blob: d0e12696c169051145cb0df176451fb667a48550 [file] [log] [blame]
Raymond Hettinger96ef8112003-02-01 00:10:11 +00001\section{\module{itertools} ---
2 Functions creating iterators for efficient looping}
3
4\declaremodule{standard}{itertools}
5\modulesynopsis{Functions creating iterators for efficient looping.}
6\moduleauthor{Raymond Hettinger}{python@rcn.com}
7\sectionauthor{Raymond Hettinger}{python@rcn.com}
8\versionadded{2.3}
9
10
11This module implements a number of iterator building blocks inspired
12by constructs from the Haskell and SML programming languages. Each
13has been recast in a form suitable for Python.
14
Raymond Hettinger60eca932003-02-09 06:40:58 +000015The module standardizes a core set of fast, memory efficient tools
16that are useful by themselves or in combination. Standardization helps
17avoid the readability and reliability problems which arise when many
18different individuals create their own slightly varying implementations,
19each with their own quirks and naming conventions.
Raymond Hettinger96ef8112003-02-01 00:10:11 +000020
Raymond Hettinger1b18ba42003-02-21 01:45:34 +000021The tools are designed to combine readily with one another. This makes
Raymond Hettinger60eca932003-02-09 06:40:58 +000022it easy to construct more specialized tools succinctly and efficiently
23in pure Python.
Raymond Hettinger96ef8112003-02-01 00:10:11 +000024
Raymond Hettinger1b18ba42003-02-21 01:45:34 +000025For instance, SML provides a tabulation tool: \code{tabulate(f)}
Raymond Hettinger60eca932003-02-09 06:40:58 +000026which produces a sequence \code{f(0), f(1), ...}. This toolbox
27provides \function{imap()} and \function{count()} which can be combined
Raymond Hettinger1b18ba42003-02-21 01:45:34 +000028to form \code{imap(f, count())} and produce an equivalent result.
Raymond Hettinger96ef8112003-02-01 00:10:11 +000029
Raymond Hettinger863983e2003-04-23 00:09:42 +000030Likewise, the functional tools are designed to work well with the
31high-speed functions provided by the \refmodule{operator} module.
32
33The module author welcomes suggestions for other basic building blocks
34to be added to future versions of the module.
35
Raymond Hettinger60eca932003-02-09 06:40:58 +000036Whether cast in pure python form or C code, tools that use iterators
37are more memory efficient (and faster) than their list based counterparts.
38Adopting the principles of just-in-time manufacturing, they create
39data when and where needed instead of consuming memory with the
40computer equivalent of ``inventory''.
Raymond Hettinger96ef8112003-02-01 00:10:11 +000041
Raymond Hettinger863983e2003-04-23 00:09:42 +000042The performance advantage of iterators becomes more acute as the number
43of elements increases -- at some point, lists grow large enough to
44to severely impact memory cache performance and start running slowly.
Raymond Hettinger96ef8112003-02-01 00:10:11 +000045
46\begin{seealso}
47 \seetext{The Standard ML Basis Library,
48 \citetitle[http://www.standardml.org/Basis/]
49 {The Standard ML Basis Library}.}
50
51 \seetext{Haskell, A Purely Functional Language,
52 \citetitle[http://www.haskell.org/definition/]
53 {Definition of Haskell and the Standard Libraries}.}
54\end{seealso}
55
56
57\subsection{Itertool functions \label{itertools-functions}}
58
59The following module functions all construct and return iterators.
60Some provide streams of infinite length, so they should only be accessed
61by functions or loops that truncate the stream.
62
Raymond Hettinger61fe64d2003-02-23 04:40:07 +000063\begin{funcdesc}{chain}{*iterables}
64 Make an iterator that returns elements from the first iterable until
65 it is exhausted, then proceeds to the next iterable, until all of the
66 iterables are exhausted. Used for treating consecutive sequences as
67 a single sequence. Equivalent to:
68
69 \begin{verbatim}
70 def chain(*iterables):
71 for it in iterables:
72 for element in it:
73 yield element
74 \end{verbatim}
75\end{funcdesc}
76
Raymond Hettinger96ef8112003-02-01 00:10:11 +000077\begin{funcdesc}{count}{\optional{n}}
78 Make an iterator that returns consecutive integers starting with \var{n}.
79 Does not currently support python long integers. Often used as an
80 argument to \function{imap()} to generate consecutive data points.
