| import unittest | 
 | from test import test_support | 
 |  | 
 | from random import random | 
 | from math import atan2, isnan, copysign | 
 |  | 
 | INF = float("inf") | 
 | NAN = float("nan") | 
 | # These tests ensure that complex math does the right thing | 
 |  | 
 | class ComplexTest(unittest.TestCase): | 
 |  | 
 |     def assertAlmostEqual(self, a, b): | 
 |         if isinstance(a, complex): | 
 |             if isinstance(b, complex): | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.real, b.real) | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag) | 
 |             else: | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.real, b) | 
 |                 unittest.TestCase.assertAlmostEqual(self, a.imag, 0.) | 
 |         else: | 
 |             if isinstance(b, complex): | 
 |                 unittest.TestCase.assertAlmostEqual(self, a, b.real) | 
 |                 unittest.TestCase.assertAlmostEqual(self, 0., b.imag) | 
 |             else: | 
 |                 unittest.TestCase.assertAlmostEqual(self, a, b) | 
 |  | 
 |     def assertCloseAbs(self, x, y, eps=1e-9): | 
 |         """Return true iff floats x and y "are close\"""" | 
 |         # put the one with larger magnitude second | 
 |         if abs(x) > abs(y): | 
 |             x, y = y, x | 
 |         if y == 0: | 
 |             return abs(x) < eps | 
 |         if x == 0: | 
 |             return abs(y) < eps | 
 |         # check that relative difference < eps | 
 |         self.assertTrue(abs((x-y)/y) < eps) | 
 |  | 
 |     def assertFloatsAreIdentical(self, x, y): | 
 |         """assert that floats x and y are identical, in the sense that: | 
 |         (1) both x and y are nans, or | 
 |         (2) both x and y are infinities, with the same sign, or | 
 |         (3) both x and y are zeros, with the same sign, or | 
 |         (4) x and y are both finite and nonzero, and x == y | 
 |  | 
 |         """ | 
 |         msg = 'floats {!r} and {!r} are not identical' | 
 |  | 
 |         if isnan(x) or isnan(y): | 
 |             if isnan(x) and isnan(y): | 
 |                 return | 
 |         elif x == y: | 
 |             if x != 0.0: | 
 |                 return | 
 |             # both zero; check that signs match | 
 |             elif copysign(1.0, x) == copysign(1.0, y): | 
 |                 return | 
 |             else: | 
 |                 msg += ': zeros have different signs' | 
 |         self.fail(msg.format(x, y)) | 
 |  | 
 |     def assertClose(self, x, y, eps=1e-9): | 
 |         """Return true iff complexes x and y "are close\"""" | 
 |         self.assertCloseAbs(x.real, y.real, eps) | 
 |         self.assertCloseAbs(x.imag, y.imag, eps) | 
 |  | 
 |     def check_div(self, x, y): | 
 |         """Compute complex z=x*y, and check that z/x==y and z/y==x.""" | 
 |         z = x * y | 
 |         if x != 0: | 
 |             q = z / x | 
 |             self.assertClose(q, y) | 
 |             q = z.__div__(x) | 
 |             self.assertClose(q, y) | 
 |             q = z.__truediv__(x) | 
 |             self.assertClose(q, y) | 
 |         if y != 0: | 
 |             q = z / y | 
 |             self.assertClose(q, x) | 
 |             q = z.__div__(y) | 
 |             self.assertClose(q, x) | 
 |             q = z.__truediv__(y) | 
 |             self.assertClose(q, x) | 
 |  | 
 |     def test_div(self): | 
 |         simple_real = [float(i) for i in xrange(-5, 6)] | 
 |         simple_complex = [complex(x, y) for x in simple_real for y in simple_real] | 
 |         for x in simple_complex: | 
 |             for y in simple_complex: | 
 |                 self.check_div(x, y) | 
 |  | 
 |         # A naive complex division algorithm (such as in 2.0) is very prone to | 
 |         # nonsense errors for these (overflows and underflows). | 
 |         self.check_div(complex(1e200, 1e200), 1+0j) | 
 |         self.check_div(complex(1e-200, 1e-200), 1+0j) | 
 |  | 
 |         # Just for fun. | 
 |         for i in xrange(100): | 
 |             self.check_div(complex(random(), random()), | 
 |                            complex(random(), random())) | 
 |  | 
 |         self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j) | 
 |         # FIXME: The following currently crashes on Alpha | 
 |         # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j) | 
 |  | 
