blob: aef3f6a719de392aae0595f2ae2e986cf48571fc [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`itertools` --- Functions creating iterators for efficient looping
3=======================================================================
4
5.. module:: itertools
6 :synopsis: Functions creating iterators for efficient looping.
7.. moduleauthor:: Raymond Hettinger <python@rcn.com>
8.. sectionauthor:: Raymond Hettinger <python@rcn.com>
9
10
Georg Brandle8f1b002008-03-22 22:04:10 +000011.. testsetup::
12
13 from itertools import *
14
Georg Brandl8ec7f652007-08-15 14:28:01 +000015.. versionadded:: 2.3
16
Georg Brandle7a09902007-10-21 12:10:28 +000017This module implements a number of :term:`iterator` building blocks inspired by
Georg Brandl8ec7f652007-08-15 14:28:01 +000018constructs from the Haskell and SML programming languages. Each has been recast
19in a form suitable for Python.
20
21The module standardizes a core set of fast, memory efficient tools that are
22useful by themselves or in combination. Standardization helps avoid the
23readability and reliability problems which arise when many different individuals
24create their own slightly varying implementations, each with their own quirks
25and naming conventions.
26
27The tools are designed to combine readily with one another. This makes it easy
28to construct more specialized tools succinctly and efficiently in pure Python.
29
30For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
31sequence ``f(0), f(1), ...``. This toolbox provides :func:`imap` and
32:func:`count` which can be combined to form ``imap(f, count())`` and produce an
33equivalent result.
34
35Likewise, the functional tools are designed to work well with the high-speed
36functions provided by the :mod:`operator` module.
37
Georg Brandl8ec7f652007-08-15 14:28:01 +000038Whether cast in pure python form or compiled code, tools that use iterators are
Raymond Hettingerf1f46f02008-07-19 23:58:47 +000039more memory efficient (and often faster) than their list based counterparts. Adopting
Georg Brandl8ec7f652007-08-15 14:28:01 +000040the principles of just-in-time manufacturing, they create data when and where
41needed instead of consuming memory with the computer equivalent of "inventory".
42
Georg Brandl8ec7f652007-08-15 14:28:01 +000043
44.. seealso::
45
46 The Standard ML Basis Library, `The Standard ML Basis Library
47 <http://www.standardml.org/Basis/>`_.
48
49 Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
50 Libraries <http://www.haskell.org/definition/>`_.
51
52
53.. _itertools-functions:
54
55Itertool functions
56------------------
57
58The following module functions all construct and return iterators. Some provide
59streams of infinite length, so they should only be accessed by functions or
60loops that truncate the stream.
61
62
63.. function:: chain(*iterables)
64
65 Make an iterator that returns elements from the first iterable until it is
66 exhausted, then proceeds to the next iterable, until all of the iterables are
67 exhausted. Used for treating consecutive sequences as a single sequence.
68 Equivalent to::
69
70 def chain(*iterables):
Raymond Hettinger040f10e2008-03-06 01:15:52 +000071 # chain('ABC', 'DEF') --> A B C D E F
Georg Brandl8ec7f652007-08-15 14:28:01 +000072 for it in iterables:
73 for element in it:
74 yield element
75
76
Raymond Hettinger330958e2008-02-28 19:41:24 +000077.. function:: itertools.chain.from_iterable(iterable)
78
Georg Brandlc62ef8b2009-01-03 20:55:06 +000079 Alternate constructor for :func:`chain`. Gets chained inputs from a
Raymond Hettinger330958e2008-02-28 19:41:24 +000080 single iterable argument that is evaluated lazily. Equivalent to::
81
82 @classmethod
83 def from_iterable(iterables):
Raymond Hettinger040f10e2008-03-06 01:15:52 +000084 # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
Raymond Hettinger330958e2008-02-28 19:41:24 +000085 for it in iterables:
86 for element in it:
87 yield element
88
89 .. versionadded:: 2.6
90
Raymond Hettingerd553d852008-03-04 04:17:08 +000091
Raymond Hettinger3fa41d52008-02-26 02:46:54 +000092.. function:: combinations(iterable, r)
93
Raymond Hettinger5eaffc42008-04-17 10:48:31 +000094 Return *r* length subsequences of elements from the input *iterable*.
