|  | 
 | /* Complex object implementation */ | 
 |  | 
 | /* Borrows heavily from floatobject.c */ | 
 |  | 
 | /* Submitted by Jim Hugunin */ | 
 |  | 
 | #ifndef WITHOUT_COMPLEX | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | /* Precisions used by repr() and str(), respectively. | 
 |  | 
 |    The repr() precision (17 significant decimal digits) is the minimal number | 
 |    that is guaranteed to have enough precision so that if the number is read | 
 |    back in the exact same binary value is recreated.  This is true for IEEE | 
 |    floating point by design, and also happens to work for all other modern | 
 |    hardware. | 
 |  | 
 |    The str() precision is chosen so that in most cases, the rounding noise | 
 |    created by various operations is suppressed, while giving plenty of | 
 |    precision for practical use. | 
 | */ | 
 |  | 
 | #define PREC_REPR	17 | 
 | #define PREC_STR	12 | 
 |  | 
 | /* elementary operations on complex numbers */ | 
 |  | 
 | static Py_complex c_1 = {1., 0.}; | 
 |  | 
 | Py_complex | 
 | c_sum(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = a.real + b.real; | 
 | 	r.imag = a.imag + b.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_diff(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = a.real - b.real; | 
 | 	r.imag = a.imag - b.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_neg(Py_complex a) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = -a.real; | 
 | 	r.imag = -a.imag; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_prod(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	r.real = a.real*b.real - a.imag*b.imag; | 
 | 	r.imag = a.real*b.imag + a.imag*b.real; | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_quot(Py_complex a, Py_complex b) | 
 | { | 
 | 	/****************************************************************** | 
 | 	This was the original algorithm.  It's grossly prone to spurious | 
 | 	overflow and underflow errors.  It also merrily divides by 0 despite | 
 | 	checking for that(!).  The code still serves a doc purpose here, as | 
 | 	the algorithm following is a simple by-cases transformation of this | 
 | 	one: | 
 |  | 
 | 	Py_complex r; | 
 | 	double d = b.real*b.real + b.imag*b.imag; | 
 | 	if (d == 0.) | 
 | 		errno = EDOM; | 
 | 	r.real = (a.real*b.real + a.imag*b.imag)/d; | 
 | 	r.imag = (a.imag*b.real - a.real*b.imag)/d; | 
 | 	return r; | 
 | 	******************************************************************/ | 
 |  | 
 | 	/* This algorithm is better, and is pretty obvious:  first divide the | 
 | 	 * numerators and denominator by whichever of {b.real, b.imag} has | 
 | 	 * larger magnitude.  The earliest reference I found was to CACM | 
 | 	 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford | 
 | 	 * University).  As usual, though, we're still ignoring all IEEE | 
 | 	 * endcases. | 
 | 	 */ | 
 | 	 Py_complex r;	/* the result */ | 
 |  	 const double abs_breal = b.real < 0 ? -b.real : b.real; | 
 | 	 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; | 
 |  | 
 | 	 if (abs_breal >= abs_bimag) { | 
 |  		/* divide tops and bottom by b.real */ | 
 | 	 	if (abs_breal == 0.0) { | 
 | 	 		errno = EDOM; | 
 | 	 		r.real = r.imag = 0.0; | 
 | 	 	} | 
 | 	 	else { | 
 | 	 		const double ratio = b.imag / b.real; | 
 | 	 		const double denom = b.real + b.imag * ratio; | 
 | 	 		r.real = (a.real + a.imag * ratio) / denom; | 
 | 	 		r.imag = (a.imag - a.real * ratio) / denom; | 
 | 	 	} | 
 | 	} | 
 | 	else { | 
 | 		/* divide tops and bottom by b.imag */ | 
