blob: bfbdf7671f28cd1a64e509387a829accf608fe52 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes6f341092008-04-18 23:13:07 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Michael W. Hudson9ef852c2005-04-06 13:05:18 +000056#include "longintrepr.h" /* just for SHIFT */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Neal Norwitz5f95a792008-01-25 08:04:16 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Mark Dickinsonb93fff02009-09-28 18:54:55 +000063/*
64 sin(pi*x), giving accurate results for all finite x (especially x
65 integral or close to an integer). This is here for use in the
66 reflection formula for the gamma function. It conforms to IEEE
67 754-2008 for finite arguments, but not for infinities or nans.
68*/
Tim Petersa40c7932001-09-05 22:36:56 +000069
Mark Dickinsonb93fff02009-09-28 18:54:55 +000070static const double pi = 3.141592653589793238462643383279502884197;
71
72static double
73sinpi(double x)
74{
75 double y, r;
76 int n;
77 /* this function should only ever be called for finite arguments */
78 assert(Py_IS_FINITE(x));
79 y = fmod(fabs(x), 2.0);
80 n = (int)round(2.0*y);
81 assert(0 <= n && n <= 4);
82 switch (n) {
83 case 0:
84 r = sin(pi*y);
85 break;
86 case 1:
87 r = cos(pi*(y-0.5));
88 break;
89 case 2:
90 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
91 -0.0 instead of 0.0 when y == 1.0. */
92 r = sin(pi*(1.0-y));
93 break;
94 case 3:
95 r = -cos(pi*(y-1.5));
96 break;
97 case 4:
98 r = sin(pi*(y-2.0));
99 break;
100 default:
101 assert(0); /* should never get here */
102 r = -1.23e200; /* silence gcc warning */
Tim Peters1d120612000-10-12 06:10:25 +0000103 }
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000104 return copysign(1.0, x)*r;
105}
106
107/* Implementation of the real gamma function. In extensive but non-exhaustive
108 random tests, this function proved accurate to within <= 10 ulps across the
109 entire float domain. Note that accuracy may depend on the quality of the
110 system math functions, the pow function in particular. Special cases
111 follow C99 annex F. The parameters and method are tailored to platforms
112 whose double format is the IEEE 754 binary64 format.
113
114 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
115 and g=6.024680040776729583740234375; these parameters are amongst those
116 used by the Boost library. Following Boost (again), we re-express the
117 Lanczos sum as a rational function, and compute it that way. The
118 coefficients below were computed independently using MPFR, and have been
119 double-checked against the coefficients in the Boost source code.
120
121 For x < 0.0 we use the reflection formula.
122
123 There's one minor tweak that deserves explanation: Lanczos' formula for
124 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
125 values, x+g-0.5 can be represented exactly. However, in cases where it
126 can't be represented exactly the small error in x+g-0.5 can be magnified
127 significantly by the pow and exp calls, especially for large x. A cheap
128 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
129 involved in the computation of x+g-0.5 (that is, e = computed value of
130 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
131
132 Correction factor
133 -----------------
134 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
135 double, and e is tiny. Then:
136
137 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
138 = pow(y, x-0.5)/exp(y) * C,
139
140 where the correction_factor C is given by
141
142 C = pow(1-e/y, x-0.5) * exp(e)
143
144 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
145
146 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
147
148 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
149
150 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
151
152 Note that for accuracy, when computing r*C it's better to do
153
154 r + e*g/y*r;
155
156 than
157
158 r * (1 + e*g/y);
159
160 since the addition in the latter throws away most of the bits of
161 information in e*g/y.
162*/
163
164#define LANCZOS_N 13
165static const double lanczos_g = 6.024680040776729583740234375;
166static const double lanczos_g_minus_half = 5.524680040776729583740234375;
167static const double lanczos_num_coeffs[LANCZOS_N] = {
168 23531376880.410759688572007674451636754734846804940,
169 42919803642.649098768957899047001988850926355848959,
170 35711959237.355668049440185451547166705960488635843,
171 17921034426.037209699919755754458931112671403265390,
172 6039542586.3520280050642916443072979210699388420708,
173 1439720407.3117216736632230727949123939715485786772,
174 248874557.86205415651146038641322942321632125127801,
175 31426415.585400194380614231628318205362874684987640,
176 2876370.6289353724412254090516208496135991145378768,
177 186056.26539522349504029498971604569928220784236328,
178 8071.6720023658162106380029022722506138218516325024,
179 210.82427775157934587250973392071336271166969580291,
180 2.5066282746310002701649081771338373386264310793408
181};
182
183/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
184static const double lanczos_den_coeffs[LANCZOS_N] = {
185 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
186 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
187
188/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
189#define NGAMMA_INTEGRAL 23
190static const double gamma_integral[NGAMMA_INTEGRAL] = {
191 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
192 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
193 1307674368000.0, 20922789888000.0, 355687428096000.0,
194 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
195 51090942171709440000.0, 1124000727777607680000.0,
196};
197
198/* Lanczos' sum L_g(x), for positive x */
199
200static double
201lanczos_sum(double x)
202{
203 double num = 0.0, den = 0.0;
204 int i;
205 assert(x > 0.0);
206 /* evaluate the rational function lanczos_sum(x). For large
207 x, the obvious algorithm risks overflow, so we instead
208 rescale the denominator and numerator of the rational
209 function by x**(1-LANCZOS_N) and treat this as a
210 rational function in 1/x. This also reduces the error for
