blob: 7957910e0a2b95b2c6c782aa9b24d1b657c5297a [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001:mod:`timeit` --- Measure execution time of small code snippets
2===============================================================
3
4.. module:: timeit
5 :synopsis: Measure the execution time of small code snippets.
6
7
8.. versionadded:: 2.3
9
10.. index::
11 single: Benchmarking
12 single: Performance
13
Éric Araujo29a0b572011-08-19 02:14:03 +020014**Source code:** :source:`Lib/timeit.py`
15
16--------------
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018This module provides a simple way to time small bits of Python code. It has both
Martin Panterfb452162016-04-16 04:59:38 +000019a :ref:`timeit-command-line-interface` as well as a :ref:`callable <python-interface>`
Ezio Melotti31a9e832012-10-02 05:34:38 +030020one. It avoids a number of common traps for measuring execution times.
21See also Tim Peters' introduction to the "Algorithms" chapter in the *Python
22Cookbook*, published by O'Reilly.
Georg Brandl8ec7f652007-08-15 14:28:01 +000023
Ezio Melotti31a9e832012-10-02 05:34:38 +030024
25Basic Examples
26--------------
27
Martin Panterfb452162016-04-16 04:59:38 +000028The following example shows how the :ref:`timeit-command-line-interface`
Ezio Melotti31a9e832012-10-02 05:34:38 +030029can be used to compare three different expressions:
30
31.. code-block:: sh
32
33 $ python -m timeit '"-".join(str(n) for n in range(100))'
34 10000 loops, best of 3: 40.3 usec per loop
35 $ python -m timeit '"-".join([str(n) for n in range(100)])'
36 10000 loops, best of 3: 33.4 usec per loop
37 $ python -m timeit '"-".join(map(str, range(100)))'
38 10000 loops, best of 3: 25.2 usec per loop
39
40This can be achieved from the :ref:`python-interface` with::
41
42 >>> import timeit
43 >>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
44 0.8187260627746582
45 >>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
46 0.7288308143615723
47 >>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)
48 0.5858950614929199
49
50Note however that :mod:`timeit` will automatically determine the number of
51repetitions only when the command-line interface is used. In the
52:ref:`timeit-examples` section you can find more advanced examples.
53
54
55.. _python-interface:
56
57Python Interface
58----------------
59
60The module defines three convenience functions and a public class:
61
62
63.. function:: timeit(stmt='pass', setup='pass', timer=<default timer>, number=1000000)
64
65 Create a :class:`Timer` instance with the given statement, *setup* code and
66 *timer* function and run its :meth:`.timeit` method with *number* executions.
67
68 .. versionadded:: 2.6
69
70
71.. function:: repeat(stmt='pass', setup='pass', timer=<default timer>, repeat=3, number=1000000)
72
73 Create a :class:`Timer` instance with the given statement, *setup* code and
74 *timer* function and run its :meth:`.repeat` method with the given *repeat*
75 count and *number* executions.
76
77 .. versionadded:: 2.6
78
79
80.. function:: default_timer()
81
82 Define a default timer, in a platform-specific manner. On Windows,
83 :func:`time.clock` has microsecond granularity, but :func:`time.time`'s
84 granularity is 1/60th of a second. On Unix, :func:`time.clock` has 1/100th of
85 a second granularity, and :func:`time.time` is much more precise. On either
86 platform, :func:`default_timer` measures wall clock time, not the CPU
87 time. This means that other processes running on the same computer may
88 interfere with the timing.
Georg Brandl8ec7f652007-08-15 14:28:01 +000089
90
Ezio Melottiaea83f52012-09-20 06:02:50 +030091.. class:: Timer(stmt='pass', setup='pass', timer=<timer function>)
Georg Brandl8ec7f652007-08-15 14:28:01 +000092
93 Class for timing execution speed of small code snippets.
94
Ezio Melotti31a9e832012-10-02 05:34:38 +030095 The constructor takes a statement to be timed, an additional statement used
96 for setup, and a timer function. Both statements default to ``'pass'``;
97 the timer function is platform-dependent (see the module doc string).