 | 		const double ratio = b.real / b.imag; | 
 | 		const double denom = b.real * ratio + b.imag; | 
 | 		assert(b.imag != 0.0); | 
 | 		r.real = (a.real * ratio + a.imag) / denom; | 
 | 		r.imag = (a.imag * ratio - a.real) / denom; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | Py_complex | 
 | c_pow(Py_complex a, Py_complex b) | 
 | { | 
 | 	Py_complex r; | 
 | 	double vabs,len,at,phase; | 
 | 	if (b.real == 0. && b.imag == 0.) { | 
 | 		r.real = 1.; | 
 | 		r.imag = 0.; | 
 | 	} | 
 | 	else if (a.real == 0. && a.imag == 0.) { | 
 | 		if (b.imag != 0. || b.real < 0.) | 
 | 			errno = ERANGE; | 
 | 		r.real = 0.; | 
 | 		r.imag = 0.; | 
 | 	} | 
 | 	else { | 
 | 		vabs = hypot(a.real,a.imag); | 
 | 		len = pow(vabs,b.real); | 
 | 		at = atan2(a.imag, a.real); | 
 | 		phase = at*b.real; | 
 | 		if (b.imag != 0.0) { | 
 | 			len /= exp(at*b.imag); | 
 | 			phase += b.imag*log(vabs); | 
 | 		} | 
 | 		r.real = len*cos(phase); | 
 | 		r.imag = len*sin(phase); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static Py_complex | 
 | c_powu(Py_complex x, long n) | 
 | { | 
 | 	Py_complex r, p; | 
 | 	long mask = 1; | 
 | 	r = c_1; | 
 | 	p = x; | 
 | 	while (mask > 0 && n >= mask) { | 
 | 		if (n & mask) | 
 | 			r = c_prod(r,p); | 
 | 		mask <<= 1; | 
 | 		p = c_prod(p,p); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static Py_complex | 
 | c_powi(Py_complex x, long n) | 
 | { | 
 | 	Py_complex cn; | 
 |  | 
 | 	if (n > 100 || n < -100) { | 
 | 		cn.real = (double) n; | 
 | 		cn.imag = 0.; | 
 | 		return c_pow(x,cn); | 
 | 	} | 
 | 	else if (n > 0) | 
 | 		return c_powu(x,n); | 
 | 	else | 
 | 		return c_quot(c_1,c_powu(x,-n)); | 
 |  | 
 | } | 
 |  | 
 | PyObject * | 
 | PyComplex_FromCComplex(Py_complex cval) | 
 | { | 
 | 	register PyComplexObject *op; | 
 |  | 
 | 	/* PyObject_New is inlined */ | 
 | 	op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); | 
 | 	if (op == NULL) | 
 | 		return PyErr_NoMemory(); | 
 | 	PyObject_INIT(op, &PyComplex_Type); | 
 | 	op->cval = cval; | 
 | 	return (PyObject *) op; | 
 | } | 
 |  | 
 | PyObject * | 
 | PyComplex_FromDoubles(double real, double imag) | 
 | { | 
 | 	Py_complex c; | 
 | 	c.real = real; | 
 | 	c.imag = imag; | 
 | 	return PyComplex_FromCComplex(c); | 
 | } | 
 |  | 
 | double | 
 | PyComplex_RealAsDouble(PyObject *op) | 
 | { | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval.real; | 
 | 	} | 
 | 	else { | 
 | 		return PyFloat_AsDouble(op); | 
 | 	} | 
 | } | 
 |  | 
 | double | 
 | PyComplex_ImagAsDouble(PyObject *op) | 
 | { | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval.imag; | 
 | 	} | 
 | 	else { | 
 | 		return 0.0; | 
 | 	} | 
 | } | 
 |  | 
 | Py_complex | 
 | PyComplex_AsCComplex(PyObject *op) | 
 | { | 
 | 	Py_complex cv; | 
 | 	if (PyComplex_Check(op)) { | 
 | 		return ((PyComplexObject *)op)->cval; | 
 | 	} | 
 | 	else { | 
 | 		cv.real = PyFloat_AsDouble(op); | 
 | 		cv.imag = 0.; | 
 | 		return cv; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | complex_dealloc(PyObject *op) | 
 | { | 
 | 	PyObject_DEL(op); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | complex_to_buf(char *buf, PyComplexObject *v, int precision) | 
 | { | 
 | 	if (v->cval.real == 0.) | 
 | 		sprintf(buf, "%.*gj", precision, v->cval.imag); | 
 | 	else | 
 | 		sprintf(buf, "(%.*g%+.*gj)", precision, v->cval.real, | 
 | 					     precision, v->cval.imag); | 
 | } | 
 |  | 
 | static int | 
 | complex_print(PyComplexObject *v, FILE *fp, int flags) | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_to_buf(buf, v, | 
