blob: 5637c6c046c53efa9ee2819e781de8700645a74f [file] [log] [blame]
Mark Dickinsonbb282852009-10-24 12:13:30 +00001/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20/****************************************************************
21 * This is dtoa.c by David M. Gay, downloaded from
22 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24 *
25 * Please remember to check http://www.netlib.org/fp regularly (and especially
26 * before any Python release) for bugfixes and updates.
27 *
28 * The major modifications from Gay's original code are as follows:
29 *
30 * 0. The original code has been specialized to Python's needs by removing
31 * many of the #ifdef'd sections. In particular, code to support VAX and
32 * IBM floating-point formats, hex NaNs, hex floats, locale-aware
33 * treatment of the decimal point, and setting of the inexact flag have
34 * been removed.
35 *
36 * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37 *
38 * 2. The public functions strtod, dtoa and freedtoa all now have
39 * a _Py_dg_ prefix.
40 *
41 * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42 * PyMem_Malloc failures through the code. The functions
43 *
44 * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45 *
46 * of return type *Bigint all return NULL to indicate a malloc failure.
47 * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48 * failure. bigcomp now has return type int (it used to be void) and
49 * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL
50 * on failure. _Py_dg_strtod indicates failure due to malloc failure
51 * by returning -1.0, setting errno=ENOMEM and *se to s00.
52 *
53 * 4. The static variable dtoa_result has been removed. Callers of
54 * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55 * the memory allocated by _Py_dg_dtoa.
56 *
57 * 5. The code has been reformatted to better fit with Python's
58 * C style guide (PEP 7).
59 *
60 * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61 * that hasn't been MALLOC'ed, private_mem should only be used when k <=
62 * Kmax.
63 *
64 * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65 * leading whitespace.
66 *
67 ***************************************************************/
68
69/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
70 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
71 * Please report bugs for this modified version using the Python issue tracker
72 * (http://bugs.python.org). */
73
74/* On a machine with IEEE extended-precision registers, it is
75 * necessary to specify double-precision (53-bit) rounding precision
76 * before invoking strtod or dtoa. If the machine uses (the equivalent
77 * of) Intel 80x87 arithmetic, the call
78 * _control87(PC_53, MCW_PC);
79 * does this with many compilers. Whether this or another call is
80 * appropriate depends on the compiler; for this to work, it may be
81 * necessary to #include "float.h" or another system-dependent header
82 * file.
83 */
84
85/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
86 *
87 * This strtod returns a nearest machine number to the input decimal
88 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
89 * broken by the IEEE round-even rule. Otherwise ties are broken by
90 * biased rounding (add half and chop).
91 *
92 * Inspired loosely by William D. Clinger's paper "How to Read Floating
93 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
94 *
95 * Modifications:
96 *
97 * 1. We only require IEEE, IBM, or VAX double-precision
98 * arithmetic (not IEEE double-extended).
99 * 2. We get by with floating-point arithmetic in a case that
100 * Clinger missed -- when we're computing d * 10^n
101 * for a small integer d and the integer n is not too
102 * much larger than 22 (the maximum integer k for which
103 * we can represent 10^k exactly), we may be able to
104 * compute (d*10^k) * 10^(e-k) with just one roundoff.
105 * 3. Rather than a bit-at-a-time adjustment of the binary
106 * result in the hard case, we use floating-point
107 * arithmetic to determine the adjustment to within
108 * one bit; only in really hard cases do we need to
109 * compute a second residual.
110 * 4. Because of 3., we don't need a large table of powers of 10
111 * for ten-to-e (just some small tables, e.g. of 10^k
112 * for 0 <= k <= 22).