81 Also, used in \function{izip()} to add sequence numbers. Equivalent to:
82
83 \begin{verbatim}
84 def count(n=0):
Raymond Hettinger96ef8112003-02-01 00:10:11 +000085 while True:
Raymond Hettinger1b18ba42003-02-21 01:45:34 +000086 yield n
87 n += 1
Raymond Hettinger96ef8112003-02-01 00:10:11 +000088 \end{verbatim}
Raymond Hettinger2012f172003-02-07 05:32:58 +000089
90 Note, \function{count()} does not check for overflow and will return
91 negative numbers after exceeding \code{sys.maxint}. This behavior
92 may change in the future.
Raymond Hettinger96ef8112003-02-01 00:10:11 +000093\end{funcdesc}
94
Raymond Hettinger61fe64d2003-02-23 04:40:07 +000095\begin{funcdesc}{cycle}{iterable}
96 Make an iterator returning elements from the iterable and saving a
97 copy of each. When the iterable is exhausted, return elements from
98 the saved copy. Repeats indefinitely. Equivalent to:
99
100 \begin{verbatim}
101 def cycle(iterable):
102 saved = []
103 for element in iterable:
104 yield element
105 saved.append(element)
106 if len(saved) == 0:
107 return
108 while True:
109 for element in saved:
110 yield element
111 \end{verbatim}
112
113 Note, this is the only member of the toolkit that may require
114 significant auxiliary storage (depending on the length of the
Raymond Hettinger863983e2003-04-23 00:09:42 +0000115 iterable).
Raymond Hettinger61fe64d2003-02-23 04:40:07 +0000116\end{funcdesc}
117
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000118\begin{funcdesc}{dropwhile}{predicate, iterable}
119 Make an iterator that drops elements from the iterable as long as
120 the predicate is true; afterwards, returns every element. Note,
121 the iterator does not produce \emph{any} output until the predicate
122 is true, so it may have a lengthy start-up time. Equivalent to:
123
124 \begin{verbatim}
125 def dropwhile(predicate, iterable):
126 iterable = iter(iterable)
127 while True:
128 x = iterable.next()
129 if predicate(x): continue # drop when predicate is true
130 yield x
131 break
132 while True:
133 yield iterable.next()
134 \end{verbatim}
135\end{funcdesc}
136
Raymond Hettinger60eca932003-02-09 06:40:58 +0000137\begin{funcdesc}{ifilter}{predicate, iterable}
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000138 Make an iterator that filters elements from iterable returning only
Raymond Hettinger60eca932003-02-09 06:40:58 +0000139 those for which the predicate is \code{True}.
140 If \var{predicate} is \code{None}, return the items that are true.
141 Equivalent to:
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000142
143 \begin{verbatim}
Raymond Hettinger60eca932003-02-09 06:40:58 +0000144 def ifilter(predicate, iterable):
145 if predicate is None:
146 def predicate(x):
147 return x
148 for x in iterable:
149 if predicate(x):
150 yield x
151 \end{verbatim}
152\end{funcdesc}
153
154\begin{funcdesc}{ifilterfalse}{predicate, iterable}
155 Make an iterator that filters elements from iterable returning only
156 those for which the predicate is \code{False}.
157 If \var{predicate} is \code{None}, return the items that are false.
158 Equivalent to:
159
160 \begin{verbatim}
161 def ifilterfalse(predicate, iterable):
162 if predicate is None:
163 def predicate(x):
164 return x
165 for x in iterable:
166 if not predicate(x):
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000167 yield x
168 \end{verbatim}
169\end{funcdesc}
170
171\begin{funcdesc}{imap}{function, *iterables}
172 Make an iterator that computes the function using arguments from
173 each of the iterables. If \var{function} is set to \code{None}, then
174 \function{imap()} returns the arguments as a tuple. Like
175 \function{map()} but stops when the shortest iterable is exhausted
176 instead of filling in \code{None} for shorter iterables. The reason
177 for the difference is that infinite iterator arguments are typically
178 an error for \function{map()} (because the output is fully evaluated)
179 but represent a common and useful way of supplying arguments to
180 \function{imap()}.