 | 		       (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); | 
 | 	fputs(buf, fp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_repr(PyComplexObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_to_buf(buf, v, PREC_REPR); | 
 | 	return PyString_FromString(buf); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_str(PyComplexObject *v) | 
 | { | 
 | 	char buf[100]; | 
 | 	complex_to_buf(buf, v, PREC_STR); | 
 | 	return PyString_FromString(buf); | 
 | } | 
 |  | 
 | static long | 
 | complex_hash(PyComplexObject *v) | 
 | { | 
 | 	long hashreal, hashimag, combined; | 
 | 	hashreal = _Py_HashDouble(v->cval.real); | 
 | 	if (hashreal == -1) | 
 | 		return -1; | 
 | 	hashimag = _Py_HashDouble(v->cval.imag); | 
 | 	if (hashimag == -1) | 
 | 		return -1; | 
 | 	/* Note:  if the imaginary part is 0, hashimag is 0 now, | 
 | 	 * so the following returns hashreal unchanged.  This is | 
 | 	 * important because numbers of different types that | 
 | 	 * compare equal must have the same hash value, so that | 
 | 	 * hash(x + 0*j) must equal hash(x). | 
 | 	 */ | 
 | 	combined = hashreal + 1000003 * hashimag; | 
 | 	if (combined == -1) | 
 | 		combined = -2; | 
 | 	return combined; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_add(PyComplexObject *v, PyComplexObject *w) | 
 | { | 
 | 	Py_complex result; | 
 | 	PyFPE_START_PROTECT("complex_add", return 0) | 
 | 	result = c_sum(v->cval,w->cval); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyComplex_FromCComplex(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_sub(PyComplexObject *v, PyComplexObject *w) | 
 | { | 
 | 	Py_complex result; | 
 | 	PyFPE_START_PROTECT("complex_sub", return 0) | 
 | 	result = c_diff(v->cval,w->cval); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyComplex_FromCComplex(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_mul(PyComplexObject *v, PyComplexObject *w) | 
 | { | 
 | 	Py_complex result; | 
 | 	PyFPE_START_PROTECT("complex_mul", return 0) | 
 | 	result = c_prod(v->cval,w->cval); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyComplex_FromCComplex(result); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_div(PyComplexObject *v, PyComplexObject *w) | 
 | { | 
 | 	Py_complex quot; | 
 | 	PyFPE_START_PROTECT("complex_div", return 0) | 
 | 	errno = 0; | 
 | 	quot = c_quot(v->cval,w->cval); | 
 | 	PyFPE_END_PROTECT(quot) | 
 | 	if (errno == EDOM) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyComplex_FromCComplex(quot); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_remainder(PyComplexObject *v, PyComplexObject *w) | 
 | { | 
 |         Py_complex div, mod; | 
 | 	errno = 0; | 
 | 	div = c_quot(v->cval,w->cval); /* The raw divisor value. */ | 
 | 	if (errno == EDOM) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder"); | 
 | 		return NULL; | 
 | 	} | 
 | 	div.real = floor(div.real); /* Use the floor of the real part. */ | 
 | 	div.imag = 0.0; | 
 | 	mod = c_diff(v->cval, c_prod(w->cval, div)); | 
 |  | 
 | 	return PyComplex_FromCComplex(mod); | 
 | } | 
 |  | 
 |  | 
 | static PyObject * | 
 | complex_divmod(PyComplexObject *v, PyComplexObject *w) | 
 | { | 
 |         Py_complex div, mod; | 
 | 	PyObject *d, *m, *z; | 
 | 	errno = 0; | 
 | 	div = c_quot(v->cval,w->cval); /* The raw divisor value. */ | 
 | 	if (errno == EDOM) { | 
 | 		PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()"); | 
 | 		return NULL; | 
 | 	} | 
 | 	div.real = floor(div.real); /* Use the floor of the real part. */ | 
 | 	div.imag = 0.0; | 
