
+    */
 
-	Py_complex r;
-	double tx, ty, cx, txty, denom;
+    Py_complex r;
+    double tx, ty, cx, txty, denom;
 
-	/* special treatment for tanh(+/-inf + iy) if y is finite and
-	   nonzero */
-	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
-		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
-		    && (z.imag != 0.)) {
-			if (z.real > 0) {
-				r.real = 1.0;
-				r.imag = copysign(0.,
-						  2.*sin(z.imag)*cos(z.imag));
-			}
-			else {
-				r.real = -1.0;
-				r.imag = copysign(0.,
-						  2.*sin(z.imag)*cos(z.imag));
-			}
-		}
-		else {
-			r = tanh_special_values[special_type(z.real)]
-				               [special_type(z.imag)];
-		}
-		/* need to set errno = EDOM if z.imag is +/-infinity and
-		   z.real is finite */
-		if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
-			errno = EDOM;
-		else
-			errno = 0;
-		return r;
-	}
+    /* special treatment for tanh(+/-inf + iy) if y is finite and
+       nonzero */
+    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+            && (z.imag != 0.)) {
+            if (z.real > 0) {
+                r.real = 1.0;
+                r.imag = copysign(0.,
+                                  2.*sin(z.imag)*cos(z.imag));
+            }
+            else {
+                r.real = -1.0;
+                r.imag = copysign(0.,
+                                  2.*sin(z.imag)*cos(z.imag));
+            }
+        }
+        else {
+            r = tanh_special_values[special_type(z.real)]
+                                   [special_type(z.imag)];
+        }
+        /* need to set errno = EDOM if z.imag is +/-infinity and
+           z.real is finite */
+        if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
+            errno = EDOM;
+        else
+            errno = 0;
+        return r;
+    }
 
-	/* danger of overflow in 2.*z.imag !*/
-	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
-		r.real = copysign(1., z.real);
-		r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
-	} else {
-		tx = tanh(z.real);
-		ty = tan(z.imag);
-		cx = 1./cosh(z.real);
-		txty = tx*ty;
-		denom = 1. + txty*txty;
-		r.real = tx*(1.+ty*ty)/denom;
-		r.imag = ((ty/denom)*cx)*cx;
-	}
-	errno = 0;
-	return r;
+    /* danger of overflow in 2.*z.imag !*/
+    if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+        r.real = copysign(1., z.real);
+        r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
+    } else {
+        tx = tanh(z.real);
+        ty = tan(z.imag);
+        cx = 1./cosh(z.real);
+        txty = tx*ty;
+        denom = 1. + txty*txty;
+        r.real = tx*(1.+ty*ty)/denom;
+        r.imag = ((ty/denom)*cx)*cx;
+    }
+    errno = 0;
+    return r;
 }
 
 PyDoc_STRVAR(c_tanh_doc,
@@ -831,23 +831,23 @@
 static PyObject *
 cmath_log(PyObject *self, PyObject *args)
 {
-	Py_complex x;
-	Py_complex y;
+    Py_complex x;
+    Py_complex y;
 
-	if (!PyArg_ParseTuple(args, "D|D", &x, &y))
-		return NULL;
+    if (!PyArg_ParseTuple(args, "D|D", &x, &y))
+        return NULL;
 
-	errno = 0;
-	PyFPE_START_PROTECT("complex function", return 0)
-	x = c_log(x);
-	if (PyTuple_GET_SIZE(args) == 2) {
-		y = c_log(y);
-		x = c_quot(x, y);
-	}
-	PyFPE_END_PROTECT(x)
-	if (errno != 0)
-		return math_error();
-	return PyComplex_FromCComplex(x);
+    errno = 0;
+    PyFPE_START_PROTECT("complex function", return 0)
+    x = c_log(x);
+    if (PyTuple_GET_SIZE(args) == 2) {
+        y = c_log(y);
+        x = c_quot(x, y);
+    }
+    PyFPE_END_PROTECT(x)
+    if (errno != 0)
+        return math_error();
+    return PyComplex_FromCComplex(x);
 }
 