181 Equivalent to:
182
183 \begin{verbatim}
184 def imap(function, *iterables):
185 iterables = map(iter, iterables)
186 while True:
187 args = [i.next() for i in iterables]
188 if function is None:
189 yield tuple(args)
190 else:
191 yield function(*args)
192 \end{verbatim}
193\end{funcdesc}
194
195\begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}}
196 Make an iterator that returns selected elements from the iterable.
197 If \var{start} is non-zero, then elements from the iterable are skipped
198 until start is reached. Afterward, elements are returned consecutively
199 unless \var{step} is set higher than one which results in items being
Raymond Hettinger14ef54c2003-05-02 19:04:37 +0000200 skipped. If \var{stop} is not specified or is \code{None}, then iteration
201 continues indefinitely; otherwise, it stops at the specified position.
202 Unlike regular slicing,
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000203 \function{islice()} does not support negative values for \var{start},
204 \var{stop}, or \var{step}. Can be used to extract related fields
205 from data where the internal structure has been flattened (for
206 example, a multi-line report may list a name field on every
207 third line). Equivalent to:
208
209 \begin{verbatim}
210 def islice(iterable, *args):
Raymond Hettinger14ef54c2003-05-02 19:04:37 +0000211 if args:
212 s = slice(*args)
213 next = s.start or 0
214 stop = s.stop
215 step = s.step or 1
216 else:
217 next, stop, step = 0, None, 1
Raymond Hettinger60eca932003-02-09 06:40:58 +0000218 for cnt, element in enumerate(iterable):
219 if cnt < next:
220 continue
Raymond Hettinger14ef54c2003-05-02 19:04:37 +0000221 if stop is not None and cnt >= stop:
Raymond Hettinger60eca932003-02-09 06:40:58 +0000222 break
223 yield element
Raymond Hettinger14ef54c2003-05-02 19:04:37 +0000224 next += step
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000225 \end{verbatim}
226\end{funcdesc}
227
228\begin{funcdesc}{izip}{*iterables}
229 Make an iterator that aggregates elements from each of the iterables.
230 Like \function{zip()} except that it returns an iterator instead of
231 a list. Used for lock-step iteration over several iterables at a
232 time. Equivalent to:
233
234 \begin{verbatim}
235 def izip(*iterables):
236 iterables = map(iter, iterables)
237 while True:
238 result = [i.next() for i in iterables]
239 yield tuple(result)
240 \end{verbatim}
241\end{funcdesc}
242
Raymond Hettinger61fe64d2003-02-23 04:40:07 +0000243\begin{funcdesc}{repeat}{object\optional{, times}}
Raymond Hettinger1b18ba42003-02-21 01:45:34 +0000244 Make an iterator that returns \var{object} over and over again.
Raymond Hettinger61fe64d2003-02-23 04:40:07 +0000245 Runs indefinitely unless the \var{times} argument is specified.
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000246 Used as argument to \function{imap()} for invariant parameters
Raymond Hettinger1b18ba42003-02-21 01:45:34 +0000247 to the called function. Also used with \function{izip()} to create
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000248 an invariant part of a tuple record. Equivalent to:
249
250 \begin{verbatim}
Raymond Hettinger61fe64d2003-02-23 04:40:07 +0000251 def repeat(object, times=None):
252 if times is None:
253 while True:
254 yield object
255 else:
256 for i in xrange(times):
257 yield object
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000258 \end{verbatim}
259\end{funcdesc}
260
261\begin{funcdesc}{starmap}{function, iterable}
262 Make an iterator that computes the function using arguments tuples
263 obtained from the iterable. Used instead of \function{imap()} when
264 argument parameters are already grouped in tuples from a single iterable
265 (the data has been ``pre-zipped''). The difference between
Raymond Hettinger1b18ba42003-02-21 01:45:34 +0000266 \function{imap()} and \function{starmap()} parallels the distinction
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000267 between \code{function(a,b)} and \code{function(*c)}.