211 larger x values. The choice of cutoff point (5.0 below) is
212 somewhat arbitrary; in tests, smaller cutoff values than
213 this resulted in lower accuracy. */
214 if (x < 5.0) {
215 for (i = LANCZOS_N; --i >= 0; ) {
216 num = num * x + lanczos_num_coeffs[i];
217 den = den * x + lanczos_den_coeffs[i];
218 }
219 }
220 else {
221 for (i = 0; i < LANCZOS_N; i++) {
222 num = num / x + lanczos_num_coeffs[i];
223 den = den / x + lanczos_den_coeffs[i];
224 }
225 }
226 return num/den;
227}
228
229static double
230m_tgamma(double x)
231{
232 double absx, r, y, z, sqrtpow;
233
234 /* special cases */
235 if (!Py_IS_FINITE(x)) {
236 if (Py_IS_NAN(x) || x > 0.0)
237 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
238 else {
239 errno = EDOM;
240 return Py_NAN; /* tgamma(-inf) = nan, invalid */
241 }
242 }
243 if (x == 0.0) {
244 errno = EDOM;
245 return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
246 }
247
248 /* integer arguments */
249 if (x == floor(x)) {
250 if (x < 0.0) {
251 errno = EDOM; /* tgamma(n) = nan, invalid for */
252 return Py_NAN; /* negative integers n */
253 }
254 if (x <= NGAMMA_INTEGRAL)
255 return gamma_integral[(int)x - 1];
256 }
257 absx = fabs(x);
258
259 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
260 if (absx < 1e-20) {
261 r = 1.0/x;
262 if (Py_IS_INFINITY(r))
263 errno = ERANGE;
264 return r;
265 }
266
267 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
268 x > 200, and underflows to +-0.0 for x < -200, not a negative
269 integer. */
270 if (absx > 200.0) {
271 if (x < 0.0) {
272 return 0.0/sinpi(x);
273 }
274 else {
275 errno = ERANGE;
276 return Py_HUGE_VAL;
277 }
278 }
279
280 y = absx + lanczos_g_minus_half;
281 /* compute error in sum */
282 if (absx > lanczos_g_minus_half) {
283 /* note: the correction can be foiled by an optimizing
284 compiler that (incorrectly) thinks that an expression like
285 a + b - a - b can be optimized to 0.0. This shouldn't
286 happen in a standards-conforming compiler. */
287 double q = y - absx;
288 z = q - lanczos_g_minus_half;
289 }
290 else {
291 double q = y - lanczos_g_minus_half;
292 z = q - absx;
293 }
294 z = z * lanczos_g / y;
295 if (x < 0.0) {
296 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
297 r -= z * r;
298 if (absx < 140.0) {
299 r /= pow(y, absx - 0.5);
300 }
301 else {
302 sqrtpow = pow(y, absx / 2.0 - 0.25);
303 r /= sqrtpow;
304 r /= sqrtpow;
305 }
306 }
307 else {
308 r = lanczos_sum(absx) / exp(y);
309 r += z * r;
310 if (absx < 140.0) {
311 r *= pow(y, absx - 0.5);
312 }
313 else {
314 sqrtpow = pow(y, absx / 2.0 - 0.25);
315 r *= sqrtpow;
316 r *= sqrtpow;
317 }
318 }
319 if (Py_IS_INFINITY(r))
320 errno = ERANGE;
321 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000322}
323
Christian Heimes6f341092008-04-18 23:13:07 +0000324/*
Mark Dickinson92483cd2008-04-20 21:39:04 +0000325 wrapper for atan2 that deals directly with special cases before
326 delegating to the platform libm for the remaining cases. This
327 is necessary to get consistent behaviour across platforms.
328 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
329 always follow C99.
330*/
331
332static double
333m_atan2(double y, double x)
334{
335 if (Py_IS_NAN(x) || Py_IS_NAN(y))
336 return Py_NAN;
337 if (Py_IS_INFINITY(y)) {
338 if (Py_IS_INFINITY(x)) {
339 if (copysign(1., x) == 1.)
340 /* atan2(+-inf, +inf) == +-pi/4 */
341 return copysign(0.25*Py_MATH_PI, y);
342 else
343 /* atan2(+-inf, -inf) == +-pi*3/4 */
344 return copysign(0.75*Py_MATH_PI, y);
345 }
346 /* atan2(+-inf, x) == +-pi/2 for finite x */
347 return copysign(0.5*Py_MATH_PI, y);
348 }
349 if (Py_IS_INFINITY(x) || y == 0.) {
350 if (copysign(1., x) == 1.)
351 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
352 return copysign(0., y);
353 else
354 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
355 return copysign(Py_MATH_PI, y);
356 }
357 return atan2(y, x);
358}
359
360/*
Mark Dickinson4c96fa52008-12-11 19:28:08 +0000361 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
362 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
363 special values directly, passing positive non-special values through to
364 the system log/log10.
365 */
366
367static double
368m_log(double x)
369{
370 if (Py_IS_FINITE(x)) {
371 if (x > 0.0)
372 return log(x);
373 errno = EDOM;
374 if (x == 0.0)
375 return -Py_HUGE_VAL; /* log(0) = -inf */
376 else
377 return Py_NAN; /* log(-ve) = nan */
378 }
379 else if (Py_IS_NAN(x))
380 return x; /* log(nan) = nan */
381 else if (x > 0.0)
382 return x; /* log(inf) = inf */
383 else {
384 errno = EDOM;
385 return Py_NAN; /* log(-inf) = nan */
386 }
387}
388
389static double
390m_log10(double x)
391{
392 if (Py_IS_FINITE(x)) {
393 if (x > 0.0)
394 return log10(x);
395 errno = EDOM;
396 if (x == 0.0)
397 return -Py_HUGE_VAL; /* log10(0) = -inf */
398 else
399 return Py_NAN; /* log10(-ve) = nan */
400 }
401 else if (Py_IS_NAN(x))
402 return x; /* log10(nan) = nan */
403 else if (x > 0.0)
404 return x; /* log10(inf) = inf */
405 else {
406 errno = EDOM;
407 return Py_NAN; /* log10(-inf) = nan */
408 }
409}
410
411
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000412/* Call is_error when errno != 0, and where x is the result libm
413 * returned. is_error will usually set up an exception and return
414 * true (1), but may return false (0) without setting up an exception.
415 */
416static int
417is_error(double x)
418{
419 int result = 1; /* presumption of guilt */
420 assert(errno); /* non-zero errno is a precondition for calling */
421 if (errno == EDOM)
422 PyErr_SetString(PyExc_ValueError, "math domain error");
423
424 else if (errno == ERANGE) {
425 /* ANSI C generally requires libm functions to set ERANGE
426 * on overflow, but also generally *allows* them to set
427 * ERANGE on underflow too. There's no consistency about
428 * the latter across platforms.
429 * Alas, C99 never requires that errno be set.
430 * Here we suppress the underflow errors (libm functions
431 * should return a zero on underflow, and +- HUGE_VAL on
432 * overflow, so testing the result for zero suffices to
433 * distinguish the cases).