 PyDoc_STRVAR(cmath_log_doc,
@@ -860,42 +860,42 @@
 static PyObject *
 math_error(void)
 {
-	if (errno == EDOM)
-		PyErr_SetString(PyExc_ValueError, "math domain error");
-	else if (errno == ERANGE)
-		PyErr_SetString(PyExc_OverflowError, "math range error");
-	else    /* Unexpected math error */
-		PyErr_SetFromErrno(PyExc_ValueError);
-	return NULL;
+    if (errno == EDOM)
+        PyErr_SetString(PyExc_ValueError, "math domain error");
+    else if (errno == ERANGE)
+        PyErr_SetString(PyExc_OverflowError, "math range error");
+    else    /* Unexpected math error */
+        PyErr_SetFromErrno(PyExc_ValueError);
+    return NULL;
 }
 
 static PyObject *
 math_1(PyObject *args, Py_complex (*func)(Py_complex))
 {
-	Py_complex x,r ;
-	if (!PyArg_ParseTuple(args, "D", &x))
-		return NULL;
-	errno = 0;
-	PyFPE_START_PROTECT("complex function", return 0);
-	r = (*func)(x);
-	PyFPE_END_PROTECT(r);
-	if (errno == EDOM) {
-		PyErr_SetString(PyExc_ValueError, "math domain error");
-		return NULL;
-	}
-	else if (errno == ERANGE) {
-		PyErr_SetString(PyExc_OverflowError, "math range error");
-		return NULL;
-	}
-	else {
-		return PyComplex_FromCComplex(r);
-	}
+    Py_complex x,r ;
+    if (!PyArg_ParseTuple(args, "D", &x))
+        return NULL;
+    errno = 0;
+    PyFPE_START_PROTECT("complex function", return 0);
+    r = (*func)(x);
+    PyFPE_END_PROTECT(r);
+    if (errno == EDOM) {
+        PyErr_SetString(PyExc_ValueError, "math domain error");
+        return NULL;
+    }
+    else if (errno == ERANGE) {
+        PyErr_SetString(PyExc_OverflowError, "math range error");
+        return NULL;
+    }
+    else {
+        return PyComplex_FromCComplex(r);
+    }
 }
 
 #define FUNC1(stubname, func) \
-	static PyObject * stubname(PyObject *self, PyObject *args) { \
-		return math_1(args, func); \
-	}
+    static PyObject * stubname(PyObject *self, PyObject *args) { \
+        return math_1(args, func); \
+    }
 
 FUNC1(cmath_acos, c_acos)
 FUNC1(cmath_acosh, c_acosh)
@@ -916,18 +916,18 @@
 static PyObject *
 cmath_phase(PyObject *self, PyObject *args)
 {
-	Py_complex z;
-	double phi;
-	if (!PyArg_ParseTuple(args, "D:phase", &z))
-		return NULL;
-	errno = 0;
-	PyFPE_START_PROTECT("arg function", return 0)
-	phi = c_atan2(z);
-	PyFPE_END_PROTECT(phi)
-	if (errno != 0)
-		return math_error();
-	else
-		return PyFloat_FromDouble(phi);
+    Py_complex z;
+    double phi;
+    if (!PyArg_ParseTuple(args, "D:phase", &z))
+        return NULL;
+    errno = 0;
+    PyFPE_START_PROTECT("arg function", return 0)
+    phi = c_atan2(z);
+    PyFPE_END_PROTECT(phi)
+    if (errno != 0)
+        return math_error();
+    else
+        return PyFloat_FromDouble(phi);
 }
 
 PyDoc_STRVAR(cmath_phase_doc,
@@ -937,18 +937,18 @@
 static PyObject *
 cmath_polar(PyObject *self, PyObject *args)
 {
-	Py_complex z;
-	double r, phi;
-	if (!PyArg_ParseTuple(args, "D:polar", &z))
-		return NULL;
-	PyFPE_START_PROTECT("polar function", return 0)
-	phi = c_atan2(z); /* should not cause any exception */
-	r = c_abs(z); /* sets errno to ERANGE on overflow;  otherwise 0 */
-	PyFPE_END_PROTECT(r)
-	if (errno != 0)
-		return math_error();
-	else
-		return Py_BuildValue("dd", r, phi);
+    Py_complex z;
+    double r, phi;
+    if (!PyArg_ParseTuple(args, "D:polar", &z))
+        return NULL;
+    PyFPE_START_PROTECT("polar function", return 0)
+    phi = c_atan2(z); /* should not cause any exception */
+    r = c_abs(z); /* sets errno to ERANGE on overflow;  otherwise 0 */
+    PyFPE_END_PROTECT(r)
+    if (errno != 0)
+        return math_error();
+    else
+        return Py_BuildValue("dd", r, phi);
 }
 