 |     def test_truediv(self): | 
 |         self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j) | 
 |         self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) | 
 |  | 
 |     def test_floordiv(self): | 
 |         self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2) | 
 |         self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j) | 
 |  | 
 |     def test_coerce(self): | 
 |         self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000) | 
 |  | 
 |     def test_no_implicit_coerce(self): | 
 |         # Python 2.7 removed implicit coercion from the complex type | 
 |         class A(object): | 
 |             def __coerce__(self, other): | 
 |                 raise RuntimeError | 
 |             __hash__ = None | 
 |             def __cmp__(self, other): | 
 |                 return -1 | 
 |  | 
 |         a = A() | 
 |         self.assertRaises(TypeError, lambda: a + 2.0j) | 
 |         self.assertTrue(a < 2.0j) | 
 |  | 
 |     def test_richcompare(self): | 
 |         self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False) | 
 |         self.assertEqual(complex.__lt__(1+1j, None), NotImplemented) | 
 |         self.assertIs(complex.__eq__(1+1j, 1+1j), True) | 
 |         self.assertIs(complex.__eq__(1+1j, 2+2j), False) | 
 |         self.assertIs(complex.__ne__(1+1j, 1+1j), False) | 
 |         self.assertIs(complex.__ne__(1+1j, 2+2j), True) | 
 |         self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j) | 
 |         self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j) | 
 |         self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j) | 
 |         self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j) | 
 |  | 
 |     def test_richcompare_boundaries(self): | 
 |         def check(n, deltas, is_equal, imag = 0.0): | 
 |             for delta in deltas: | 
 |                 i = n + delta | 
 |                 z = complex(i, imag) | 
 |                 self.assertIs(complex.__eq__(z, i), is_equal(delta)) | 
 |                 self.assertIs(complex.__ne__(z, i), not is_equal(delta)) | 
 |         # For IEEE-754 doubles the following should hold: | 
 |         #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0 | 
 |         # where the interval is representable, of course. | 
 |         for i in range(1, 10): | 
 |             pow = 52 + i | 
 |             mult = 2 ** i | 
 |             check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0) | 
 |             check(2 ** pow, range(1, 101), lambda delta: False, float(i)) | 
 |         check(2 ** 53, range(-100, 0), lambda delta: True) | 
 |  | 
 |     def test_mod(self): | 
 |         self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j) | 
 |  | 
 |         a = 3.33+4.43j | 
 |         try: | 
 |             a % 0 | 
 |         except ZeroDivisionError: | 
 |             pass | 
 |         else: | 
 |             self.fail("modulo parama can't be 0") | 
 |  | 
 |     def test_divmod(self): | 
 |         self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j) | 
 |  | 
 |     def test_pow(self): | 
 |         self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0) | 
 |         self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0) | 
 |         self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j) | 
 |         self.assertAlmostEqual(pow(1j, -1), 1/1j) | 
 |         self.assertAlmostEqual(pow(1j, 200), 1) | 
 |         self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j) | 
 |  | 
 |         a = 3.33+4.43j | 
 |         self.assertEqual(a ** 0j, 1) | 
 |         self.assertEqual(a ** 0.+0.j, 1) | 
 |  | 
 |         self.assertEqual(3j ** 0j, 1) | 
 |         self.assertEqual(3j ** 0, 1) | 
 |  | 
 |         try: | 
 |             0j ** a | 
 |         except ZeroDivisionError: | 
 |             pass | 
 |         else: | 
 |             self.fail("should fail 0.0 to negative or complex power") | 
 |  | 
 |         try: | 
 |             0j ** (3-2j) | 
 |         except ZeroDivisionError: | 
 |             pass | 
 |         else: | 
 |             self.fail("should fail 0.0 to negative or complex power") | 
 |  | 
 |         # The following is used to exercise certain code paths | 
 |         self.assertEqual(a ** 105, a ** 105) | 
 |         self.assertEqual(a ** -105, a ** -105) | 
 |         self.assertEqual(a ** -30, a ** -30) | 