 | 	mod = c_diff(v->cval, c_prod(w->cval, div)); | 
 | 	d = PyComplex_FromCComplex(div); | 
 | 	m = PyComplex_FromCComplex(mod); | 
 | 	z = Py_BuildValue("(OO)", d, m); | 
 | 	Py_XDECREF(d); | 
 | 	Py_XDECREF(m); | 
 | 	return z; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_pow(PyComplexObject *v, PyObject *w, PyComplexObject *z) | 
 | { | 
 | 	Py_complex p; | 
 | 	Py_complex exponent; | 
 | 	long int_exponent; | 
 |  | 
 |  	if ((PyObject *)z!=Py_None) { | 
 | 		PyErr_SetString(PyExc_ValueError, "complex modulo"); | 
 | 		return NULL; | 
 | 	} | 
 | 	PyFPE_START_PROTECT("complex_pow", return 0) | 
 | 	errno = 0; | 
 | 	exponent = ((PyComplexObject*)w)->cval; | 
 | 	int_exponent = (long)exponent.real; | 
 | 	if (exponent.imag == 0. && exponent.real == int_exponent) | 
 | 		p = c_powi(v->cval,int_exponent); | 
 | 	else | 
 | 		p = c_pow(v->cval,exponent); | 
 |  | 
 | 	PyFPE_END_PROTECT(p) | 
 | 	if (errno == ERANGE) { | 
 | 		PyErr_SetString(PyExc_ValueError, | 
 | 				"0.0 to a negative or complex power"); | 
 | 		return NULL; | 
 | 	} | 
 | 	return PyComplex_FromCComplex(p); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_neg(PyComplexObject *v) | 
 | { | 
 | 	Py_complex neg; | 
 | 	neg.real = -v->cval.real; | 
 | 	neg.imag = -v->cval.imag; | 
 | 	return PyComplex_FromCComplex(neg); | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_pos(PyComplexObject *v) | 
 | { | 
 | 	Py_INCREF(v); | 
 | 	return (PyObject *)v; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_abs(PyComplexObject *v) | 
 | { | 
 | 	double result; | 
 | 	PyFPE_START_PROTECT("complex_abs", return 0) | 
 | 	result = hypot(v->cval.real,v->cval.imag); | 
 | 	PyFPE_END_PROTECT(result) | 
 | 	return PyFloat_FromDouble(result); | 
 | } | 
 |  | 
 | static int | 
 | complex_nonzero(PyComplexObject *v) | 
 | { | 
 | 	return v->cval.real != 0.0 || v->cval.imag != 0.0; | 
 | } | 
 |  | 
 | static int | 
 | complex_coerce(PyObject **pv, PyObject **pw) | 
 | { | 
 | 	Py_complex cval; | 
 | 	cval.imag = 0.; | 
 | 	if (PyInt_Check(*pw)) { | 
 | 		cval.real = (double)PyInt_AsLong(*pw); | 
 | 		*pw = PyComplex_FromCComplex(cval); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (PyLong_Check(*pw)) { | 
 | 		cval.real = PyLong_AsDouble(*pw); | 
 | 		*pw = PyComplex_FromCComplex(cval); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	else if (PyFloat_Check(*pw)) { | 
 | 		cval.real = PyFloat_AsDouble(*pw); | 
 | 		*pw = PyComplex_FromCComplex(cval); | 
 | 		Py_INCREF(*pv); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; /* Can't do it */ | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_richcompare(PyObject *v, PyObject *w, int op) | 
 | { | 
 | 	int c; | 
 | 	Py_complex i, j; | 
 | 	PyObject *res; | 
 |  | 
 | 	if (op != Py_EQ && op != Py_NE) { | 
 | 		PyErr_SetString(PyExc_TypeError, | 
 | 			"cannot compare complex numbers using <, <=, >, >="); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	c = PyNumber_CoerceEx(&v, &w); | 
 | 	if (c < 0) | 
 | 		return NULL; | 
 | 	if (c > 0) { | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 | 	if (!PyComplex_Check(v) || !PyComplex_Check(w)) { | 
 | 		Py_DECREF(v); | 
 | 		Py_DECREF(w); | 
 | 		Py_INCREF(Py_NotImplemented); | 
 | 		return Py_NotImplemented; | 
 | 	} | 
 |  | 
 | 	i = ((PyComplexObject *)v)->cval; | 
 | 	j = ((PyComplexObject *)w)->cval; | 
 | 	Py_DECREF(v); | 
 | 	Py_DECREF(w); | 
 |  | 
 | 	if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) | 
 | 		res = Py_True; | 
 | 	else | 
 | 		res = Py_False; | 
 |  | 
 | 	Py_INCREF(res); | 