98 *stmt* and *setup* may also contain multiple statements separated by ``;``
99 or newlines, as long as they don't contain multi-line string literals.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000100
Ezio Melotti31a9e832012-10-02 05:34:38 +0300101 To measure the execution time of the first statement, use the :meth:`.timeit`
102 method. The :meth:`.repeat` method is a convenience to call :meth:`.timeit`
Georg Brandl8ec7f652007-08-15 14:28:01 +0000103 multiple times and return a list of results.
104
105 .. versionchanged:: 2.6
Ezio Melotti31a9e832012-10-02 05:34:38 +0300106 The *stmt* and *setup* parameters can now also take objects that are
107 callable without arguments. This will embed calls to them in a timer
108 function that will then be executed by :meth:`.timeit`. Note that the
109 timing overhead is a little larger in this case because of the extra
110 function calls.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000111
112
Ezio Melotti31a9e832012-10-02 05:34:38 +0300113 .. method:: Timer.timeit(number=1000000)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000114
Ezio Melotti31a9e832012-10-02 05:34:38 +0300115 Time *number* executions of the main statement. This executes the setup
116 statement once, and then returns the time it takes to execute the main
117 statement a number of times, measured in seconds as a float.
118 The argument is the number of times through the loop, defaulting to one
119 million. The main statement, the setup statement and the timer function
120 to be used are passed to the constructor.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000121
Ezio Melotti31a9e832012-10-02 05:34:38 +0300122 .. note::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000123
Ezio Melotti31a9e832012-10-02 05:34:38 +0300124 By default, :meth:`.timeit` temporarily turns off :term:`garbage
125 collection` during the timing. The advantage of this approach is that
126 it makes independent timings more comparable. This disadvantage is
127 that GC may be an important component of the performance of the
128 function being measured. If so, GC can be re-enabled as the first
129 statement in the *setup* string. For example::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000130
Ezio Melotti31a9e832012-10-02 05:34:38 +0300131 timeit.Timer('for i in xrange(10): oct(i)', 'gc.enable()').timeit()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000132
133
Ezio Melotti31a9e832012-10-02 05:34:38 +0300134 .. method:: Timer.repeat(repeat=3, number=1000000)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000135
Ezio Melotti31a9e832012-10-02 05:34:38 +0300136 Call :meth:`.timeit` a few times.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000137
Ezio Melotti31a9e832012-10-02 05:34:38 +0300138 This is a convenience function that calls the :meth:`.timeit` repeatedly,
139 returning a list of results. The first argument specifies how many times
140 to call :meth:`.timeit`. The second argument specifies the *number*
141 argument for :meth:`.timeit`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Ezio Melotti31a9e832012-10-02 05:34:38 +0300143 .. note::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144
Ezio Melotti31a9e832012-10-02 05:34:38 +0300145 It's tempting to calculate mean and standard deviation from the result
146 vector and report these. However, this is not very useful.
147 In a typical case, the lowest value gives a lower bound for how fast
148 your machine can run the given code snippet; higher values in the
149 result vector are typically not caused by variability in Python's
150 speed, but by other processes interfering with your timing accuracy.
151 So the :func:`min` of the result is probably the only number you
152 should be interested in. After that, you should look at the entire
153 vector and apply common sense rather than statistics.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000154
155
Ezio Melotti31a9e832012-10-02 05:34:38 +0300156 .. method:: Timer.print_exc(file=None)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000157
Ezio Melotti31a9e832012-10-02 05:34:38 +0300158 Helper to print a traceback from the timed code.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000159
Ezio Melotti31a9e832012-10-02 05:34:38 +0300160 Typical use::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000161
Ezio Melotti31a9e832012-10-02 05:34:38 +0300162 t = Timer(...) # outside the try/except
163 try:
164 t.timeit(...) # or t.repeat(...)
165 except:
166 t.print_exc()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000167
Ezio Melotti31a9e832012-10-02 05:34:38 +0300168 The advantage over the standard traceback is that source lines in the
169 compiled template will be displayed. The optional *file* argument directs
170 where the traceback is sent; it defaults to :data:`sys.stderr`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000171
172
Martin Panterfb452162016-04-16 04:59:38 +0000173.. _timeit-command-line-interface:
Sandro Tosi3f0f5772012-04-24 18:11:29 +0200174
Ezio Melotti31a9e832012-10-02 05:34:38 +0300175Command-Line Interface
Georg Brandl8ec7f652007-08-15 14:28:01 +0000176----------------------
177
178When called as a program from the command line, the following form is used::
179
180 python -m timeit [-n N] [-r N] [-s S] [-t] [-c] [-h] [statement ...]