434 *
435 * On some platforms (Ubuntu/ia64) it seems that errno can be
436 * set to ERANGE for subnormal results that do *not* underflow
437 * to zero. So to be safe, we'll ignore ERANGE whenever the
438 * function result is less than one in absolute value.
439 */
440 if (fabs(x) < 1.0)
441 result = 0;
442 else
443 PyErr_SetString(PyExc_OverflowError,
444 "math range error");
445 }
446 else
447 /* Unexpected math error */
448 PyErr_SetFromErrno(PyExc_ValueError);
449 return result;
450}
451
Mark Dickinson4c96fa52008-12-11 19:28:08 +0000452/*
Christian Heimes6f341092008-04-18 23:13:07 +0000453 math_1 is used to wrap a libm function f that takes a double
454 arguments and returns a double.
455
456 The error reporting follows these rules, which are designed to do
457 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
458 platforms.
459
460 - a NaN result from non-NaN inputs causes ValueError to be raised
461 - an infinite result from finite inputs causes OverflowError to be
462 raised if can_overflow is 1, or raises ValueError if can_overflow
463 is 0.
464 - if the result is finite and errno == EDOM then ValueError is
465 raised
466 - if the result is finite and nonzero and errno == ERANGE then
467 OverflowError is raised
468
469 The last rule is used to catch overflow on platforms which follow
470 C89 but for which HUGE_VAL is not an infinity.
471
472 For the majority of one-argument functions these rules are enough
473 to ensure that Python's functions behave as specified in 'Annex F'
474 of the C99 standard, with the 'invalid' and 'divide-by-zero'
475 floating-point exceptions mapping to Python's ValueError and the
476 'overflow' floating-point exception mapping to OverflowError.
477 math_1 only works for functions that don't have singularities *and*
478 the possibility of overflow; fortunately, that covers everything we
479 care about right now.
480*/
481
Barry Warsaw8b43b191996-12-09 22:32:36 +0000482static PyObject *
Christian Heimes6f341092008-04-18 23:13:07 +0000483math_1(PyObject *arg, double (*func) (double), int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000484{
Christian Heimes6f341092008-04-18 23:13:07 +0000485 double x, r;
486 x = PyFloat_AsDouble(arg);
Neal Norwitz45e230a2006-11-19 21:26:53 +0000487 if (x == -1.0 && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000488 return NULL;
489 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +0000490 PyFPE_START_PROTECT("in math_1", return 0);
491 r = (*func)(x);
492 PyFPE_END_PROTECT(r);
493 if (Py_IS_NAN(r)) {
494 if (!Py_IS_NAN(x))
495 errno = EDOM;
496 else
497 errno = 0;
498 }
499 else if (Py_IS_INFINITY(r)) {
500 if (Py_IS_FINITE(x))
501 errno = can_overflow ? ERANGE : EDOM;
502 else
503 errno = 0;
504 }
505 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000506 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000507 else
Christian Heimes6f341092008-04-18 23:13:07 +0000508 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000509}
510
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000511/* variant of math_1, to be used when the function being wrapped is known to
512 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
513 errno = ERANGE for overflow). */
514
515static PyObject *
516math_1a(PyObject *arg, double (*func) (double))
517{
518 double x, r;
519 x = PyFloat_AsDouble(arg);
520 if (x == -1.0 && PyErr_Occurred())
521 return NULL;
522 errno = 0;
523 PyFPE_START_PROTECT("in math_1a", return 0);
524 r = (*func)(x);
525 PyFPE_END_PROTECT(r);
526 if (errno && is_error(r))
527 return NULL;
528 return PyFloat_FromDouble(r);
529}
530
Christian Heimes6f341092008-04-18 23:13:07 +0000531/*
532 math_2 is used to wrap a libm function f that takes two double
533 arguments and returns a double.
534
535 The error reporting follows these rules, which are designed to do
536 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
537 platforms.
538
539 - a NaN result from non-NaN inputs causes ValueError to be raised
540 - an infinite result from finite inputs causes OverflowError to be
541 raised.
542 - if the result is finite and errno == EDOM then ValueError is
543 raised
544 - if the result is finite and nonzero and errno == ERANGE then
545 OverflowError is raised
546
547 The last rule is used to catch overflow on platforms which follow
548 C89 but for which HUGE_VAL is not an infinity.
549
550 For most two-argument functions (copysign, fmod, hypot, atan2)
551 these rules are enough to ensure that Python's functions behave as
552 specified in 'Annex F' of the C99 standard, with the 'invalid' and
553 'divide-by-zero' floating-point exceptions mapping to Python's
554 ValueError and the 'overflow' floating-point exception mapping to
555 OverflowError.
556*/
557
Barry Warsaw8b43b191996-12-09 22:32:36 +0000558static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000559math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000560{
Neal Norwitz45e230a2006-11-19 21:26:53 +0000561 PyObject *ox, *oy;
Christian Heimes6f341092008-04-18 23:13:07 +0000562 double x, y, r;
Neal Norwitz45e230a2006-11-19 21:26:53 +0000563 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
564 return NULL;
565 x = PyFloat_AsDouble(ox);
566 y = PyFloat_AsDouble(oy);
567 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000568 return NULL;
569 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +0000570 PyFPE_START_PROTECT("in math_2", return 0);
571 r = (*func)(x, y);
572 PyFPE_END_PROTECT(r);
573 if (Py_IS_NAN(r)) {
574 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
575 errno = EDOM;
576 else
577 errno = 0;
578 }
579 else if (Py_IS_INFINITY(r)) {
580 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
581 errno = ERANGE;
582 else
583 errno = 0;
584 }
585 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000586 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000587 else
Christian Heimes6f341092008-04-18 23:13:07 +0000588 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000589}
590
Christian Heimes6f341092008-04-18 23:13:07 +0000591#define FUNC1(funcname, func, can_overflow, docstring) \
Fred Drake40c48682000-07-03 18:11:56 +0000592 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Christian Heimes6f341092008-04-18 23:13:07 +0000593 return math_1(args, func, can_overflow); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000594 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000595 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000596
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000597#define FUNC1A(funcname, func, docstring) \
598 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
599 return math_1a(args, func); \
600 }\
601 PyDoc_STRVAR(math_##funcname##_doc, docstring);
602
Fred Drake40c48682000-07-03 18:11:56 +0000603#define FUNC2(funcname, func, docstring) \
604 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Neal Norwitz45e230a2006-11-19 21:26:53 +0000605 return math_2(args, func, #funcname); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000606 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000607 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000608
Christian Heimes6f341092008-04-18 23:13:07 +0000609FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000610 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000611FUNC1(acosh, acosh, 0,
612 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
613FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000614 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000615FUNC1(asinh, asinh, 0,
616 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
617FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000618 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Mark Dickinson92483cd2008-04-20 21:39:04 +0000619FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000620 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
621 "Unlike atan(y/x), the signs of both x and y are considered.")