268 Equivalent to:
269
270 \begin{verbatim}
271 def starmap(function, iterable):
272 iterable = iter(iterable)
273 while True:
274 yield function(*iterable.next())
275 \end{verbatim}
276\end{funcdesc}
277
278\begin{funcdesc}{takewhile}{predicate, iterable}
279 Make an iterator that returns elements from the iterable as long as
280 the predicate is true. Equivalent to:
281
282 \begin{verbatim}
283 def takewhile(predicate, iterable):
284 iterable = iter(iterable)
285 while True:
286 x = iterable.next()
287 if predicate(x):
288 yield x
289 else:
290 break
291 \end{verbatim}
292\end{funcdesc}
293
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000294
295\subsection{Examples \label{itertools-example}}
296
297The following examples show common uses for each tool and
298demonstrate ways they can be combined.
299
300\begin{verbatim}
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000301
302>>> amounts = [120.15, 764.05, 823.14]
303>>> for checknum, amount in izip(count(1200), amounts):
304... print 'Check %d is for $%.2f' % (checknum, amount)
305...
306Check 1200 is for $120.15
307Check 1201 is for $764.05
308Check 1202 is for $823.14
309
310>>> import operator
311>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
312... print cube
313...
3141
3158
31627
317
318>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
319 '', 'martin', '', 'walter', '', 'samuele']
320>>> for name in islice(reportlines, 3, len(reportlines), 2):
321... print name.title()
322...
323Alex
324Laura
325Martin
326Walter
327Samuele
328
329\end{verbatim}
330
331This section has further examples of how itertools can be combined.
332Note that \function{enumerate()} and \method{iteritems()} already
333have highly efficient implementations in Python. They are only
334included here to illustrate how higher level tools can be created
335from building blocks.
336
337\begin{verbatim}
338>>> def enumerate(iterable):
339... return izip(count(), iterable)
340
341>>> def tabulate(function):
342... "Return function(0), function(1), ..."
343... return imap(function, count())
344
345>>> def iteritems(mapping):
346... return izip(mapping.iterkeys(), mapping.itervalues())
347
348>>> def nth(iterable, n):
349... "Returns the nth item"
Raymond Hettinger60eca932003-02-09 06:40:58 +0000350... return list(islice(iterable, n, n+1))
351
352>>> def all(pred, seq):
353... "Returns True if pred(x) is True for every element in the iterable"
354... return not nth(ifilterfalse(pred, seq), 0)
355
356>>> def some(pred, seq):
357... "Returns True if pred(x) is True at least one element in the iterable"
358... return bool(nth(ifilter(pred, seq), 0))
359
360>>> def no(pred, seq):
361... "Returns True if pred(x) is False for every element in the iterable"
362... return not nth(ifilter(pred, seq), 0)
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000363
Raymond Hettinger61fe64d2003-02-23 04:40:07 +0000364>>> def pairwise(seq):
365... "s -> (s0,s1), (s1,s2), (s2, s3), ..."
Raymond Hettinger14ef54c2003-05-02 19:04:37 +0000366... return izip(seq, islice(seq,1,None))
Raymond Hettinger61fe64d2003-02-23 04:40:07 +0000367
Raymond Hettinger863983e2003-04-23 00:09:42 +0000368>>> def padnone(seq):
369... "Returns the sequence elements and then returns None indefinitely"
370... return chain(seq, repeat(None))
371
372>>> def ncycles(seq, n):
373... "Returns the sequence elements n times"
374... return chain(*repeat(seq, n))
375
376>>> def dotproduct(vec1, vec2):
377... return sum(imap(operator.mul, vec1, vec2))
378
Raymond Hettinger96ef8112003-02-01 00:10:11 +0000379\end{verbatim}