181
Éric Araujoa8132ec2010-12-16 03:53:53 +0000182Where the following options are understood:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000183
Éric Araujoa8132ec2010-12-16 03:53:53 +0000184.. program:: timeit
185
186.. cmdoption:: -n N, --number=N
187
Georg Brandl8ec7f652007-08-15 14:28:01 +0000188 how many times to execute 'statement'
189
Éric Araujoa8132ec2010-12-16 03:53:53 +0000190.. cmdoption:: -r N, --repeat=N
191
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 how many times to repeat the timer (default 3)
193
Éric Araujoa8132ec2010-12-16 03:53:53 +0000194.. cmdoption:: -s S, --setup=S
Georg Brandl8ec7f652007-08-15 14:28:01 +0000195
Éric Araujoa8132ec2010-12-16 03:53:53 +0000196 statement to be executed once initially (default ``pass``)
197
198.. cmdoption:: -t, --time
199
Georg Brandl8ec7f652007-08-15 14:28:01 +0000200 use :func:`time.time` (default on all platforms but Windows)
201
Éric Araujoa8132ec2010-12-16 03:53:53 +0000202.. cmdoption:: -c, --clock
203
Georg Brandl8ec7f652007-08-15 14:28:01 +0000204 use :func:`time.clock` (default on Windows)
205
Éric Araujoa8132ec2010-12-16 03:53:53 +0000206.. cmdoption:: -v, --verbose
207
Georg Brandl8ec7f652007-08-15 14:28:01 +0000208 print raw timing results; repeat for more digits precision
209
Éric Araujoa8132ec2010-12-16 03:53:53 +0000210.. cmdoption:: -h, --help
211
Georg Brandl8ec7f652007-08-15 14:28:01 +0000212 print a short usage message and exit
213
214A multi-line statement may be given by specifying each line as a separate
215statement argument; indented lines are possible by enclosing an argument in
216quotes and using leading spaces. Multiple :option:`-s` options are treated
217similarly.
218
219If :option:`-n` is not given, a suitable number of loops is calculated by trying
220successive powers of 10 until the total time is at least 0.2 seconds.
221
Sandro Tosi3f0f5772012-04-24 18:11:29 +0200222:func:`default_timer` measurations can be affected by other programs running on
223the same machine, so
224the best thing to do when accurate timing is necessary is to repeat
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225the timing a few times and use the best time. The :option:`-r` option is good
226for this; the default of 3 repetitions is probably enough in most cases. On
227Unix, you can use :func:`time.clock` to measure CPU time.
228
229.. note::
230
231 There is a certain baseline overhead associated with executing a pass statement.
232 The code here doesn't try to hide it, but you should be aware of it. The
Ezio Melotti31a9e832012-10-02 05:34:38 +0300233 baseline overhead can be measured by invoking the program without arguments, and
234 it might differ between Python versions. Also, to fairly compare older Python
Martin Panter39d74a92016-10-30 05:41:04 +0000235 versions to Python 2.3, you may want to use Python's :option:`!-O`
236 option (see :ref:`Optimizations <using-on-optimizations>`) for
Ezio Melotti31a9e832012-10-02 05:34:38 +0300237 the older versions to avoid timing ``SET_LINENO`` instructions.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000238
Georg Brandl8ec7f652007-08-15 14:28:01 +0000239
Ezio Melotti31a9e832012-10-02 05:34:38 +0300240.. _timeit-examples:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000241
242Examples
243--------
244
Ezio Melotti31a9e832012-10-02 05:34:38 +0300245It is possible to provide a setup statement that is executed only once at the beginning:
246
247.. code-block:: sh
248
249 $ python -m timeit -s 'text = "sample string"; char = "g"' 'char in text'
250 10000000 loops, best of 3: 0.0877 usec per loop
251 $ python -m timeit -s 'text = "sample string"; char = "g"' 'text.find(char)'
252 1000000 loops, best of 3: 0.342 usec per loop
253
254::
255
256 >>> import timeit
257 >>> timeit.timeit('char in text', setup='text = "sample string"; char = "g"')
258 0.41440500499993504
259 >>> timeit.timeit('text.find(char)', setup='text = "sample string"; char = "g"')
260 1.7246671520006203
261
262The same can be done using the :class:`Timer` class and its methods::
263
264 >>> import timeit
265 >>> t = timeit.Timer('char in text', setup='text = "sample string"; char = "g"')
266 >>> t.timeit()
267 0.3955516149999312
268 >>> t.repeat()
269 [0.40193588800002544, 0.3960157959998014, 0.39594301399984033]
270
271
272The following examples show how to time expressions that contain multiple lines.