Christian Heimes6f341092008-04-18 23:13:07 +0000622FUNC1(atanh, atanh, 0,
623 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
624FUNC1(ceil, ceil, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000625 "ceil(x)\n\nReturn the ceiling of x as a float.\n"
626 "This is the smallest integral value >= x.")
Christian Heimeseebb79c2008-01-03 22:32:26 +0000627FUNC2(copysign, copysign,
Christian Heimes6f341092008-04-18 23:13:07 +0000628 "copysign(x,y)\n\nReturn x with the sign of y.")
629FUNC1(cos, cos, 0,
630 "cos(x)\n\nReturn the cosine of x (measured in radians).")
631FUNC1(cosh, cosh, 1,
632 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
633FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000634 "exp(x)\n\nReturn e raised to the power of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000635FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000636 "fabs(x)\n\nReturn the absolute value of the float x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000637FUNC1(floor, floor, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000638 "floor(x)\n\nReturn the floor of x as a float.\n"
639 "This is the largest integral value <= x.")
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000640FUNC1A(gamma, m_tgamma,
641 "gamma(x)\n\nGamma function at x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000642FUNC1(log1p, log1p, 1,
643 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
644 The result is computed in a way which is accurate for x near zero.")
645FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000646 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000647FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000648 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000649FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000650 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000651FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000652 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000653FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000654 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000655
Mark Dickinson99dfe922008-05-23 01:35:30 +0000656/* Precision summation function as msum() by Raymond Hettinger in
657 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
658 enhanced with the exact partials sum and roundoff from Mark
659 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000660 See those links for more details, proofs and other references.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000661
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000662 Note 1: IEEE 754R floating point semantics are assumed,
663 but the current implementation does not re-establish special
664 value semantics across iterations (i.e. handling -Inf + Inf).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000665
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000666 Note 2: No provision is made for intermediate overflow handling;
Raymond Hettinger2a9179a2008-05-29 08:38:23 +0000667 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000668 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
669 overflow of the first partial sum.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000670
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000671 Note 3: The intermediate values lo, yr, and hi are declared volatile so
Mark Dickinson2fcd8c92008-06-20 15:26:19 +0000672 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Raymond Hettingerd6234142008-06-09 11:24:47 +0000673 Also, the volatile declaration forces the values to be stored in memory as
674 regular doubles instead of extended long precision (80-bit) values. This
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000675 prevents double rounding because any addition or subtraction of two doubles
Raymond Hettingerd6234142008-06-09 11:24:47 +0000676 can be resolved exactly into double-sized hi and lo values. As long as the
677 hi value gets forced into a double before yr and lo are computed, the extra
678 bits in downstream extended precision operations (x87 for example) will be
679 exactly zero and therefore can be losslessly stored back into a double,
680 thereby preventing double rounding.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000681
Raymond Hettingerd6234142008-06-09 11:24:47 +0000682 Note 4: A similar implementation is in Modules/cmathmodule.c.
683 Be sure to update both when making changes.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000684
Mark Dickinsonff3fdce2008-07-30 16:25:16 +0000685 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000686 because the start argument doesn't make sense in the context of
687 accurate summation. Since the partials table is collapsed before
688 returning a result, sum(seq2, start=sum(seq1)) may not equal the
689 accurate result returned by sum(itertools.chain(seq1, seq2)).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000690*/
691
692#define NUM_PARTIALS 32 /* initial partials array size, on stack */
693
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000694/* Extend the partials array p[] by doubling its size. */
695static int /* non-zero on error */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000696_fsum_realloc(double **p_ptr, Py_ssize_t n,
Raymond Hettingerd6234142008-06-09 11:24:47 +0000697 double *ps, Py_ssize_t *m_ptr)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000698{
699 void *v = NULL;
700 Py_ssize_t m = *m_ptr;
701
Raymond Hettingerd6234142008-06-09 11:24:47 +0000702 m += m; /* double */
703 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
704 double *p = *p_ptr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000705 if (p == ps) {
Raymond Hettingerd6234142008-06-09 11:24:47 +0000706 v = PyMem_Malloc(sizeof(double) * m);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000707 if (v != NULL)
Raymond Hettingerd6234142008-06-09 11:24:47 +0000708 memcpy(v, ps, sizeof(double) * n);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000709 }
710 else
Raymond Hettingerd6234142008-06-09 11:24:47 +0000711 v = PyMem_Realloc(p, sizeof(double) * m);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000712 }
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000713 if (v == NULL) { /* size overflow or no memory */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000714 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
Mark Dickinson99dfe922008-05-23 01:35:30 +0000715 return 1;
716 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000717 *p_ptr = (double*) v;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000718 *m_ptr = m;
719 return 0;
720}
721
722/* Full precision summation of a sequence of floats.
723
724 def msum(iterable):
725 partials = [] # sorted, non-overlapping partial sums
726 for x in iterable:
727 i = 0
728 for y in partials:
729 if abs(x) < abs(y):
730 x, y = y, x
731 hi = x + y
732 lo = y - (hi - x)
733 if lo:
734 partials[i] = lo
735 i += 1
736 x = hi
737 partials[i:] = [x]
738 return sum_exact(partials)
739
740 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
741 are exactly equal to x+y. The inner loop applies hi/lo summation to each
742 partial so that the list of partial sums remains exact.
743
744 Sum_exact() adds the partial sums exactly and correctly rounds the final
745 result (using the round-half-to-even rule). The items in partials remain
746 non-zero, non-special, non-overlapping and strictly increasing in
747 magnitude, but possibly not all having the same sign.