Raymond Hettinger3fa41d52008-02-26 02:46:54 +000095
Georg Brandlc62ef8b2009-01-03 20:55:06 +000096 Combinations are emitted in lexicographic sort order. So, if the
Raymond Hettinger3fa41d52008-02-26 02:46:54 +000097 input *iterable* is sorted, the combination tuples will be produced
Georg Brandlc62ef8b2009-01-03 20:55:06 +000098 in sorted order.
Raymond Hettinger3fa41d52008-02-26 02:46:54 +000099
100 Elements are treated as unique based on their position, not on their
101 value. So if the input elements are unique, there will be no repeat
Raymond Hettinger330958e2008-02-28 19:41:24 +0000102 values in each combination.
Raymond Hettinger3fa41d52008-02-26 02:46:54 +0000103
Raymond Hettinger3fa41d52008-02-26 02:46:54 +0000104 Equivalent to::
105
106 def combinations(iterable, r):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000107 # combinations('ABCD', 2) --> AB AC AD BC BD CD
108 # combinations(range(4), 3) --> 012 013 023 123
Raymond Hettinger3fa41d52008-02-26 02:46:54 +0000109 pool = tuple(iterable)
Raymond Hettinger93e804d2008-02-26 23:40:50 +0000110 n = len(pool)
Raymond Hettinger5b913e32009-01-08 06:39:04 +0000111 if r > n:
112 return
Raymond Hettingerf287f172008-03-02 10:59:31 +0000113 indices = range(r)
114 yield tuple(pool[i] for i in indices)
Raymond Hettinger93e804d2008-02-26 23:40:50 +0000115 while 1:
116 for i in reversed(range(r)):
Raymond Hettingerf287f172008-03-02 10:59:31 +0000117 if indices[i] != i + n - r:
Raymond Hettingerc1052892008-02-27 01:44:34 +0000118 break
Raymond Hettinger93e804d2008-02-26 23:40:50 +0000119 else:
120 return
Raymond Hettingerf287f172008-03-02 10:59:31 +0000121 indices[i] += 1
Raymond Hettingerc1052892008-02-27 01:44:34 +0000122 for j in range(i+1, r):
Raymond Hettingerf287f172008-03-02 10:59:31 +0000123 indices[j] = indices[j-1] + 1
124 yield tuple(pool[i] for i in indices)
Raymond Hettinger3fa41d52008-02-26 02:46:54 +0000125
Raymond Hettingerd553d852008-03-04 04:17:08 +0000126 The code for :func:`combinations` can be also expressed as a subsequence
127 of :func:`permutations` after filtering entries where the elements are not
128 in sorted order (according to their position in the input pool)::
129
130 def combinations(iterable, r):
131 pool = tuple(iterable)
132 n = len(pool)
133 for indices in permutations(range(n), r):
134 if sorted(indices) == list(indices):
135 yield tuple(pool[i] for i in indices)
136
Raymond Hettinger5b913e32009-01-08 06:39:04 +0000137 The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
138 or zero when ``r > n``.
139
Raymond Hettinger3fa41d52008-02-26 02:46:54 +0000140 .. versionadded:: 2.6
141
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142.. function:: count([n])
143
144 Make an iterator that returns consecutive integers starting with *n*. If not
Raymond Hettinger50e90e22007-10-04 00:20:27 +0000145 specified *n* defaults to zero. Often used as an argument to :func:`imap` to
146 generate consecutive data points. Also, used with :func:`izip` to add sequence
147 numbers. Equivalent to::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148
149 def count(n=0):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000150 # count(10) --> 10 11 12 13 14 ...
Georg Brandl8ec7f652007-08-15 14:28:01 +0000151 while True:
152 yield n
153 n += 1
154
Georg Brandl8ec7f652007-08-15 14:28:01 +0000155
156.. function:: cycle(iterable)
157
158 Make an iterator returning elements from the iterable and saving a copy of each.
159 When the iterable is exhausted, return elements from the saved copy. Repeats
160 indefinitely. Equivalent to::
161
162 def cycle(iterable):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000163 # cycle('ABCD') --> A B C D A B C D A B C D ...