 |  | 
 |         self.assertEqual(0.0j ** 0, 1) | 
 |  | 
 |         b = 5.1+2.3j | 
 |         self.assertRaises(ValueError, pow, a, b, 0) | 
 |  | 
 |     def test_boolcontext(self): | 
 |         for i in xrange(100): | 
 |             self.assertTrue(complex(random() + 1e-6, random() + 1e-6)) | 
 |         self.assertTrue(not complex(0.0, 0.0)) | 
 |  | 
 |     def test_conjugate(self): | 
 |         self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j) | 
 |  | 
 |     def test_constructor(self): | 
 |         class OS: | 
 |             def __init__(self, value): self.value = value | 
 |             def __complex__(self): return self.value | 
 |         class NS(object): | 
 |             def __init__(self, value): self.value = value | 
 |             def __complex__(self): return self.value | 
 |         self.assertEqual(complex(OS(1+10j)), 1+10j) | 
 |         self.assertEqual(complex(NS(1+10j)), 1+10j) | 
 |         self.assertRaises(TypeError, complex, OS(None)) | 
 |         self.assertRaises(TypeError, complex, NS(None)) | 
 |  | 
 |         self.assertAlmostEqual(complex("1+10j"), 1+10j) | 
 |         self.assertAlmostEqual(complex(10), 10+0j) | 
 |         self.assertAlmostEqual(complex(10.0), 10+0j) | 
 |         self.assertAlmostEqual(complex(10L), 10+0j) | 
 |         self.assertAlmostEqual(complex(10+0j), 10+0j) | 
 |         self.assertAlmostEqual(complex(1,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10L), 1+10j) | 
 |         self.assertAlmostEqual(complex(1,10.0), 1+10j) | 
 |         self.assertAlmostEqual(complex(1L,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1L,10L), 1+10j) | 
 |         self.assertAlmostEqual(complex(1L,10.0), 1+10j) | 
 |         self.assertAlmostEqual(complex(1.0,10), 1+10j) | 
 |         self.assertAlmostEqual(complex(1.0,10L), 1+10j) | 
 |         self.assertAlmostEqual(complex(1.0,10.0), 1+10j) | 
 |         self.assertAlmostEqual(complex(3.14+0j), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(3.14), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(314), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(314L), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j) | 
 |         self.assertAlmostEqual(complex(314, 0), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(314L, 0L), 314.0+0j) | 
 |         self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j) | 
 |         self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j) | 
 |         self.assertAlmostEqual(complex(0j, 3.14), 3.14j) | 
 |         self.assertAlmostEqual(complex(0.0, 3.14), 3.14j) | 
 |         self.assertAlmostEqual(complex("1"), 1+0j) | 
 |         self.assertAlmostEqual(complex("1j"), 1j) | 
 |         self.assertAlmostEqual(complex(),  0) | 
 |         self.assertAlmostEqual(complex("-1"), -1) | 
 |         self.assertAlmostEqual(complex("+1"), +1) | 
 |         self.assertAlmostEqual(complex("(1+2j)"), 1+2j) | 
 |         self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j) | 
 |         self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j) | 
 |         self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j) | 
 |         self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j) | 
 |         self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j) | 
 |         self.assertAlmostEqual(complex("J"), 1j) | 
 |         self.assertAlmostEqual(complex("( j )"), 1j) | 
 |         self.assertAlmostEqual(complex("+J"), 1j) | 
 |         self.assertAlmostEqual(complex("( -j)"), -1j) | 
 |         self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j) | 
 |         self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j) | 
 |         self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j) | 
 |  | 
 |         class complex2(complex): pass | 
 |         self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j) | 
 |         self.assertAlmostEqual(complex(real=17, imag=23), 17+23j) | 
 |         self.assertAlmostEqual(complex(real=17+23j), 17+23j) | 
 |         self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j) | 
 |         self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j) | 
 |  | 
 |         # check that the sign of a zero in the real or imaginary part | 
 |         # is preserved when constructing from two floats.  (These checks | 