748
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000749 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
750*/
751
Mark Dickinson99dfe922008-05-23 01:35:30 +0000752static PyObject*
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000753math_fsum(PyObject *self, PyObject *seq)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000754{
755 PyObject *item, *iter, *sum = NULL;
756 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
Raymond Hettingerd6234142008-06-09 11:24:47 +0000757 double x, y, t, ps[NUM_PARTIALS], *p = ps;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000758 double xsave, special_sum = 0.0, inf_sum = 0.0;
Raymond Hettingerd6234142008-06-09 11:24:47 +0000759 volatile double hi, yr, lo;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000760
761 iter = PyObject_GetIter(seq);
762 if (iter == NULL)
763 return NULL;
764
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000765 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000766
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000767 for(;;) { /* for x in iterable */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000768 assert(0 <= n && n <= m);
769 assert((m == NUM_PARTIALS && p == ps) ||
770 (m > NUM_PARTIALS && p != NULL));
771
772 item = PyIter_Next(iter);
773 if (item == NULL) {
774 if (PyErr_Occurred())
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000775 goto _fsum_error;
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000776 break;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000777 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000778 x = PyFloat_AsDouble(item);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000779 Py_DECREF(item);
780 if (PyErr_Occurred())
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000781 goto _fsum_error;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000782
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000783 xsave = x;
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000784 for (i = j = 0; j < n; j++) { /* for y in partials */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000785 y = p[j];
Raymond Hettingeref712d62008-05-30 18:20:50 +0000786 if (fabs(x) < fabs(y)) {
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000787 t = x; x = y; y = t;
Raymond Hettingeref712d62008-05-30 18:20:50 +0000788 }
Mark Dickinson99dfe922008-05-23 01:35:30 +0000789 hi = x + y;
Raymond Hettingeref712d62008-05-30 18:20:50 +0000790 yr = hi - x;
791 lo = y - yr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000792 if (lo != 0.0)
793 p[i++] = lo;
794 x = hi;
795 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000796
797 n = i; /* ps[i:] = [x] */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000798 if (x != 0.0) {
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000799 if (! Py_IS_FINITE(x)) {
800 /* a nonfinite x could arise either as
801 a result of intermediate overflow, or
802 as a result of a nan or inf in the
803 summands */
804 if (Py_IS_FINITE(xsave)) {
805 PyErr_SetString(PyExc_OverflowError,
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000806 "intermediate overflow in fsum");
807 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000808 }
809 if (Py_IS_INFINITY(xsave))
810 inf_sum += xsave;
811 special_sum += xsave;
812 /* reset partials */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000813 n = 0;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000814 }
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000815 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
816 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000817 else
818 p[n++] = x;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000819 }
820 }
Mark Dickinson99dfe922008-05-23 01:35:30 +0000821
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000822 if (special_sum != 0.0) {
823 if (Py_IS_NAN(inf_sum))
824 PyErr_SetString(PyExc_ValueError,
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000825 "-inf + inf in fsum");
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000826 else
827 sum = PyFloat_FromDouble(special_sum);
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000828 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000829 }
830
Raymond Hettingeref712d62008-05-30 18:20:50 +0000831 hi = 0.0;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000832 if (n > 0) {
833 hi = p[--n];
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000834 /* sum_exact(ps, hi) from the top, stop when the sum becomes
835 inexact. */
836 while (n > 0) {
837 x = hi;
838 y = p[--n];
839 assert(fabs(y) < fabs(x));
840 hi = x + y;
841 yr = hi - x;
842 lo = y - yr;
843 if (lo != 0.0)
844 break;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000845 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000846 /* Make half-even rounding work across multiple partials.
847 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
848 digit to two instead of down to zero (the 1e-16 makes the 1
849 slightly closer to two). With a potential 1 ULP rounding
Mark Dickinsonff3fdce2008-07-30 16:25:16 +0000850 error fixed-up, math.fsum() can guarantee commutativity. */
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000851 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
852 (lo > 0.0 && p[n-1] > 0.0))) {
853 y = lo * 2.0;
854 x = hi + y;
855 yr = x - hi;
856 if (y == yr)
857 hi = x;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000858 }
859 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000860 sum = PyFloat_FromDouble(hi);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000861
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000862_fsum_error:
Mark Dickinson99dfe922008-05-23 01:35:30 +0000863 PyFPE_END_PROTECT(hi)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000864 Py_DECREF(iter);
865 if (p != ps)
866 PyMem_Free(p);
867 return sum;
868}
869
870#undef NUM_PARTIALS
871
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000872PyDoc_STRVAR(math_fsum_doc,
Georg Brandl40777e62009-10-29 20:38:32 +0000873"fsum(iterable)\n\n\
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000874Return an accurate floating point sum of values in the iterable.\n\
875Assumes IEEE-754 floating point arithmetic.");
Mark Dickinson99dfe922008-05-23 01:35:30 +0000876
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000877static PyObject *
878math_factorial(PyObject *self, PyObject *arg)
879{
880 long i, x;
881 PyObject *result, *iobj, *newresult;
882
883 if (PyFloat_Check(arg)) {
884 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
885 if (dx != floor(dx)) {
886 PyErr_SetString(PyExc_ValueError,
887 "factorial() only accepts integral values");
888 return NULL;
889 }
890 }
891
892 x = PyInt_AsLong(arg);
893 if (x == -1 && PyErr_Occurred())
894 return NULL;
895 if (x < 0) {
896 PyErr_SetString(PyExc_ValueError,
897 "factorial() not defined for negative values");
898 return NULL;
899 }
900
901 result = (PyObject *)PyInt_FromLong(1);
902 if (result == NULL)
903 return NULL;