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164 saved = []
165 for element in iterable:
166 yield element
167 saved.append(element)
168 while saved:
169 for element in saved:
170 yield element
171
172 Note, this member of the toolkit may require significant auxiliary storage
173 (depending on the length of the iterable).
174
175
176.. function:: dropwhile(predicate, iterable)
177
178 Make an iterator that drops elements from the iterable as long as the predicate
179 is true; afterwards, returns every element. Note, the iterator does not produce
180 *any* output until the predicate first becomes false, so it may have a lengthy
181 start-up time. Equivalent to::
182
183 def dropwhile(predicate, iterable):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000184 # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 iterable = iter(iterable)
186 for x in iterable:
187 if not predicate(x):
188 yield x
189 break
190 for x in iterable:
191 yield x
192
193
194.. function:: groupby(iterable[, key])
195
196 Make an iterator that returns consecutive keys and groups from the *iterable*.
197 The *key* is a function computing a key value for each element. If not
198 specified or is ``None``, *key* defaults to an identity function and returns
199 the element unchanged. Generally, the iterable needs to already be sorted on
200 the same key function.
201
202 The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
203 generates a break or new group every time the value of the key function changes
204 (which is why it is usually necessary to have sorted the data using the same key
205 function). That behavior differs from SQL's GROUP BY which aggregates common
206 elements regardless of their input order.
207
208 The returned group is itself an iterator that shares the underlying iterable
209 with :func:`groupby`. Because the source is shared, when the :func:`groupby`
210 object is advanced, the previous group is no longer visible. So, if that data
211 is needed later, it should be stored as a list::
212
213 groups = []
214 uniquekeys = []
215 data = sorted(data, key=keyfunc)
216 for k, g in groupby(data, keyfunc):
217 groups.append(list(g)) # Store group iterator as a list
218 uniquekeys.append(k)
219
220 :func:`groupby` is equivalent to::
221
222 class groupby(object):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000223 # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
224 # [(list(g)) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225 def __init__(self, iterable, key=None):
226 if key is None:
227 key = lambda x: x
228 self.keyfunc = key
229 self.it = iter(iterable)
Raymond Hettinger81a885a2007-12-29 22:16:24 +0000230 self.tgtkey = self.currkey = self.currvalue = object()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000231 def __iter__(self):
232 return self
233 def next(self):
234 while self.currkey == self.tgtkey:
235 self.currvalue = self.it.next() # Exit on StopIteration
236 self.currkey = self.keyfunc(self.currvalue)
237 self.tgtkey = self.currkey
238 return (self.currkey, self._grouper(self.tgtkey))
239 def _grouper(self, tgtkey):
240 while self.currkey == tgtkey:
241 yield self.currvalue
242 self.currvalue = self.it.next() # Exit on StopIteration
243 self.currkey = self.keyfunc(self.currvalue)
244
245 .. versionadded:: 2.4
246
247
248.. function:: ifilter(predicate, iterable)
249
250 Make an iterator that filters elements from iterable returning only those for
251 which the predicate is ``True``. If *predicate* is ``None``, return the items
252 that are true. Equivalent to::
253
254 def ifilter(predicate, iterable):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000255 # ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 if predicate is None:
257 predicate = bool
258 for x in iterable:
259 if predicate(x):
260 yield x
261
262
263.. function:: ifilterfalse(predicate, iterable)
264
265 Make an iterator that filters elements from iterable returning only those for
266 which the predicate is ``False``. If *predicate* is ``None``, return the items
267 that are false. Equivalent to::
268
269 def ifilterfalse(predicate, iterable):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000270 # ifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
Georg Brandl8ec7f652007-08-15 14:28:01 +0000271 if predicate is None:
272 predicate = bool
273 for x in iterable:
274 if not predicate(x):
275 yield x
276
277
278.. function:: imap(function, *iterables)
279
280 Make an iterator that computes the function using arguments from each of the
281 iterables. If *function* is set to ``None``, then :func:`imap` returns the
282 arguments as a tuple. Like :func:`map` but stops when the shortest iterable is
283 exhausted instead of filling in ``None`` for shorter iterables. The reason for
284 the difference is that infinite iterator arguments are typically an error for
285 :func:`map` (because the output is fully evaluated) but represent a common and
286 useful way of supplying arguments to :func:`imap`. Equivalent to::
287
288 def imap(function, *iterables):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000289 # imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000
Georg Brandl8ec7f652007-08-15 14:28:01 +0000290 iterables = map(iter, iterables)
291 while True:
Raymond Hettinger2dec48d2008-01-22 22:09:26 +0000292 args = [it.next() for it in iterables]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000293 if function is None:
294 yield tuple(args)
295 else:
296 yield function(*args)
297
298
299.. function:: islice(iterable, [start,] stop [, step])
300
301 Make an iterator that returns selected elements from the iterable. If *start* is
302 non-zero, then elements from the iterable are skipped until start is reached.