 PyDoc_STRVAR(cmath_polar_doc,
@@ -972,51 +972,51 @@
 static PyObject *
 cmath_rect(PyObject *self, PyObject *args)
 {
-	Py_complex z;
-	double r, phi;
-	if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
-		return NULL;
-	errno = 0;
-	PyFPE_START_PROTECT("rect function", return 0)
+    Py_complex z;
+    double r, phi;
+    if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
+        return NULL;
+    errno = 0;
+    PyFPE_START_PROTECT("rect function", return 0)
 
-	/* deal with special values */
-	if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
-		/* if r is +/-infinity and phi is finite but nonzero then
-		   result is (+-INF +-INF i), but we need to compute cos(phi)
-		   and sin(phi) to figure out the signs. */
-		if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
-					  && (phi != 0.))) {
-			if (r > 0) {
-				z.real = copysign(INF, cos(phi));
-				z.imag = copysign(INF, sin(phi));
-			}
-			else {
-				z.real = -copysign(INF, cos(phi));
-				z.imag = -copysign(INF, sin(phi));
-			}
-		}
-		else {
-			z = rect_special_values[special_type(r)]
-				               [special_type(phi)];
-		}
-		/* need to set errno = EDOM if r is a nonzero number and phi
-		   is infinite */
-		if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
-			errno = EDOM;
-		else
-			errno = 0;
-	}
-	else {
-		z.real = r * cos(phi);
-		z.imag = r * sin(phi);
-		errno = 0;
-	}
+    /* deal with special values */
+    if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
+        /* if r is +/-infinity and phi is finite but nonzero then
+           result is (+-INF +-INF i), but we need to compute cos(phi)
+           and sin(phi) to figure out the signs. */
+        if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
+                                  && (phi != 0.))) {
+            if (r > 0) {
+                z.real = copysign(INF, cos(phi));
+                z.imag = copysign(INF, sin(phi));
+            }
+            else {
+                z.real = -copysign(INF, cos(phi));
+                z.imag = -copysign(INF, sin(phi));
+            }
+        }
+        else {
+            z = rect_special_values[special_type(r)]
+                                   [special_type(phi)];
+        }
+        /* need to set errno = EDOM if r is a nonzero number and phi
+           is infinite */
+        if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
+            errno = EDOM;
+        else
+            errno = 0;
+    }
+    else {
+        z.real = r * cos(phi);
+        z.imag = r * sin(phi);
+        errno = 0;
+    }
 
-	PyFPE_END_PROTECT(z)
-	if (errno != 0)
-		return math_error();
-	else
-		return PyComplex_FromCComplex(z);
+    PyFPE_END_PROTECT(z)
+    if (errno != 0)
+        return math_error();
+    else
+        return PyComplex_FromCComplex(z);
 }
 
 PyDoc_STRVAR(cmath_rect_doc,
@@ -1026,10 +1026,10 @@
 static PyObject *
 cmath_isnan(PyObject *self, PyObject *args)
 {
-	Py_complex z;
-	if (!PyArg_ParseTuple(args, "D:isnan", &z))
-		return NULL;
-	return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
+    Py_complex z;
+    if (!PyArg_ParseTuple(args, "D:isnan", &z))
+        return NULL;
+    return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
 }
 
 PyDoc_STRVAR(cmath_isnan_doc,
@@ -1039,11 +1039,11 @@
 static PyObject *
 cmath_isinf(PyObject *self, PyObject *args)
 {
-	Py_complex z;
-	if (!PyArg_ParseTuple(args, "D:isnan", &z))
-		return NULL;
-	return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
-			       Py_IS_INFINITY(z.imag));
+    Py_complex z;
+    if (!PyArg_ParseTuple(args, "D:isnan", &z))
+        return NULL;
+    return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
+                           Py_IS_INFINITY(z.imag));
 }
 
 PyDoc_STRVAR(cmath_isinf_doc,
@@ -1056,155 +1056,155 @@
 "functions for complex numbers.");
 
 static PyMethodDef cmath_methods[] = {
-	{"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
-	{"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
-	{"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
-	{"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
-	{"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
-	{"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
-	{"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
-	{"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
-	{"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
-	{"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc},
-	{"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc},
-	{"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
-	{"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
-	{"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc},
-	{"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc},
-	{"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc},
-	{"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
-	{"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
-	{"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
-	{"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
-	{"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
-	{NULL,		NULL}		/* sentinel */
+    {"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
+    {"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
+    {"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
+    {"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
+    {"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
+    {"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
+    {"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
+    {"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
+    {"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
+    {"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc},
+    {"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc},
+    {"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
+    {"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
+    {"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc},
+    {"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc},
+    {"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc},
+    {"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
+    {"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
+    {"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
+    {"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
+    {"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
+    {NULL,              NULL}           /* sentinel */
 };
 