904 for (i=1 ; i<=x ; i++) {
905 iobj = (PyObject *)PyInt_FromLong(i);
906 if (iobj == NULL)
907 goto error;
908 newresult = PyNumber_Multiply(result, iobj);
909 Py_DECREF(iobj);
910 if (newresult == NULL)
911 goto error;
912 Py_DECREF(result);
913 result = newresult;
914 }
915 return result;
916
917error:
918 Py_DECREF(result);
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000919 return NULL;
920}
921
Benjamin Petersonfed67fd2008-12-20 02:57:19 +0000922PyDoc_STRVAR(math_factorial_doc,
923"factorial(x) -> Integral\n"
924"\n"
925"Find x!. Raise a ValueError if x is negative or non-integral.");
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000926
Barry Warsaw8b43b191996-12-09 22:32:36 +0000927static PyObject *
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000928math_trunc(PyObject *self, PyObject *number)
929{
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000930 return PyObject_CallMethod(number, "__trunc__", NULL);
931}
932
933PyDoc_STRVAR(math_trunc_doc,
934"trunc(x:Real) -> Integral\n"
935"\n"
Raymond Hettingerfe424f72008-02-02 05:24:44 +0000936"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000937
938static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000939math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000940{
Guido van Rossumd18ad581991-10-24 14:57:21 +0000941 int i;
Neal Norwitz45e230a2006-11-19 21:26:53 +0000942 double x = PyFloat_AsDouble(arg);
943 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +0000944 return NULL;
Christian Heimes6f341092008-04-18 23:13:07 +0000945 /* deal with special cases directly, to sidestep platform
946 differences */
947 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
948 i = 0;
949 }
950 else {
951 PyFPE_START_PROTECT("in math_frexp", return 0);
952 x = frexp(x, &i);
953 PyFPE_END_PROTECT(x);
954 }
955 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000956}
957
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000958PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000959"frexp(x)\n"
960"\n"
961"Return the mantissa and exponent of x, as pair (m, e).\n"
962"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000963"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000964
Barry Warsaw8b43b191996-12-09 22:32:36 +0000965static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +0000966math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000967{
Christian Heimes6f341092008-04-18 23:13:07 +0000968 double x, r;
Mark Dickinsonf8476c12008-05-09 17:54:23 +0000969 PyObject *oexp;
970 long exp;
971 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
Guido van Rossumd18ad581991-10-24 14:57:21 +0000972 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +0000973
974 if (PyLong_Check(oexp)) {
975 /* on overflow, replace exponent with either LONG_MAX
976 or LONG_MIN, depending on the sign. */
977 exp = PyLong_AsLong(oexp);
978 if (exp == -1 && PyErr_Occurred()) {
979 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
980 if (Py_SIZE(oexp) < 0) {
981 exp = LONG_MIN;
982 }
983 else {
984 exp = LONG_MAX;
985 }
986 PyErr_Clear();
987 }
988 else {
989 /* propagate any unexpected exception */
990 return NULL;
991 }
992 }
993 }
994 else if (PyInt_Check(oexp)) {
995 exp = PyInt_AS_LONG(oexp);
996 }
997 else {
998 PyErr_SetString(PyExc_TypeError,
999 "Expected an int or long as second argument "
1000 "to ldexp.");
1001 return NULL;
1002 }
1003
1004 if (x == 0. || !Py_IS_FINITE(x)) {
1005 /* NaNs, zeros and infinities are returned unchanged */
1006 r = x;
Christian Heimes6f341092008-04-18 23:13:07 +00001007 errno = 0;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001008 } else if (exp > INT_MAX) {
1009 /* overflow */
1010 r = copysign(Py_HUGE_VAL, x);
1011 errno = ERANGE;
1012 } else if (exp < INT_MIN) {
1013 /* underflow to +-0 */
1014 r = copysign(0., x);
1015 errno = 0;
1016 } else {
1017 errno = 0;
1018 PyFPE_START_PROTECT("in math_ldexp", return 0);
1019 r = ldexp(x, (int)exp);
1020 PyFPE_END_PROTECT(r);
1021 if (Py_IS_INFINITY(r))
1022 errno = ERANGE;
1023 }
1024
Christian Heimes6f341092008-04-18 23:13:07 +00001025 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +00001026 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001027 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001028}
1029
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001030PyDoc_STRVAR(math_ldexp_doc,
1031"ldexp(x, i) -> x * (2**i)");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001032
Barry Warsaw8b43b191996-12-09 22:32:36 +00001033static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001034math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001035{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001036 double y, x = PyFloat_AsDouble(arg);
1037 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001038 return NULL;
Mark Dickinsonb2f70902008-04-20 01:39:24 +00001039 /* some platforms don't do the right thing for NaNs and
1040 infinities, so we take care of special cases directly. */
1041 if (!Py_IS_FINITE(x)) {
1042 if (Py_IS_INFINITY(x))
1043 return Py_BuildValue("(dd)", copysign(0., x), x);
1044 else if (Py_IS_NAN(x))
1045 return Py_BuildValue("(dd)", x, x);
1046 }
1047
Guido van Rossumd18ad581991-10-24 14:57:21 +00001048 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +00001049 PyFPE_START_PROTECT("in math_modf", return 0);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001050 x = modf(x, &y);
Christian Heimes6f341092008-04-18 23:13:07 +00001051 PyFPE_END_PROTECT(x);
1052 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001053}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001054
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001055PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001056"modf(x)\n"
1057"\n"
1058"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson9de72982008-12-20 22:49:24 +00001059"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001060
Tim Peters78526162001-09-05 00:53:45 +00001061/* A decent logarithm is easy to compute even for huge longs, but libm can't
1062 do that by itself -- loghelper can. func is log or log10, and name is
1063 "log" or "log10". Note that overflow isn't possible: a long can contain
1064 no more than INT_MAX * SHIFT bits, so has value certainly less than
1065 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
1066 small enough to fit in an IEEE single. log and log10 are even smaller.
1067*/
1068
1069static PyObject*
Neal Norwitz45e230a2006-11-19 21:26:53 +00001070loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001071{
Tim Peters78526162001-09-05 00:53:45 +00001072 /* If it is long, do it ourselves. */
1073 if (PyLong_Check(arg)) {
1074 double x;
1075 int e;
1076 x = _PyLong_AsScaledDouble(arg, &e);
1077 if (x <= 0.0) {
1078 PyErr_SetString(PyExc_ValueError,
1079 "math domain error");
1080 return NULL;
1081 }
Christian Heimes543cabc2008-01-25 14:54:23 +00001082 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
1083 log(x) + log(2) * e * PyLong_SHIFT.