 |         # are harmless on systems without support for signed zeros.) | 
 |         def split_zeros(x): | 
 |             """Function that produces different results for 0. and -0.""" | 
 |             return atan2(x, -1.) | 
 |  | 
 |         self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.)) | 
 |         self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.)) | 
 |         self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.)) | 
 |         self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.)) | 
 |  | 
 |         c = 3.14 + 1j | 
 |         self.assertTrue(complex(c) is c) | 
 |         del c | 
 |  | 
 |         self.assertRaises(TypeError, complex, "1", "1") | 
 |         self.assertRaises(TypeError, complex, 1, "1") | 
 |  | 
 |         if test_support.have_unicode: | 
 |             self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j) | 
 |  | 
 |         # SF bug 543840:  complex(string) accepts strings with \0 | 
 |         # Fixed in 2.3. | 
 |         self.assertRaises(ValueError, complex, '1+1j\0j') | 
 |  | 
 |         self.assertRaises(TypeError, int, 5+3j) | 
 |         self.assertRaises(TypeError, long, 5+3j) | 
 |         self.assertRaises(TypeError, float, 5+3j) | 
 |         self.assertRaises(ValueError, complex, "") | 
 |         self.assertRaises(TypeError, complex, None) | 
 |         self.assertRaises(ValueError, complex, "\0") | 
 |         self.assertRaises(ValueError, complex, "3\09") | 
 |         self.assertRaises(TypeError, complex, "1", "2") | 
 |         self.assertRaises(TypeError, complex, "1", 42) | 
 |         self.assertRaises(TypeError, complex, 1, "2") | 
 |         self.assertRaises(ValueError, complex, "1+") | 
 |         self.assertRaises(ValueError, complex, "1+1j+1j") | 
 |         self.assertRaises(ValueError, complex, "--") | 
 |         self.assertRaises(ValueError, complex, "(1+2j") | 
 |         self.assertRaises(ValueError, complex, "1+2j)") | 
 |         self.assertRaises(ValueError, complex, "1+(2j)") | 
 |         self.assertRaises(ValueError, complex, "(1+2j)123") | 
 |         if test_support.have_unicode: | 
 |             self.assertRaises(ValueError, complex, unicode("x")) | 
 |         self.assertRaises(ValueError, complex, "1j+2") | 
 |         self.assertRaises(ValueError, complex, "1e1ej") | 
 |         self.assertRaises(ValueError, complex, "1e++1ej") | 
 |         self.assertRaises(ValueError, complex, ")1+2j(") | 
 |         # the following three are accepted by Python 2.6 | 
 |         self.assertRaises(ValueError, complex, "1..1j") | 
 |         self.assertRaises(ValueError, complex, "1.11.1j") | 
 |         self.assertRaises(ValueError, complex, "1e1.1j") | 
 |  | 
 |         if test_support.have_unicode: | 
 |             # check that complex accepts long unicode strings | 
 |             self.assertEqual(type(complex(unicode("1"*500))), complex) | 
 |  | 
 |         class EvilExc(Exception): | 
 |             pass | 
 |  | 
 |         class evilcomplex: | 
 |             def __complex__(self): | 
 |                 raise EvilExc | 
 |  | 
 |         self.assertRaises(EvilExc, complex, evilcomplex()) | 
 |  | 
 |         class float2: | 
 |             def __init__(self, value): | 
 |                 self.value = value | 
 |             def __float__(self): | 
 |                 return self.value | 
 |  | 
 |         self.assertAlmostEqual(complex(float2(42.)), 42) | 
 |         self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j) | 
 |         self.assertRaises(TypeError, complex, float2(None)) | 
 |  | 
 |         class complex0(complex): | 
 |             """Test usage of __complex__() when inheriting from 'complex'""" | 
 |             def __complex__(self): | 
 |                 return 42j | 
 |  | 
 |         class complex1(complex): | 
 |             """Test usage of __complex__() with a __new__() method""" | 
 |             def __new__(self, value=0j): | 
 |                 return complex.__new__(self, 2*value) | 
 |             def __complex__(self): | 
 |                 return self | 
 |  | 
 |         class complex2(complex): | 
 |             """Make sure that __complex__() calls fail if anything other than a | 
 |             complex is returned""" | 
 |             def __complex__(self): | 
 |                 return None | 
 |  | 
 |         self.assertAlmostEqual(complex(complex0(1j)), 42j) | 