 PyMODINIT_FUNC
 initcmath(void)
 {
-	PyObject *m;
+    PyObject *m;
 
-	m = Py_InitModule3("cmath", cmath_methods, module_doc);
-	if (m == NULL)
-		return;
+    m = Py_InitModule3("cmath", cmath_methods, module_doc);
+    if (m == NULL)
+        return;
 
-	PyModule_AddObject(m, "pi",
-                           PyFloat_FromDouble(Py_MATH_PI));
-	PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
+    PyModule_AddObject(m, "pi",
+                       PyFloat_FromDouble(Py_MATH_PI));
+    PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
 
-	/* initialize special value tables */
+    /* initialize special value tables */
 
 #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
 #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
 
-	INIT_SPECIAL_VALUES(acos_special_values, {
-	  C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
-	  C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
-	  C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
-	  C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
-	  C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
-	  C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
-	  C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
-	})
+    INIT_SPECIAL_VALUES(acos_special_values, {
+      C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
+      C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
+      C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
+      C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
+      C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
+      C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
+      C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(acosh_special_values, {
-	  C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
-	  C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
-	  C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
-	  C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
-	  C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
-	  C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
-	  C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
-	})
+    INIT_SPECIAL_VALUES(acosh_special_values, {
+      C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
+      C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
+      C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
+      C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
+      C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
+      C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
+      C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(asinh_special_values, {
-	  C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
-	  C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
-	  C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
-	  C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
-	  C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
-	  C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
-	  C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
-	})
+    INIT_SPECIAL_VALUES(asinh_special_values, {
+      C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
+      C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
+      C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
+      C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
+      C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
+      C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
+      C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(atanh_special_values, {
-	  C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
-	  C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
-	  C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
-	  C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
-	  C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
-	  C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
-	  C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
-	})
+    INIT_SPECIAL_VALUES(atanh_special_values, {
+      C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
+      C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
+      C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
+      C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
+      C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
+      C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
+      C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(cosh_special_values, {
-	  C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
-	  C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
-	  C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
-	  C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
-	  C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
-	})
+    INIT_SPECIAL_VALUES(cosh_special_values, {
+      C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
+      C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
+      C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
+      C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
+      C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(exp_special_values, {
-	  C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
-	  C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
-	  C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
-	  C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
-	  C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
-	  C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
-	})
+    INIT_SPECIAL_VALUES(exp_special_values, {
+      C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
+      C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
+      C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
+      C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
+      C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
+      C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(log_special_values, {
-	  C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
-	  C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
-	  C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
-	  C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
-	  C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
-	  C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
-	  C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
-	})
+    INIT_SPECIAL_VALUES(log_special_values, {
+      C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
+      C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
+      C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
+      C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
+      C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
+      C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
+      C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(sinh_special_values, {
-	  C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
-	  C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
-	  C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
-	  C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
-	  C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
-	})
+    INIT_SPECIAL_VALUES(sinh_special_values, {
+      C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
+      C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
+      C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
+      C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
+      C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(sqrt_special_values, {
-	  C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
-	  C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
-	  C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
-	  C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
-	  C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
-	  C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
-	  C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
-	})
+    INIT_SPECIAL_VALUES(sqrt_special_values, {
+      C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
+      C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
+      C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
+      C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
+      C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
+      C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
+      C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(tanh_special_values, {
-	  C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
-	  C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
-	  C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
-	  C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
-	  C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
-	  C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
-	  C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
-	})
+    INIT_SPECIAL_VALUES(tanh_special_values, {
+      C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
+      C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
+      C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
+      C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
+      C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
+      C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
+      C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
+    })
 
-	INIT_SPECIAL_VALUES(rect_special_values, {
-	  C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
-	  C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
-	  C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
-	  C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
-	  C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
-	  C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
-	})
+    INIT_SPECIAL_VALUES(rect_special_values, {
+      C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
+      C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
+      C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
+      C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
+      C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
+      C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
+    })
 }