303 Afterward, elements are returned consecutively unless *step* is set higher than
304 one which results in items being skipped. If *stop* is ``None``, then iteration
305 continues until the iterator is exhausted, if at all; otherwise, it stops at the
306 specified position. Unlike regular slicing, :func:`islice` does not support
307 negative values for *start*, *stop*, or *step*. Can be used to extract related
308 fields from data where the internal structure has been flattened (for example, a
309 multi-line report may list a name field on every third line). Equivalent to::
310
311 def islice(iterable, *args):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000312 # islice('ABCDEFG', 2) --> A B
313 # islice('ABCDEFG', 2, 4) --> C D
314 # islice('ABCDEFG', 2, None) --> C D E F G
315 # islice('ABCDEFG', 0, None, 2) --> A C E G
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316 s = slice(*args)
317 it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
318 nexti = it.next()
319 for i, element in enumerate(iterable):
320 if i == nexti:
321 yield element
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000322 nexti = it.next()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
324 If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
325 then the step defaults to one.
326
327 .. versionchanged:: 2.5
328 accept ``None`` values for default *start* and *step*.
329
330
331.. function:: izip(*iterables)
332
333 Make an iterator that aggregates elements from each of the iterables. Like
334 :func:`zip` except that it returns an iterator instead of a list. Used for
335 lock-step iteration over several iterables at a time. Equivalent to::
336
337 def izip(*iterables):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000338 # izip('ABCD', 'xy') --> Ax By
Georg Brandl8ec7f652007-08-15 14:28:01 +0000339 iterables = map(iter, iterables)
340 while iterables:
341 result = [it.next() for it in iterables]
342 yield tuple(result)
343
344 .. versionchanged:: 2.4
345 When no iterables are specified, returns a zero length iterator instead of
346 raising a :exc:`TypeError` exception.
347
Raymond Hettinger48c62932008-01-22 19:51:41 +0000348 The left-to-right evaluation order of the iterables is guaranteed. This
349 makes possible an idiom for clustering a data series into n-length groups
350 using ``izip(*[iter(s)]*n)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000351
Raymond Hettinger48c62932008-01-22 19:51:41 +0000352 :func:`izip` should only be used with unequal length inputs when you don't
353 care about trailing, unmatched values from the longer iterables. If those
354 values are important, use :func:`izip_longest` instead.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000355
356
357.. function:: izip_longest(*iterables[, fillvalue])
358
359 Make an iterator that aggregates elements from each of the iterables. If the
360 iterables are of uneven length, missing values are filled-in with *fillvalue*.
361 Iteration continues until the longest iterable is exhausted. Equivalent to::
362
363 def izip_longest(*args, **kwds):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000364 # izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
Georg Brandl8ec7f652007-08-15 14:28:01 +0000365 fillvalue = kwds.get('fillvalue')
366 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
367 yield counter() # yields the fillvalue, or raises IndexError
368 fillers = repeat(fillvalue)
369 iters = [chain(it, sentinel(), fillers) for it in args]
370 try:
371 for tup in izip(*iters):
372 yield tup
373 except IndexError:
374 pass
375
Benjamin Peterson5255cba2008-07-25 17:02:11 +0000376 If one of the iterables is potentially infinite, then the
377 :func:`izip_longest` function should be wrapped with something that limits
378 the number of calls (for example :func:`islice` or :func:`takewhile`). If
379 not specified, *fillvalue* defaults to ``None``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
381 .. versionadded:: 2.6
382
Raymond Hettinger330958e2008-02-28 19:41:24 +0000383.. function:: permutations(iterable[, r])
384
385 Return successive *r* length permutations of elements in the *iterable*.
386
387 If *r* is not specified or is ``None``, then *r* defaults to the length
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000388 of the *iterable* and all possible full-length permutations
Raymond Hettinger330958e2008-02-28 19:41:24 +0000389 are generated.