 |         self.assertAlmostEqual(complex(complex1(1j)), 2j) | 
 |         self.assertRaises(TypeError, complex, complex2(1j)) | 
 |  | 
 |     def test_subclass(self): | 
 |         class xcomplex(complex): | 
 |             def __add__(self,other): | 
 |                 return xcomplex(complex(self) + other) | 
 |             __radd__ = __add__ | 
 |  | 
 |             def __sub__(self,other): | 
 |                 return xcomplex(complex(self) + other) | 
 |             __rsub__ = __sub__ | 
 |  | 
 |             def __mul__(self,other): | 
 |                 return xcomplex(complex(self) * other) | 
 |             __rmul__ = __mul__ | 
 |  | 
 |             def __div__(self,other): | 
 |                 return xcomplex(complex(self) / other) | 
 |  | 
 |             def __rdiv__(self,other): | 
 |                 return xcomplex(other / complex(self)) | 
 |  | 
 |             __truediv__ = __div__ | 
 |             __rtruediv__ = __rdiv__ | 
 |  | 
 |             def __floordiv__(self,other): | 
 |                 return xcomplex(complex(self) // other) | 
 |  | 
 |             def __rfloordiv__(self,other): | 
 |                 return xcomplex(other // complex(self)) | 
 |  | 
 |             def __pow__(self,other): | 
 |                 return xcomplex(complex(self) ** other) | 
 |  | 
 |             def __rpow__(self,other): | 
 |                 return xcomplex(other ** complex(self) ) | 
 |  | 
 |             def __mod__(self,other): | 
 |                 return xcomplex(complex(self) % other) | 
 |  | 
 |             def __rmod__(self,other): | 
 |                 return xcomplex(other % complex(self)) | 
 |  | 
 |         infix_binops = ('+', '-', '*', '**', '%', '//', '/') | 
 |         xcomplex_values = (xcomplex(1), xcomplex(123.0), | 
 |                            xcomplex(-10+2j), xcomplex(3+187j), | 
 |                            xcomplex(3-78j)) | 
 |         test_values = (1, 123.0, 10-19j, xcomplex(1+2j), | 
 |                        xcomplex(1+87j), xcomplex(10+90j)) | 
 |  | 
 |         for op in infix_binops: | 
 |             for x in xcomplex_values: | 
 |                 for y in test_values: | 
 |                     a = 'x %s y' % op | 
 |                     b = 'y %s x' % op | 
 |                     self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex) | 
 |  | 
 |     def test_hash(self): | 
 |         for x in xrange(-30, 30): | 
 |             self.assertEqual(hash(x), hash(complex(x, 0))) | 
 |             x /= 3.0    # now check against floating point | 
 |             self.assertEqual(hash(x), hash(complex(x, 0.))) | 
 |  | 
 |     def test_abs(self): | 
 |         nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)] | 
 |         for num in nums: | 
 |             self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num)) | 
 |  | 
 |     def test_repr(self): | 
 |         self.assertEqual(repr(1+6j), '(1+6j)') | 
 |         self.assertEqual(repr(1-6j), '(1-6j)') | 
 |  | 
 |         self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)') | 
 |  | 
 |         self.assertEqual(1-6j,complex(repr(1-6j))) | 
 |         self.assertEqual(1+6j,complex(repr(1+6j))) | 
 |         self.assertEqual(-6j,complex(repr(-6j))) | 
 |         self.assertEqual(6j,complex(repr(6j))) | 
 |  | 
 |         self.assertEqual(repr(complex(1., INF)), "(1+infj)") | 
 |         self.assertEqual(repr(complex(1., -INF)), "(1-infj)") | 
 |         self.assertEqual(repr(complex(INF, 1)), "(inf+1j)") | 
 |         self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)") | 
 |         self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)") | 
 |         self.assertEqual(repr(complex(1, NAN)), "(1+nanj)") | 
 |         self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)") | 
 |  | 
 |         self.assertEqual(repr(complex(0, INF)), "infj") | 
 |         self.assertEqual(repr(complex(0, -INF)), "-infj") | 
 |         self.assertEqual(repr(complex(0, NAN)), "nanj") | 
 |  | 
 |     def test_neg(self): | 
 |         self.assertEqual(-(1+6j), -1-6j) | 
 |  | 
 |     def test_file(self): | 
 |         a = 3.33+4.43j | 
 |         b = 5.1+2.3j | 
 |  | 
 |         fo = None | 
 |         try: | 
 |             fo = open(test_support.TESTFN, "wb") | 
 |             print >>fo, a, b | 
 |             fo.close() | 
 |             fo = open(test_support.TESTFN, "rb") | 
