blob: 1b0e856a67de570f06292e8d8a5d40c93f3df4bc [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001.. _tut-brieftourtwo:
2
3*********************************************
4Brief Tour of the Standard Library -- Part II
5*********************************************
6
7This second tour covers more advanced modules that support professional
8programming needs. These modules rarely occur in small scripts.
9
10
11.. _tut-output-formatting:
12
13Output Formatting
14=================
15
Brett Cannon2ee0e8e2008-05-23 05:03:59 +000016The :mod:`repr` module provides a version of :func:`repr` customized for
Georg Brandl8ec7f652007-08-15 14:28:01 +000017abbreviated displays of large or deeply nested containers::
18
Georg Brandla6168f92008-05-25 07:20:14 +000019 >>> import repr
Brett Cannon2ee0e8e2008-05-23 05:03:59 +000020 >>> repr.repr(set('supercalifragilisticexpialidocious'))
Georg Brandl8ec7f652007-08-15 14:28:01 +000021 "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
22
23The :mod:`pprint` module offers more sophisticated control over printing both
24built-in and user defined objects in a way that is readable by the interpreter.
25When the result is longer than one line, the "pretty printer" adds line breaks
26and indentation to more clearly reveal data structure::
27
28 >>> import pprint
29 >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
30 ... 'yellow'], 'blue']]]
31 ...
32 >>> pprint.pprint(t, width=30)
33 [[[['black', 'cyan'],
34 'white',
35 ['green', 'red']],
36 [['magenta', 'yellow'],
37 'blue']]]
38
39The :mod:`textwrap` module formats paragraphs of text to fit a given screen
40width::
41
42 >>> import textwrap
43 >>> doc = """The wrap() method is just like fill() except that it returns
44 ... a list of strings instead of one big string with newlines to separate
45 ... the wrapped lines."""
46 ...
47 >>> print textwrap.fill(doc, width=40)
48 The wrap() method is just like fill()
49 except that it returns a list of strings
50 instead of one big string with newlines
51 to separate the wrapped lines.
52
53The :mod:`locale` module accesses a database of culture specific data formats.
54The grouping attribute of locale's format function provides a direct way of
55formatting numbers with group separators::
56
57 >>> import locale
58 >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
59 'English_United States.1252'
60 >>> conv = locale.localeconv() # get a mapping of conventions
61 >>> x = 1234567.8
62 >>> locale.format("%d", x, grouping=True)
63 '1,234,567'
Georg Brandlfb696312009-08-13 12:05:52 +000064 >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
65 ... conv['frac_digits'], x), grouping=True)
Georg Brandl8ec7f652007-08-15 14:28:01 +000066 '$1,234,567.80'
67
68
69.. _tut-templating:
70
71Templating
72==========
73
74The :mod:`string` module includes a versatile :class:`Template` class with a
75simplified syntax suitable for editing by end-users. This allows users to
76customize their applications without having to alter the application.
77
78The format uses placeholder names formed by ``$`` with valid Python identifiers
79(alphanumeric characters and underscores). Surrounding the placeholder with
80braces allows it to be followed by more alphanumeric letters with no intervening
81spaces. Writing ``$$`` creates a single escaped ``$``::
82
83 >>> from string import Template
84 >>> t = Template('${village}folk send $$10 to $cause.')
85 >>> t.substitute(village='Nottingham', cause='the ditch fund')
86 'Nottinghamfolk send $10 to the ditch fund.'
87
88The :meth:`substitute` method raises a :exc:`KeyError` when a placeholder is not
89supplied in a dictionary or a keyword argument. For mail-merge style
90applications, user supplied data may be incomplete and the
91:meth:`safe_substitute` method may be more appropriate --- it will leave
92placeholders unchanged if data is missing::
93
94 >>> t = Template('Return the $item to $owner.')
95 >>> d = dict(item='unladen swallow')
96 >>> t.substitute(d)
97 Traceback (most recent call last):
Ezio Melotti9c1c52b2012-09-24 17:30:39 +030098 ...
Georg Brandl8ec7f652007-08-15 14:28:01 +000099 KeyError: 'owner'
100 >>> t.safe_substitute(d)
101 'Return the unladen swallow to $owner.'