273Here we compare the cost of using :func:`hasattr` vs. :keyword:`try`/:keyword:`except`
274to test for missing and present object attributes:
275
276.. code-block:: sh
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277
Senthil Kumaranb8b71722011-08-06 13:34:30 +0800278 $ python -m timeit 'try:' ' str.__nonzero__' 'except AttributeError:' ' pass'
Georg Brandl8ec7f652007-08-15 14:28:01 +0000279 100000 loops, best of 3: 15.7 usec per loop
Senthil Kumaranb8b71722011-08-06 13:34:30 +0800280 $ python -m timeit 'if hasattr(str, "__nonzero__"): pass'
Georg Brandl8ec7f652007-08-15 14:28:01 +0000281 100000 loops, best of 3: 4.26 usec per loop
Ezio Melotti31a9e832012-10-02 05:34:38 +0300282
Senthil Kumaranb8b71722011-08-06 13:34:30 +0800283 $ python -m timeit 'try:' ' int.__nonzero__' 'except AttributeError:' ' pass'
Georg Brandl8ec7f652007-08-15 14:28:01 +0000284 1000000 loops, best of 3: 1.43 usec per loop
Senthil Kumaranb8b71722011-08-06 13:34:30 +0800285 $ python -m timeit 'if hasattr(int, "__nonzero__"): pass'
Georg Brandl8ec7f652007-08-15 14:28:01 +0000286 100000 loops, best of 3: 2.23 usec per loop
287
288::
289
290 >>> import timeit
Ezio Melotti31a9e832012-10-02 05:34:38 +0300291 >>> # attribute is missing
Georg Brandl8ec7f652007-08-15 14:28:01 +0000292 >>> s = """\
293 ... try:
294 ... str.__nonzero__
295 ... except AttributeError:
296 ... pass
297 ... """
Ezio Melotti31a9e832012-10-02 05:34:38 +0300298 >>> timeit.timeit(stmt=s, number=100000)
299 0.9138244460009446
300 >>> s = "if hasattr(str, '__bool__'): pass"
301 >>> timeit.timeit(stmt=s, number=100000)
302 0.5829014980008651
303 >>>
304 >>> # attribute is present
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305 >>> s = """\
306 ... try:
307 ... int.__nonzero__
308 ... except AttributeError:
309 ... pass
310 ... """
Ezio Melotti31a9e832012-10-02 05:34:38 +0300311 >>> timeit.timeit(stmt=s, number=100000)
312 0.04215312199994514
313 >>> s = "if hasattr(int, '__bool__'): pass"
314 >>> timeit.timeit(stmt=s, number=100000)
315 0.08588060699912603
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
317To give the :mod:`timeit` module access to functions you define, you can pass a
Ezio Melottiaea83f52012-09-20 06:02:50 +0300318*setup* parameter which contains an import statement::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000319
320 def test():
Senthil Kumaranb8b71722011-08-06 13:34:30 +0800321 """Stupid test function"""
Georg Brandl8ec7f652007-08-15 14:28:01 +0000322 L = []
323 for i in range(100):
324 L.append(i)
325
Senthil Kumaranb8b71722011-08-06 13:34:30 +0800326 if __name__ == '__main__':
Ezio Melotti31a9e832012-10-02 05:34:38 +0300327 import timeit
328 print(timeit.timeit("test()", setup="from __main__ import test"))