113 */
114
115/* Linking of Python's #defines to Gay's #defines starts here. */
116
117#include "Python.h"
118
Mark Dickinsonbb282852009-10-24 12:13:30 +0000119/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
120 the following code */
121#ifndef PY_NO_SHORT_FLOAT_REPR
122
123#include "float.h"
124
125#define MALLOC PyMem_Malloc
126#define FREE PyMem_Free
127
128/* This code should also work for ARM mixed-endian format on little-endian
129 machines, where doubles have byte order 45670123 (in increasing address
130 order, 0 being the least significant byte). */
131#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
132# define IEEE_8087
133#endif
134#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \
135 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
136# define IEEE_MC68k
137#endif
138#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
139#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
140#endif
141
142/* The code below assumes that the endianness of integers matches the
143 endianness of the two 32-bit words of a double. Check this. */
144#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
145 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
146#error "doubles and ints have incompatible endianness"
147#endif
148
149#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
150#error "doubles and ints have incompatible endianness"
151#endif
152
153
154#if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
155typedef PY_UINT32_T ULong;
156typedef PY_INT32_T Long;
157#else
158#error "Failed to find an exact-width 32-bit integer type"
159#endif
160
161#if defined(HAVE_UINT64_T)
162#define ULLong PY_UINT64_T
163#else
164#undef ULLong
165#endif
166
167#undef DEBUG
168#ifdef Py_DEBUG
169#define DEBUG
170#endif
171
172/* End Python #define linking */
173
174#ifdef DEBUG
175#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
176#endif
177
178#ifndef PRIVATE_MEM
179#define PRIVATE_MEM 2304
180#endif
181#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
182static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
183
184#ifdef __cplusplus
185extern "C" {
186#endif
187
188typedef union { double d; ULong L[2]; } U;
189
190#ifdef IEEE_8087
191#define word0(x) (x)->L[1]
192#define word1(x) (x)->L[0]
193#else
194#define word0(x) (x)->L[0]
195#define word1(x) (x)->L[1]
196#endif
197#define dval(x) (x)->d
198
199#ifndef STRTOD_DIGLIM
200#define STRTOD_DIGLIM 40
201#endif
202
Mark Dickinson0ca74522010-01-11 17:15:13 +0000203/* maximum permitted exponent value for strtod; exponents larger than
204 MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP
205 should fit into an int. */
206#ifndef MAX_ABS_EXP
207#define MAX_ABS_EXP 19999U
208#endif
209
Mark Dickinsonbb282852009-10-24 12:13:30 +0000210/* The following definition of Storeinc is appropriate for MIPS processors.
211 * An alternative that might be better on some machines is
212 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
213 */
214#if defined(IEEE_8087)
215#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
216 ((unsigned short *)a)[0] = (unsigned short)c, a++)
217#else
218#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
219 ((unsigned short *)a)[1] = (unsigned short)c, a++)
220#endif
221
222/* #define P DBL_MANT_DIG */
223/* Ten_pmax = floor(P*log(2)/log(5)) */
224/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
225/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
226/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
227
228#define Exp_shift 20
229#define Exp_shift1 20
230#define Exp_msk1 0x100000
231#define Exp_msk11 0x100000
232#define Exp_mask 0x7ff00000
233#define P 53
234#define Nbits 53
235#define Bias 1023
236#define Emax 1023
237#define Emin (-1022)
238#define Exp_1 0x3ff00000
239#define Exp_11 0x3ff00000
240#define Ebits 11
241#define Frac_mask 0xfffff
242#define Frac_mask1 0xfffff
243#define Ten_pmax 22
244#define Bletch 0x10
245#define Bndry_mask 0xfffff
246#define Bndry_mask1 0xfffff
247#define LSB 1
248#define Sign_bit 0x80000000
249#define Log2P 1
250#define Tiny0 0
251#define Tiny1 1
252#define Quick_max 14
253#define Int_max 14
254
255#ifndef Flt_Rounds
256#ifdef FLT_ROUNDS
257#define Flt_Rounds FLT_ROUNDS
258#else
259#define Flt_Rounds 1
260#endif
261#endif /*Flt_Rounds*/
262
263#define Rounding Flt_Rounds
264
265#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
266#define Big1 0xffffffff
267
268/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
269
270typedef struct BCinfo BCinfo;
271struct
272BCinfo {
Mark Dickinsond2a99402010-01-13 22:20:10 +0000273 int dsign, e0, nd, nd0, scale;
Mark Dickinsonbb282852009-10-24 12:13:30 +0000274};
275
276#define FFFFFFFF 0xffffffffUL
277
278#define Kmax 7
279
280/* struct Bigint is used to represent arbitrary-precision integers. These
281 integers are stored in sign-magnitude format, with the magnitude stored as
282 an array of base 2**32 digits. Bigints are always normalized: if x is a
283 Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
284
285 The Bigint fields are as follows:
286
287 - next is a header used by Balloc and Bfree to keep track of lists
288 of freed Bigints; it's also used for the linked list of
289 powers of 5 of the form 5**2**i used by pow5mult.