 |             self.assertEqual(fo.read(), "%s %s\n" % (a, b)) | 
 |         finally: | 
 |             if (fo is not None) and (not fo.closed): | 
 |                 fo.close() | 
 |             test_support.unlink(test_support.TESTFN) | 
 |  | 
 |     def test_getnewargs(self): | 
 |         self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0)) | 
 |         self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0)) | 
 |         self.assertEqual((2j).__getnewargs__(), (0.0, 2.0)) | 
 |         self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0)) | 
 |         self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF)) | 
 |         self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0)) | 
 |  | 
 |     if float.__getformat__("double").startswith("IEEE"): | 
 |         def test_plus_minus_0j(self): | 
 |             # test that -0j and 0j literals are not identified | 
 |             z1, z2 = 0j, -0j | 
 |             self.assertEquals(atan2(z1.imag, -1.), atan2(0., -1.)) | 
 |             self.assertEquals(atan2(z2.imag, -1.), atan2(-0., -1.)) | 
 |  | 
 |     @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), | 
 |                          "test requires IEEE 754 doubles") | 
 |     def test_overflow(self): | 
 |         self.assertEqual(complex("1e500"), complex(INF, 0.0)) | 
 |         self.assertEqual(complex("-1e500j"), complex(0.0, -INF)) | 
 |         self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF)) | 
 |  | 
 |     @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), | 
 |                          "test requires IEEE 754 doubles") | 
 |     def test_repr_roundtrip(self): | 
 |         vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN] | 
 |         vals += [-v for v in vals] | 
 |  | 
 |         # complex(repr(z)) should recover z exactly, even for complex | 
 |         # numbers involving an infinity, nan, or negative zero | 
 |         for x in vals: | 
 |             for y in vals: | 
 |                 z = complex(x, y) | 
 |                 roundtrip = complex(repr(z)) | 
 |                 self.assertFloatsAreIdentical(z.real, roundtrip.real) | 
 |                 self.assertFloatsAreIdentical(z.imag, roundtrip.imag) | 
 |  | 
 |         # if we predefine some constants, then eval(repr(z)) should | 
 |         # also work, except that it might change the sign of zeros | 
 |         inf, nan = float('inf'), float('nan') | 
 |         infj, nanj = complex(0.0, inf), complex(0.0, nan) | 
 |         for x in vals: | 
 |             for y in vals: | 
 |                 z = complex(x, y) | 
 |                 roundtrip = eval(repr(z)) | 
 |                 # adding 0.0 has no effect beside changing -0.0 to 0.0 | 
 |                 self.assertFloatsAreIdentical(0.0 + z.real, | 
 |                                               0.0 + roundtrip.real) | 
 |                 self.assertFloatsAreIdentical(0.0 + z.imag, | 
 |                                               0.0 + roundtrip.imag) | 
 |  | 
 |     def test_format(self): | 
 |         # empty format string is same as str() | 
 |         self.assertEqual(format(1+3j, ''), str(1+3j)) | 
 |         self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j)) | 
 |         self.assertEqual(format(3j, ''), str(3j)) | 
 |         self.assertEqual(format(3.2j, ''), str(3.2j)) | 
 |         self.assertEqual(format(3+0j, ''), str(3+0j)) | 
 |         self.assertEqual(format(3.2+0j, ''), str(3.2+0j)) | 
 |  | 
 |         # empty presentation type should still be analogous to str, | 
 |         # even when format string is nonempty (issue #5920). | 
 |         self.assertEqual(format(3.2+0j, '-'), str(3.2+0j)) | 
 |         self.assertEqual(format(3.2+0j, '<'), str(3.2+0j)) | 
 |         z = 4/7. - 100j/7. | 
 |         self.assertEqual(format(z, ''), str(z)) | 
 |         self.assertEqual(format(z, '-'), str(z)) | 
 |         self.assertEqual(format(z, '<'), str(z)) | 
 |         self.assertEqual(format(z, '10'), str(z)) | 
 |  | 
 |         self.assertEqual(format(1+3j, 'g'), '1+3j') | 
 |         self.assertEqual(format(3j, 'g'), '0+3j') | 
 |         self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j') | 
 |  | 
 |         self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j') | 
 |         self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j') | 