390
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000391 Permutations are emitted in lexicographic sort order. So, if the
Raymond Hettinger330958e2008-02-28 19:41:24 +0000392 input *iterable* is sorted, the permutation tuples will be produced
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000393 in sorted order.
Raymond Hettinger330958e2008-02-28 19:41:24 +0000394
395 Elements are treated as unique based on their position, not on their
396 value. So if the input elements are unique, there will be no repeat
397 values in each permutation.
398
Raymond Hettingerf287f172008-03-02 10:59:31 +0000399 Equivalent to::
400
401 def permutations(iterable, r=None):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000402 # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
403 # permutations(range(3)) --> 012 021 102 120 201 210
Raymond Hettingerf287f172008-03-02 10:59:31 +0000404 pool = tuple(iterable)
405 n = len(pool)
406 r = n if r is None else r
Raymond Hettinger5b913e32009-01-08 06:39:04 +0000407 if r > n:
408 return
Raymond Hettingerf287f172008-03-02 10:59:31 +0000409 indices = range(n)
Raymond Hettingere70bb8d2008-03-23 00:55:46 +0000410 cycles = range(n, n-r, -1)
Raymond Hettingerf287f172008-03-02 10:59:31 +0000411 yield tuple(pool[i] for i in indices[:r])
412 while n:
413 for i in reversed(range(r)):
414 cycles[i] -= 1
415 if cycles[i] == 0:
Raymond Hettinger2b7a5c42008-03-02 11:17:51 +0000416 indices[i:] = indices[i+1:] + indices[i:i+1]
Raymond Hettingerf287f172008-03-02 10:59:31 +0000417 cycles[i] = n - i
418 else:
419 j = cycles[i]
420 indices[i], indices[-j] = indices[-j], indices[i]
421 yield tuple(pool[i] for i in indices[:r])
422 break
423 else:
424 return
Raymond Hettinger330958e2008-02-28 19:41:24 +0000425
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000426 The code for :func:`permutations` can be also expressed as a subsequence of
Raymond Hettingerd553d852008-03-04 04:17:08 +0000427 :func:`product`, filtered to exclude entries with repeated elements (those
428 from the same position in the input pool)::
429
430 def permutations(iterable, r=None):
431 pool = tuple(iterable)
432 n = len(pool)
433 r = n if r is None else r
434 for indices in product(range(n), repeat=r):
435 if len(set(indices)) == r:
436 yield tuple(pool[i] for i in indices)
437
Raymond Hettinger5b913e32009-01-08 06:39:04 +0000438 The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
439 or zero when ``r > n``.
440
Raymond Hettinger330958e2008-02-28 19:41:24 +0000441 .. versionadded:: 2.6
442
Raymond Hettinger18750ab2008-02-28 09:23:48 +0000443.. function:: product(*iterables[, repeat])
Raymond Hettingerc5705a82008-02-22 19:50:06 +0000444
445 Cartesian product of input iterables.
446
447 Equivalent to nested for-loops in a generator expression. For example,
448 ``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
449
Raymond Hettinger5eaffc42008-04-17 10:48:31 +0000450 The nested loops cycle like an odometer with the rightmost element advancing
Andrew M. Kuchlinge2e03132008-04-17 20:44:06 +0000451 on every iteration. This pattern creates a lexicographic ordering so that if
452 the input's iterables are sorted, the product tuples are emitted in sorted
Raymond Hettinger5eaffc42008-04-17 10:48:31 +0000453 order.