1084 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
Tim Peters78526162001-09-05 00:53:45 +00001085 so force use of double. */
Christian Heimes543cabc2008-01-25 14:54:23 +00001086 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
Tim Peters78526162001-09-05 00:53:45 +00001087 return PyFloat_FromDouble(x);
1088 }
1089
1090 /* Else let libm handle it by itself. */
Christian Heimes6f341092008-04-18 23:13:07 +00001091 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001092}
1093
1094static PyObject *
1095math_log(PyObject *self, PyObject *args)
1096{
Raymond Hettinger866964c2002-12-14 19:51:34 +00001097 PyObject *arg;
1098 PyObject *base = NULL;
1099 PyObject *num, *den;
1100 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001101
Raymond Hettingerea3fdf42002-12-29 16:33:45 +00001102 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
Raymond Hettinger866964c2002-12-14 19:51:34 +00001103 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001104
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001105 num = loghelper(arg, m_log, "log");
Neal Norwitz45e230a2006-11-19 21:26:53 +00001106 if (num == NULL || base == NULL)
1107 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001108
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001109 den = loghelper(base, m_log, "log");
Raymond Hettinger866964c2002-12-14 19:51:34 +00001110 if (den == NULL) {
1111 Py_DECREF(num);
1112 return NULL;
1113 }
1114
1115 ans = PyNumber_Divide(num, den);
1116 Py_DECREF(num);
1117 Py_DECREF(den);
1118 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001119}
1120
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001121PyDoc_STRVAR(math_log_doc,
Raymond Hettinger866964c2002-12-14 19:51:34 +00001122"log(x[, base]) -> the logarithm of x to the given base.\n\
1123If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001124
1125static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001126math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001127{
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001128 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001129}
1130
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001131PyDoc_STRVAR(math_log10_doc,
1132"log10(x) -> the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001133
Christian Heimes6f341092008-04-18 23:13:07 +00001134static PyObject *
1135math_fmod(PyObject *self, PyObject *args)
1136{
1137 PyObject *ox, *oy;
1138 double r, x, y;
1139 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1140 return NULL;
1141 x = PyFloat_AsDouble(ox);
1142 y = PyFloat_AsDouble(oy);
1143 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1144 return NULL;
1145 /* fmod(x, +/-Inf) returns x for finite x. */
1146 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1147 return PyFloat_FromDouble(x);
1148 errno = 0;
1149 PyFPE_START_PROTECT("in math_fmod", return 0);
1150 r = fmod(x, y);
1151 PyFPE_END_PROTECT(r);
1152 if (Py_IS_NAN(r)) {
1153 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1154 errno = EDOM;
1155 else
1156 errno = 0;
1157 }
1158 if (errno && is_error(r))
1159 return NULL;
1160 else
1161 return PyFloat_FromDouble(r);
1162}
1163
1164PyDoc_STRVAR(math_fmod_doc,
1165"fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
1166" x % y may differ.");
1167
1168static PyObject *
1169math_hypot(PyObject *self, PyObject *args)
1170{
1171 PyObject *ox, *oy;
1172 double r, x, y;
1173 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1174 return NULL;
1175 x = PyFloat_AsDouble(ox);
1176 y = PyFloat_AsDouble(oy);
1177 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1178 return NULL;
1179 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1180 if (Py_IS_INFINITY(x))
1181 return PyFloat_FromDouble(fabs(x));
1182 if (Py_IS_INFINITY(y))
1183 return PyFloat_FromDouble(fabs(y));
1184 errno = 0;
1185 PyFPE_START_PROTECT("in math_hypot", return 0);
1186 r = hypot(x, y);
1187 PyFPE_END_PROTECT(r);
1188 if (Py_IS_NAN(r)) {
1189 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1190 errno = EDOM;
1191 else
1192 errno = 0;
1193 }
1194 else if (Py_IS_INFINITY(r)) {
1195 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1196 errno = ERANGE;
1197 else
1198 errno = 0;
1199 }
1200 if (errno && is_error(r))
1201 return NULL;
1202 else
1203 return PyFloat_FromDouble(r);
1204}
1205
1206PyDoc_STRVAR(math_hypot_doc,
1207"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
1208
1209/* pow can't use math_2, but needs its own wrapper: the problem is
1210 that an infinite result can arise either as a result of overflow
1211 (in which case OverflowError should be raised) or as a result of
1212 e.g. 0.**-5. (for which ValueError needs to be raised.)
1213*/
1214
1215static PyObject *
1216math_pow(PyObject *self, PyObject *args)
1217{
1218 PyObject *ox, *oy;
1219 double r, x, y;
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001220 int odd_y;
Christian Heimes6f341092008-04-18 23:13:07 +00001221
1222 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1223 return NULL;
1224 x = PyFloat_AsDouble(ox);
1225 y = PyFloat_AsDouble(oy);
1226 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1227 return NULL;
Mark Dickinsona1293eb2008-04-19 19:41:52 +00001228
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001229 /* deal directly with IEEE specials, to cope with problems on various
1230 platforms whose semantics don't exactly match C99 */
Mark Dickinson0da94c82008-04-21 01:55:50 +00001231 r = 0.; /* silence compiler warning */
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001232 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1233 errno = 0;
1234 if (Py_IS_NAN(x))
1235 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1236 else if (Py_IS_NAN(y))
1237 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1238 else if (Py_IS_INFINITY(x)) {
1239 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1240 if (y > 0.)
1241 r = odd_y ? x : fabs(x);
1242 else if (y == 0.)
1243 r = 1.;
1244 else /* y < 0. */
1245 r = odd_y ? copysign(0., x) : 0.;
1246 }
1247 else if (Py_IS_INFINITY(y)) {
1248 if (fabs(x) == 1.0)
1249 r = 1.;
1250 else if (y > 0. && fabs(x) > 1.0)
1251 r = y;
1252 else if (y < 0. && fabs(x) < 1.0) {
1253 r = -y; /* result is +inf */
1254 if (x == 0.) /* 0**-inf: divide-by-zero */
1255 errno = EDOM;
1256 }
1257 else
1258 r = 0.;
1259 }
Mark Dickinsone941d972008-04-19 18:51:48 +00001260 }
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001261 else {
1262 /* let libm handle finite**finite */
1263 errno = 0;
1264 PyFPE_START_PROTECT("in math_pow", return 0);
1265 r = pow(x, y);
1266 PyFPE_END_PROTECT(r);
1267 /* a NaN result should arise only from (-ve)**(finite
1268 non-integer); in this case we want to raise ValueError. */
1269 if (!Py_IS_FINITE(r)) {
1270 if (Py_IS_NAN(r)) {
1271 errno = EDOM;
1272 }
1273 /*
1274 an infinite result here arises either from:
1275 (A) (+/-0.)**negative (-> divide-by-zero)
1276 (B) overflow of x**y with x and y finite
1277 */
1278 else if (Py_IS_INFINITY(r)) {
1279 if (x == 0.)