 | 	return res; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_int(PyObject *v) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 		   "can't convert complex to int; use e.g. int(abs(z))"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_long(PyObject *v) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 		   "can't convert complex to long; use e.g. long(abs(z))"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_float(PyObject *v) | 
 | { | 
 | 	PyErr_SetString(PyExc_TypeError, | 
 | 		   "can't convert complex to float; use e.g. abs(z)"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static PyObject * | 
 | complex_conjugate(PyObject *self, PyObject *args) | 
 | { | 
 | 	Py_complex c; | 
 | 	if (!PyArg_ParseTuple(args, ":conjugate")) | 
 | 		return NULL; | 
 | 	c = ((PyComplexObject *)self)->cval; | 
 | 	c.imag = -c.imag; | 
 | 	return PyComplex_FromCComplex(c); | 
 | } | 
 |  | 
 | static PyMethodDef complex_methods[] = { | 
 | 	{"conjugate",	complex_conjugate,	1}, | 
 | 	{NULL,		NULL}		/* sentinel */ | 
 | }; | 
 |  | 
 |  | 
 | static PyObject * | 
 | complex_getattr(PyComplexObject *self, char *name) | 
 | { | 
 | 	if (strcmp(name, "real") == 0) | 
 | 		return (PyObject *)PyFloat_FromDouble(self->cval.real); | 
 | 	else if (strcmp(name, "imag") == 0) | 
 | 		return (PyObject *)PyFloat_FromDouble(self->cval.imag); | 
 | 	else if (strcmp(name, "__members__") == 0) | 
 | 		return Py_BuildValue("[ss]", "imag", "real"); | 
 | 	return Py_FindMethod(complex_methods, (PyObject *)self, name); | 
 | } | 
 |  | 
 | static PyNumberMethods complex_as_number = { | 
 | 	(binaryfunc)complex_add, 		/* nb_add */ | 
 | 	(binaryfunc)complex_sub, 		/* nb_subtract */ | 
 | 	(binaryfunc)complex_mul, 		/* nb_multiply */ | 
 | 	(binaryfunc)complex_div, 		/* nb_divide */ | 
 | 	(binaryfunc)complex_remainder,		/* nb_remainder */ | 
 | 	(binaryfunc)complex_divmod,		/* nb_divmod */ | 
 | 	(ternaryfunc)complex_pow,		/* nb_power */ | 
 | 	(unaryfunc)complex_neg,			/* nb_negative */ | 
 | 	(unaryfunc)complex_pos,			/* nb_positive */ | 
 | 	(unaryfunc)complex_abs,			/* nb_absolute */ | 
 | 	(inquiry)complex_nonzero,		/* nb_nonzero */ | 
 | 	0,					/* nb_invert */ | 
 | 	0,					/* nb_lshift */ | 
 | 	0,					/* nb_rshift */ | 
 | 	0,					/* nb_and */ | 
 | 	0,					/* nb_xor */ | 
 | 	0,					/* nb_or */ | 
 | 	(coercion)complex_coerce,		/* nb_coerce */ | 
 | 	(unaryfunc)complex_int,			/* nb_int */ | 
 | 	(unaryfunc)complex_long,		/* nb_long */ | 
 | 	(unaryfunc)complex_float,		/* nb_float */ | 
 | 	0,					/* nb_oct */ | 
 | 	0,					/* nb_hex */ | 
 | }; | 
 |  | 
 | PyTypeObject PyComplex_Type = { | 
 | 	PyObject_HEAD_INIT(&PyType_Type) | 
 | 	0, | 
 | 	"complex", | 
 | 	sizeof(PyComplexObject), | 
 | 	0, | 
 | 	(destructor)complex_dealloc,		/* tp_dealloc */ | 
 | 	(printfunc)complex_print,		/* tp_print */ | 
 | 	(getattrfunc)complex_getattr,		/* tp_getattr */ | 
 | 	0,					/* tp_setattr */ | 
 | 	0,					/* tp_compare */ | 
 | 	(reprfunc)complex_repr,			/* tp_repr */ | 
 | 	&complex_as_number,    			/* tp_as_number */ | 
 | 	0,					/* tp_as_sequence */ | 
 | 	0,					/* tp_as_mapping */ | 
 | 	(hashfunc)complex_hash, 		/* tp_hash */ | 
 | 	0,					/* tp_call */ | 
 | 	(reprfunc)complex_str,			/* tp_str */ | 
 | 	0,					/* tp_getattro */ | 
 | 	0,					/* tp_setattro */ | 
 | 	0,					/* tp_as_buffer */ | 
 | 	Py_TPFLAGS_DEFAULT,			/* tp_flags */ | 
 | 	0,					/* tp_doc */ | 
 | 	0,					/* tp_traverse */ | 
 | 	0,					/* tp_clear */ | 
 | 	complex_richcompare,			/* tp_richcompare */ | 
 | }; | 
 |  | 
 | #endif |