 |         self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j') | 
 |         self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j') | 
 |         self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j') | 
 |         self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j') | 
 |         self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j') | 
 |  | 
 |         self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j') | 
 |         self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j') | 
 |         self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j') | 
 |         self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j') | 
 |         self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j') | 
 |         self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j') | 
 |         self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j') | 
 |  | 
 |         self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ') | 
 |         self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************') | 
 |         self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j') | 
 |         self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ') | 
 |         self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ') | 
 |         self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)') | 
 |         self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ') | 
 |         self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ') | 
 |  | 
 |         self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j') | 
 |         self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j') | 
 |         self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ') | 
 |         self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j') | 
 |         self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j') | 
 |         self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ') | 
 |         self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ') | 
 |         self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j') | 
 |  | 
 |         # alternate is invalid | 
 |         self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f') | 
 |  | 
 |         # zero padding is invalid | 
 |         self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f') | 
 |  | 
 |         # '=' alignment is invalid | 
 |         self.assertRaises(ValueError, (1.5+3j).__format__, '=20') | 
 |  | 
 |         # integer presentation types are an error | 
 |         for t in 'bcdoxX': | 
 |             self.assertRaises(ValueError, (1.5+0.5j).__format__, t) | 
 |  | 
 |         # make sure everything works in ''.format() | 
 |         self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*') | 
 |  | 
 |         # issue 3382: 'f' and 'F' with inf's and nan's | 
 |         self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j') | 
 |         self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j') | 
 |         self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j') | 
 |         self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j') | 
 |         self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj') | 
 |         self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj') | 
 |         self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj') | 
 |         self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj') | 
 |         self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj') | 
 |         self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj') | 
 |         self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj') | 
 |         self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj') | 
 |  | 
 |         self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j') | 
 |         self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j') | 
 |         self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj') | 
 |         self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj') | 
 |  | 
 | def test_main(): | 
 |     with test_support.check_warnings(("complex divmod.., // and % are " | 
 |                                       "deprecated", DeprecationWarning)): | 
 |         test_support.run_unittest(ComplexTest) | 
 |  | 
 | if __name__ == "__main__": | 
 |     test_main() |