1280 errno = EDOM;
1281 else
1282 errno = ERANGE;
1283 }
1284 }
Christian Heimes6f341092008-04-18 23:13:07 +00001285 }
1286
1287 if (errno && is_error(r))
1288 return NULL;
1289 else
1290 return PyFloat_FromDouble(r);
1291}
1292
1293PyDoc_STRVAR(math_pow_doc,
1294"pow(x,y)\n\nReturn x**y (x to the power of y).");
1295
Christian Heimese2ca4242008-01-03 20:23:15 +00001296static const double degToRad = Py_MATH_PI / 180.0;
1297static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001298
1299static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001300math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001301{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001302 double x = PyFloat_AsDouble(arg);
1303 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001304 return NULL;
Christian Heimese2ca4242008-01-03 20:23:15 +00001305 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001306}
1307
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001308PyDoc_STRVAR(math_degrees_doc,
1309"degrees(x) -> converts angle x from radians to degrees");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001310
1311static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001312math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001313{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001314 double x = PyFloat_AsDouble(arg);
1315 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001316 return NULL;
1317 return PyFloat_FromDouble(x * degToRad);
1318}
1319
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001320PyDoc_STRVAR(math_radians_doc,
1321"radians(x) -> converts angle x from degrees to radians");
Tim Peters78526162001-09-05 00:53:45 +00001322
Christian Heimese2ca4242008-01-03 20:23:15 +00001323static PyObject *
1324math_isnan(PyObject *self, PyObject *arg)
1325{
1326 double x = PyFloat_AsDouble(arg);
1327 if (x == -1.0 && PyErr_Occurred())
1328 return NULL;
1329 return PyBool_FromLong((long)Py_IS_NAN(x));
1330}
1331
1332PyDoc_STRVAR(math_isnan_doc,
1333"isnan(x) -> bool\n\
1334Checks if float x is not a number (NaN)");
1335
1336static PyObject *
1337math_isinf(PyObject *self, PyObject *arg)
1338{
1339 double x = PyFloat_AsDouble(arg);
1340 if (x == -1.0 && PyErr_Occurred())
1341 return NULL;
1342 return PyBool_FromLong((long)Py_IS_INFINITY(x));
1343}
1344
1345PyDoc_STRVAR(math_isinf_doc,
1346"isinf(x) -> bool\n\
1347Checks if float x is infinite (positive or negative)");
1348
Barry Warsaw8b43b191996-12-09 22:32:36 +00001349static PyMethodDef math_methods[] = {
Neal Norwitz45e230a2006-11-19 21:26:53 +00001350 {"acos", math_acos, METH_O, math_acos_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001351 {"acosh", math_acosh, METH_O, math_acosh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001352 {"asin", math_asin, METH_O, math_asin_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001353 {"asinh", math_asinh, METH_O, math_asinh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001354 {"atan", math_atan, METH_O, math_atan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001355 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001356 {"atanh", math_atanh, METH_O, math_atanh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001357 {"ceil", math_ceil, METH_O, math_ceil_doc},
Christian Heimeseebb79c2008-01-03 22:32:26 +00001358 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001359 {"cos", math_cos, METH_O, math_cos_doc},
1360 {"cosh", math_cosh, METH_O, math_cosh_doc},
1361 {"degrees", math_degrees, METH_O, math_degrees_doc},
1362 {"exp", math_exp, METH_O, math_exp_doc},
1363 {"fabs", math_fabs, METH_O, math_fabs_doc},
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001364 {"factorial", math_factorial, METH_O, math_factorial_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001365 {"floor", math_floor, METH_O, math_floor_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001366 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001367 {"frexp", math_frexp, METH_O, math_frexp_doc},
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001368 {"fsum", math_fsum, METH_O, math_fsum_doc},
Mark Dickinsonb93fff02009-09-28 18:54:55 +00001369 {"gamma", math_gamma, METH_O, math_gamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001370 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Christian Heimese2ca4242008-01-03 20:23:15 +00001371 {"isinf", math_isinf, METH_O, math_isinf_doc},
1372 {"isnan", math_isnan, METH_O, math_isnan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001373 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1374 {"log", math_log, METH_VARARGS, math_log_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001375 {"log1p", math_log1p, METH_O, math_log1p_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001376 {"log10", math_log10, METH_O, math_log10_doc},
1377 {"modf", math_modf, METH_O, math_modf_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001378 {"pow", math_pow, METH_VARARGS, math_pow_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001379 {"radians", math_radians, METH_O, math_radians_doc},
1380 {"sin", math_sin, METH_O, math_sin_doc},
1381 {"sinh", math_sinh, METH_O, math_sinh_doc},
1382 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1383 {"tan", math_tan, METH_O, math_tan_doc},
1384 {"tanh", math_tanh, METH_O, math_tanh_doc},
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001385 {"trunc", math_trunc, METH_O, math_trunc_doc},
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001386 {NULL, NULL} /* sentinel */
1387};
1388
Guido van Rossumc6e22901998-12-04 19:26:43 +00001389
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001390PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001391"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001392"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001393
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001394PyMODINIT_FUNC
Thomas Woutersf3f33dc2000-07-21 06:00:07 +00001395initmath(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001396{
Christian Heimes6f341092008-04-18 23:13:07 +00001397 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001398
Guido van Rossumc6e22901998-12-04 19:26:43 +00001399 m = Py_InitModule3("math", math_methods, module_doc);
Neal Norwitz1ac754f2006-01-19 06:09:39 +00001400 if (m == NULL)
1401 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001402
Christian Heimes6f341092008-04-18 23:13:07 +00001403 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1404 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001405
Christian Heimes6f341092008-04-18 23:13:07 +00001406 finally:
Barry Warsaw9bfd2bf2000-09-01 09:01:32 +00001407 return;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001408}