102
103Template subclasses can specify a custom delimiter. For example, a batch
104renaming utility for a photo browser may elect to use percent signs for
105placeholders such as the current date, image sequence number, or file format::
106
107 >>> import time, os.path
108 >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
109 >>> class BatchRename(Template):
110 ... delimiter = '%'
111 >>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
112 Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f
113
114 >>> t = BatchRename(fmt)
115 >>> date = time.strftime('%d%b%y')
116 >>> for i, filename in enumerate(photofiles):
117 ... base, ext = os.path.splitext(filename)
118 ... newname = t.substitute(d=date, n=i, f=ext)
Benjamin Petersonf9ef9882008-05-26 00:54:22 +0000119 ... print '{0} --> {1}'.format(filename, newname)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000120
121 img_1074.jpg --> Ashley_0.jpg
122 img_1076.jpg --> Ashley_1.jpg
123 img_1077.jpg --> Ashley_2.jpg
124
125Another application for templating is separating program logic from the details
126of multiple output formats. This makes it possible to substitute custom
127templates for XML files, plain text reports, and HTML web reports.
128
129
130.. _tut-binary-formats:
131
132Working with Binary Data Record Layouts
133=======================================
134
135The :mod:`struct` module provides :func:`pack` and :func:`unpack` functions for
136working with variable length binary record formats. The following example shows
Gregory P. Smith7b7ce782008-01-24 09:38:26 +0000137how to loop through header information in a ZIP file without using the
138:mod:`zipfile` module. Pack codes ``"H"`` and ``"I"`` represent two and four
139byte unsigned numbers respectively. The ``"<"`` indicates that they are
140standard size and in little-endian byte order::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000141
142 import struct
143
144 data = open('myfile.zip', 'rb').read()
145 start = 0
146 for i in range(3): # show the first 3 file headers
147 start += 14
Gregory P. Smith7b7ce782008-01-24 09:38:26 +0000148 fields = struct.unpack('<IIIHH', data[start:start+16])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000149 crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
150
151 start += 16
152 filename = data[start:start+filenamesize]
153 start += filenamesize
154 extra = data[start:start+extra_size]
155 print filename, hex(crc32), comp_size, uncomp_size
156
157 start += extra_size + comp_size # skip to the next header
158
159
160.. _tut-multi-threading:
161
162Multi-threading
163===============
164
165Threading is a technique for decoupling tasks which are not sequentially
166dependent. Threads can be used to improve the responsiveness of applications
167that accept user input while other tasks run in the background. A related use
168case is running I/O in parallel with computations in another thread.
169
170The following code shows how the high level :mod:`threading` module can run
171tasks in background while the main program continues to run::
172
Benjamin Petersona7b55a32009-02-20 03:31:23 +0000173 import threading, zipfile
Georg Brandl8ec7f652007-08-15 14:28:01 +0000174
175 class AsyncZip(threading.Thread):
176 def __init__(self, infile, outfile):
Georg Brandla6168f92008-05-25 07:20:14 +0000177 threading.Thread.__init__(self)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178 self.infile = infile
179 self.outfile = outfile
180 def run(self):
181 f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
182 f.write(self.infile)
183 f.close()
184 print 'Finished background zip of: ', self.infile
185
186 background = AsyncZip('mydata.txt', 'myarchive.zip')
187 background.start()
188 print 'The main program continues to run in foreground.'
189
190 background.join() # Wait for the background task to finish
191 print 'Main program waited until background was done.'
192
193The principal challenge of multi-threaded applications is coordinating threads
194that share data or other resources. To that end, the threading module provides
195a number of synchronization primitives including locks, events, condition
196variables, and semaphores.
197
198While those tools are powerful, minor design errors can result in problems that
199are difficult to reproduce. So, the preferred approach to task coordination is
200to concentrate all access to a resource in a single thread and then use the
Georg Brandla6168f92008-05-25 07:20:14 +0000201:mod:`Queue` module to feed that thread with requests from other threads.