Raymond Hettingerc5705a82008-02-22 19:50:06 +0000454
Raymond Hettinger18750ab2008-02-28 09:23:48 +0000455 To compute the product of an iterable with itself, specify the number of
456 repetitions with the optional *repeat* keyword argument. For example,
457 ``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
458
Andrew M. Kuchling684868a2008-03-04 01:47:38 +0000459 This function is equivalent to the following code, except that the
460 actual implementation does not build up intermediate results in memory::
Raymond Hettingerc5705a82008-02-22 19:50:06 +0000461
Raymond Hettinger18750ab2008-02-28 09:23:48 +0000462 def product(*args, **kwds):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000463 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
464 # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
Raymond Hettinger18750ab2008-02-28 09:23:48 +0000465 pools = map(tuple, args) * kwds.get('repeat', 1)
Raymond Hettingerd553d852008-03-04 04:17:08 +0000466 result = [[]]
467 for pool in pools:
468 result = [x+[y] for x in result for y in pool]
469 for prod in result:
470 yield tuple(prod)
Raymond Hettingerc5705a82008-02-22 19:50:06 +0000471
472 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000473
474.. function:: repeat(object[, times])
475
476 Make an iterator that returns *object* over and over again. Runs indefinitely
477 unless the *times* argument is specified. Used as argument to :func:`imap` for
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000478 invariant function parameters. Also used with :func:`izip` to create constant
479 fields in a tuple record. Equivalent to::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000480
481 def repeat(object, times=None):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000482 # repeat(10, 3) --> 10 10 10
Georg Brandl8ec7f652007-08-15 14:28:01 +0000483 if times is None:
484 while True:
485 yield object
486 else:
487 for i in xrange(times):
488 yield object
489
490
491.. function:: starmap(function, iterable)
492
Raymond Hettinger47317092008-01-17 03:02:14 +0000493 Make an iterator that computes the function using arguments obtained from
Georg Brandl8ec7f652007-08-15 14:28:01 +0000494 the iterable. Used instead of :func:`imap` when argument parameters are already
495 grouped in tuples from a single iterable (the data has been "pre-zipped"). The
496 difference between :func:`imap` and :func:`starmap` parallels the distinction
497 between ``function(a,b)`` and ``function(*c)``. Equivalent to::
498
499 def starmap(function, iterable):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000500 # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
Raymond Hettinger47317092008-01-17 03:02:14 +0000501 for args in iterable:
502 yield function(*args)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000503
Raymond Hettinger47317092008-01-17 03:02:14 +0000504 .. versionchanged:: 2.6
505 Previously, :func:`starmap` required the function arguments to be tuples.
506 Now, any iterable is allowed.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000507
508.. function:: takewhile(predicate, iterable)
509
510 Make an iterator that returns elements from the iterable as long as the
511 predicate is true. Equivalent to::
512
513 def takewhile(predicate, iterable):
Raymond Hettinger040f10e2008-03-06 01:15:52 +0000514 # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
Georg Brandl8ec7f652007-08-15 14:28:01 +0000515 for x in iterable:
516 if predicate(x):
517 yield x
518 else:
519 break
520
521
522.. function:: tee(iterable[, n=2])
523
524 Return *n* independent iterators from a single iterable. The case where ``n==2``
525 is equivalent to::
526
527 def tee(iterable):
Raymond Hettinger5d332bb2007-12-29 22:09:34 +0000528 def gen(next, data={}):
Georg Brandl8ec7f652007-08-15 14:28:01 +0000529 for i in count():
Raymond Hettinger5d332bb2007-12-29 22:09:34 +0000530 if i in data:
531 yield data.pop(i)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000532 else:
Raymond Hettinger5d332bb2007-12-29 22:09:34 +0000533 data[i] = next()
534 yield data[i]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000535 it = iter(iterable)
Raymond Hettinger5d332bb2007-12-29 22:09:34 +0000536 return gen(it.next), gen(it.next)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000537
538 Note, once :func:`tee` has made a split, the original *iterable* should not be
539 used anywhere else; otherwise, the *iterable* could get advanced without the tee
540 objects being informed.
541
542 Note, this member of the toolkit may require significant auxiliary storage
543 (depending on how much temporary data needs to be stored). In general, if one
544 iterator is going to use most or all of the data before the other iterator, it
545 is faster to use :func:`list` instead of :func:`tee`.