202Applications using :class:`Queue.Queue` objects for inter-thread communication
203and coordination are easier to design, more readable, and more reliable.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000204
205
206.. _tut-logging:
207
208Logging
209=======
210
211The :mod:`logging` module offers a full featured and flexible logging system.
212At its simplest, log messages are sent to a file or to ``sys.stderr``::
213
214 import logging
215 logging.debug('Debugging information')
216 logging.info('Informational message')
217 logging.warning('Warning:config file %s not found', 'server.conf')
218 logging.error('Error occurred')
219 logging.critical('Critical error -- shutting down')
220
Ezio Melotti9c1c52b2012-09-24 17:30:39 +0300221This produces the following output:
222
223.. code-block:: none
Georg Brandl8ec7f652007-08-15 14:28:01 +0000224
225 WARNING:root:Warning:config file server.conf not found
226 ERROR:root:Error occurred
227 CRITICAL:root:Critical error -- shutting down
228
229By default, informational and debugging messages are suppressed and the output
230is sent to standard error. Other output options include routing messages
231through email, datagrams, sockets, or to an HTTP Server. New filters can select
232different routing based on message priority: :const:`DEBUG`, :const:`INFO`,
233:const:`WARNING`, :const:`ERROR`, and :const:`CRITICAL`.
234
235The logging system can be configured directly from Python or can be loaded from
236a user editable configuration file for customized logging without altering the
237application.
238
239
240.. _tut-weak-references:
241
242Weak References
243===============
244
245Python does automatic memory management (reference counting for most objects and
Georg Brandl584265b2007-12-02 14:58:50 +0000246:term:`garbage collection` to eliminate cycles). The memory is freed shortly
247after the last reference to it has been eliminated.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000248
249This approach works fine for most applications but occasionally there is a need
250to track objects only as long as they are being used by something else.
251Unfortunately, just tracking them creates a reference that makes them permanent.
252The :mod:`weakref` module provides tools for tracking objects without creating a
253reference. When the object is no longer needed, it is automatically removed
254from a weakref table and a callback is triggered for weakref objects. Typical
255applications include caching objects that are expensive to create::
256
257 >>> import weakref, gc
258 >>> class A:
259 ... def __init__(self, value):
Jesus Cea3dd8cbe2012-10-22 13:14:20 +0200260 ... self.value = value
Georg Brandl8ec7f652007-08-15 14:28:01 +0000261 ... def __repr__(self):
Jesus Cea3dd8cbe2012-10-22 13:14:20 +0200262 ... return str(self.value)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000263 ...
264 >>> a = A(10) # create a reference
265 >>> d = weakref.WeakValueDictionary()
266 >>> d['primary'] = a # does not create a reference
267 >>> d['primary'] # fetch the object if it is still alive
268 10
269 >>> del a # remove the one reference
270 >>> gc.collect() # run garbage collection right away
271 0
272 >>> d['primary'] # entry was automatically removed
273 Traceback (most recent call last):
Georg Brandl4e37c662008-02-22 12:56:34 +0000274 File "<stdin>", line 1, in <module>
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 d['primary'] # entry was automatically removed
276 File "C:/python26/lib/weakref.py", line 46, in __getitem__
277 o = self.data[key]()
278 KeyError: 'primary'
279
280
281.. _tut-list-tools:
282
283Tools for Working with Lists
284============================
285
286Many data structure needs can be met with the built-in list type. However,
287sometimes there is a need for alternative implementations with different
288performance trade-offs.
289
290The :mod:`array` module provides an :class:`array()` object that is like a list
Benjamin Peterson90f36732008-07-12 20:16:19 +0000291that stores only homogeneous data and stores it more compactly. The following
Georg Brandl8ec7f652007-08-15 14:28:01 +0000292example shows an array of numbers stored as two byte unsigned binary numbers
293(typecode ``"H"``) rather than the usual 16 bytes per entry for regular lists of
Ezio Melotti062d2b52009-12-19 22:41:49 +0000294Python int objects::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000295
296 >>> from array import array
297 >>> a = array('H', [4000, 10, 700, 22222])
298 >>> sum(a)
299 26932
300 >>> a[1:3]
301 array('H', [10, 700])
302
303The :mod:`collections` module provides a :class:`deque()` object that is like a
304list with faster appends and pops from the left side but slower lookups in the
305middle. These objects are well suited for implementing queues and breadth first
306tree searches::
307
308 >>> from collections import deque
309 >>> d = deque(["task1", "task2", "task3"])
310 >>> d.append("task4")
311 >>> print "Handling", d.popleft()
312 Handling task1
313
Ezio Melotti9c1c52b2012-09-24 17:30:39 +0300314::
315
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316 unsearched = deque([starting_node])
317 def breadth_first_search(unsearched):
318 node = unsearched.popleft()
319 for m in gen_moves(node):
320 if is_goal(m):
321 return m
322 unsearched.append(m)
323
324In addition to alternative list implementations, the library also offers other
325tools such as the :mod:`bisect` module with functions for manipulating sorted
326lists::
327
328 >>> import bisect
329 >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
330 >>> bisect.insort(scores, (300, 'ruby'))
331 >>> scores
332 [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
333
334The :mod:`heapq` module provides functions for implementing heaps based on
335regular lists. The lowest valued entry is always kept at position zero. This
336is useful for applications which repeatedly access the smallest element but do
337not want to run a full list sort::
338
339 >>> from heapq import heapify, heappop, heappush
340 >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
341 >>> heapify(data) # rearrange the list into heap order
342 >>> heappush(data, -5) # add a new entry
343 >>> [heappop(data) for i in range(3)] # fetch the three smallest entries
344 [-5, 0, 1]
345
346
347.. _tut-decimal-fp:
348
349Decimal Floating Point Arithmetic
350=================================
351
352The :mod:`decimal` module offers a :class:`Decimal` datatype for decimal
353floating point arithmetic. Compared to the built-in :class:`float`
Georg Brandlffefd5a2009-07-29 17:07:21 +0000354implementation of binary floating point, the class is especially helpful for
355
356* financial applications and other uses which require exact decimal
357 representation,
358* control over precision,
359* control over rounding to meet legal or regulatory requirements,
360* tracking of significant decimal places, or
361* applications where the user expects the results to match calculations done by
362 hand.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363
364For example, calculating a 5% tax on a 70 cent phone charge gives different
365results in decimal floating point and binary floating point. The difference
366becomes significant if the results are rounded to the nearest cent::
367
Georg Brandla6168f92008-05-25 07:20:14 +0000368 >>> from decimal import *
Mark Dickinson6b87f112009-11-24 14:27:02 +0000369 >>> x = Decimal('0.70') * Decimal('1.05')
370 >>> x
Mark Dickinson11c49412009-06-28 21:48:15 +0000371 Decimal('0.7350')
Mark Dickinson6b87f112009-11-24 14:27:02 +0000372 >>> x.quantize(Decimal('0.01')) # round to nearest cent
373 Decimal('0.74')
374 >>> round(.70 * 1.05, 2) # same calculation with floats
375 0.73
Georg Brandl8ec7f652007-08-15 14:28:01 +0000376
377The :class:`Decimal` result keeps a trailing zero, automatically inferring four
378place significance from multiplicands with two place significance. Decimal
379reproduces mathematics as done by hand and avoids issues that can arise when
380binary floating point cannot exactly represent decimal quantities.
381
382Exact representation enables the :class:`Decimal` class to perform modulo
383calculations and equality tests that are unsuitable for binary floating point::
384
385 >>> Decimal('1.00') % Decimal('.10')
Mark Dickinson11c49412009-06-28 21:48:15 +0000386 Decimal('0.00')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000387 >>> 1.00 % 0.10
388 0.09999999999999995
389
390 >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
391 True
392 >>> sum([0.1]*10) == 1.0
Georg Brandla6168f92008-05-25 07:20:14 +0000393 False
Georg Brandl8ec7f652007-08-15 14:28:01 +0000394
395The :mod:`decimal` module provides arithmetic with as much precision as needed::
396
397 >>> getcontext().prec = 36
398 >>> Decimal(1) / Decimal(7)
Mark Dickinson11c49412009-06-28 21:48:15 +0000399 Decimal('0.142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000400
401