546
547 .. versionadded:: 2.4
548
549
550.. _itertools-example:
551
552Examples
553--------
554
555The following examples show common uses for each tool and demonstrate ways they
Georg Brandle8f1b002008-03-22 22:04:10 +0000556can be combined.
557
558.. doctest::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000559
Benjamin Peterson8ea99992009-01-01 16:43:12 +0000560 >>> # Show a dictionary sorted and grouped by value
Georg Brandl8ec7f652007-08-15 14:28:01 +0000561 >>> from operator import itemgetter
562 >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
563 >>> di = sorted(d.iteritems(), key=itemgetter(1))
564 >>> for k, g in groupby(di, key=itemgetter(1)):
565 ... print k, map(itemgetter(0), g)
566 ...
567 1 ['a', 'c', 'e']
568 2 ['b', 'd', 'f']
569 3 ['g']
570
Benjamin Peterson8ea99992009-01-01 16:43:12 +0000571 >>> # Find runs of consecutive numbers using groupby. The key to the solution
572 >>> # is differencing with a range so that consecutive numbers all appear in
573 >>> # same group.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000574 >>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
575 >>> for k, g in groupby(enumerate(data), lambda (i,x):i-x):
Georg Brandle8f1b002008-03-22 22:04:10 +0000576 ... print map(itemgetter(1), g)
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000577 ...
Georg Brandl8ec7f652007-08-15 14:28:01 +0000578 [1]
579 [4, 5, 6]
580 [10]
581 [15, 16, 17, 18]
582 [22]
583 [25, 26, 27, 28]
584
585
586
587.. _itertools-recipes:
588
589Recipes
590-------
591
592This section shows recipes for creating an extended toolset using the existing
593itertools as building blocks.
594
595The extended tools offer the same high performance as the underlying toolset.
596The superior memory performance is kept by processing elements one at a time
597rather than bringing the whole iterable into memory all at once. Code volume is
598kept small by linking the tools together in a functional style which helps
599eliminate temporary variables. High speed is retained by preferring
Georg Brandlcf3fb252007-10-21 10:52:38 +0000600"vectorized" building blocks over the use of for-loops and :term:`generator`\s
Georg Brandle8f1b002008-03-22 22:04:10 +0000601which incur interpreter overhead.
602
603.. testcode::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000604
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000605 def take(n, iterable):
606 "Return first n items of the iterable as a list"
607 return list(islice(iterable, n))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000608
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000609 def enumerate(iterable, start=0):
610 return izip(count(start), iterable)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000611
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000612 def tabulate(function, start=0):
Georg Brandl8ec7f652007-08-15 14:28:01 +0000613 "Return function(0), function(1), ..."
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000614 return imap(function, count(start))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000615
616 def nth(iterable, n):
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000617 "Returns the nth item or empty list"
618 return list(islice(iterable, n, n+1))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000619
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000620 def quantify(iterable, pred=bool):
621 "Count how many times the predicate is true"
622 return sum(imap(pred, iterable))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000623
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000624 def padnone(iterable):
Georg Brandl8ec7f652007-08-15 14:28:01 +0000625 """Returns the sequence elements and then returns None indefinitely.
626
627 Useful for emulating the behavior of the built-in map() function.
628 """
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000629 return chain(iterable, repeat(None))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000630
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000631 def ncycles(iterable, n):
Georg Brandl8ec7f652007-08-15 14:28:01 +0000632 "Returns the sequence elements n times"
Raymond Hettingerf1f46f02008-07-19 23:58:47 +0000633 return chain.from_iterable(repeat(iterable, n))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000634
635 def dotproduct(vec1, vec2):
636 return sum(imap(operator.mul, vec1, vec2))
637
638 def flatten(listOfLists):
Raymond Hettinger330958e2008-02-28 19:41:24 +0000639 return list(chain.from_iterable(listOfLists))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000640
641 def repeatfunc(func, times=None, *args):
642 """Repeat calls to func with specified arguments.
643
644 Example: repeatfunc(random.random)
645 """
646 if times is None:
647 return starmap(func, repeat(args))
Raymond Hettinger330958e2008-02-28 19:41:24 +0000648 return starmap(func, repeat(args, times))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000649
650 def pairwise(iterable):
651 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
652 a, b = tee(iterable)
Raymond Hettinger38fb9be2008-03-07 01:33:20 +0000653 for elem in b:
654 break
Georg Brandl8ec7f652007-08-15 14:28:01 +0000655 return izip(a, b)
656
Raymond Hettinger38fb9be2008-03-07 01:33:20 +0000657 def grouper(n, iterable, fillvalue=None):
Raymond Hettingerefdf7062008-07-30 07:27:30 +0000658 "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
Raymond Hettinger38fb9be2008-03-07 01:33:20 +0000659 args = [iter(iterable)] * n
Raymond Hettingerf080e6d2008-07-31 01:19:50 +0000660 return izip_longest(fillvalue=fillvalue, *args)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000661
Raymond Hettingera44327a2008-01-30 22:17:31 +0000662 def roundrobin(*iterables):
Raymond Hettingerefdf7062008-07-30 07:27:30 +0000663 "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
Raymond Hettinger330958e2008-02-28 19:41:24 +0000664 # Recipe credited to George Sakkis
Raymond Hettingera44327a2008-01-30 22:17:31 +0000665 pending = len(iterables)
666 nexts = cycle(iter(it).next for it in iterables)
667 while pending:
668 try:
669 for next in nexts:
670 yield next()
671 except StopIteration:
672 pending -= 1
673 nexts = cycle(islice(nexts, pending))
Georg Brandl8ec7f652007-08-15 14:28:01 +0000674
Raymond Hettinger7832d4d2008-02-23 10:04:15 +0000675 def powerset(iterable):
Raymond Hettinger330958e2008-02-28 19:41:24 +0000676 "powerset('ab') --> set([]), set(['a']), set(['b']), set(['a', 'b'])"
677 # Recipe credited to Eric Raymond
678 pairs = [(2**i, x) for i, x in enumerate(iterable)]
679 for n in xrange(2**len(pairs)):
680 yield set(x for m, x in pairs if m&n)
Raymond Hettinger7832d4d2008-02-23 10:04:15 +0000681
Raymond Hettingere8b4b602008-03-11 00:19:07 +0000682 def compress(data, selectors):
Raymond Hettingerefdf7062008-07-30 07:27:30 +0000683 "compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F"
684 return (d for d, s in izip(data, selectors) if s)
Raymond Hettinger33691672008-07-19 00:43:00 +0000685
Georg Brandl8c81fda2008-07-23 16:00:44 +0000686 def combinations_with_replacement(iterable, r):
Raymond Hettinger5b913e32009-01-08 06:39:04 +0000687 "combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC"
688 # number items returned: (n+r-1)! / r! / (n-1)!
Georg Brandl8c81fda2008-07-23 16:00:44 +0000689 pool = tuple(iterable)
690 n = len(pool)
691 indices = [0] * r
692 yield tuple(pool[i] for i in indices)
693 while 1:
694 for i in reversed(range(r)):
695 if indices[i] != n - 1:
696 break
697 else:
698 return
699 indices[i:] = [indices[i] + 1] * (r - i)
700 yield tuple(pool[i] for i in indices)
Raymond Hettinger44e15812009-01-02 21:26:45 +0000701
702 def unique_everseen(iterable, key=None):
703 "List unique elements, preserving order. Remember all elements ever seen."
704 # unique_everseen('AAAABBBCCDAABBB') --> A B C D
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000705 # unique_everseen('ABBCcAD', str.lower) --> A B C D
Raymond Hettinger44e15812009-01-02 21:26:45 +0000706 seen = set()
707 seen_add = seen.add
708 if key is None:
709 for element in iterable:
710 if element not in seen:
711 seen_add(element)
712 yield element
713 else:
714 for element in iterable:
715 k = key(element)
716 if k not in seen:
717 seen_add(k)
718 yield element
719
720 def unique_justseen(iterable, key=None):
721 "List unique elements, preserving order. Remember only the element just seen."
722 # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
723 # unique_justseen('ABBCcAD', str.lower) --> A B C A D
724 return imap(next, imap(itemgetter(1), groupby(iterable, key)))