290 - k indicates which pool this Bigint was allocated from
291 - maxwds is the maximum number of words space was allocated for
292 (usually maxwds == 2**k)
293 - sign is 1 for negative Bigints, 0 for positive. The sign is unused
294 (ignored on inputs, set to 0 on outputs) in almost all operations
295 involving Bigints: a notable exception is the diff function, which
296 ignores signs on inputs but sets the sign of the output correctly.
297 - wds is the actual number of significant words
298 - x contains the vector of words (digits) for this Bigint, from least
299 significant (x[0]) to most significant (x[wds-1]).
300*/
301
302struct
303Bigint {
304 struct Bigint *next;
305 int k, maxwds, sign, wds;
306 ULong x[1];
307};
308
309typedef struct Bigint Bigint;
310
311/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
312 of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
313 1 << k. These pools are maintained as linked lists, with freelist[k]
314 pointing to the head of the list for pool k.
315
316 On allocation, if there's no free slot in the appropriate pool, MALLOC is
317 called to get more memory. This memory is not returned to the system until
318 Python quits. There's also a private memory pool that's allocated from
319 in preference to using MALLOC.
320
321 For Bigints with more than (1 << Kmax) digits (which implies at least 1233
322 decimal digits), memory is directly allocated using MALLOC, and freed using
323 FREE.
324
325 XXX: it would be easy to bypass this memory-management system and
326 translate each call to Balloc into a call to PyMem_Malloc, and each
327 Bfree to PyMem_Free. Investigate whether this has any significant
328 performance on impact. */
329
330static Bigint *freelist[Kmax+1];
331
332/* Allocate space for a Bigint with up to 1<<k digits */
333
334static Bigint *
335Balloc(int k)
336{
337 int x;
338 Bigint *rv;
339 unsigned int len;
340
341 if (k <= Kmax && (rv = freelist[k]))
342 freelist[k] = rv->next;
343 else {
344 x = 1 << k;
345 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
346 /sizeof(double);
347 if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
348 rv = (Bigint*)pmem_next;
349 pmem_next += len;
350 }
351 else {
352 rv = (Bigint*)MALLOC(len*sizeof(double));
353 if (rv == NULL)
354 return NULL;
355 }
356 rv->k = k;
357 rv->maxwds = x;
358 }
359 rv->sign = rv->wds = 0;
360 return rv;
361}
362
363/* Free a Bigint allocated with Balloc */
364
365static void
366Bfree(Bigint *v)
367{
368 if (v) {
369 if (v->k > Kmax)
370 FREE((void*)v);
371 else {
372 v->next = freelist[v->k];
373 freelist[v->k] = v;
374 }
375 }
376}
377
378#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
379 y->wds*sizeof(Long) + 2*sizeof(int))
380
381/* Multiply a Bigint b by m and add a. Either modifies b in place and returns
382 a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
383 On failure, return NULL. In this case, b will have been already freed. */
384
385static Bigint *
386multadd(Bigint *b, int m, int a) /* multiply by m and add a */
387{
388 int i, wds;
389#ifdef ULLong
390 ULong *x;
391 ULLong carry, y;
392#else
393 ULong carry, *x, y;
394 ULong xi, z;
395#endif
396 Bigint *b1;
397
398 wds = b->wds;
399 x = b->x;
400 i = 0;
401 carry = a;
402 do {
403#ifdef ULLong
404 y = *x * (ULLong)m + carry;
405 carry = y >> 32;
406 *x++ = (ULong)(y & FFFFFFFF);
407#else
408 xi = *x;
409 y = (xi & 0xffff) * m + carry;
410 z = (xi >> 16) * m + (y >> 16);
411 carry = z >> 16;
412 *x++ = (z << 16) + (y & 0xffff);
413#endif
414 }
415 while(++i < wds);
416 if (carry) {
417 if (wds >= b->maxwds) {
418 b1 = Balloc(b->k+1);
419 if (b1 == NULL){
420 Bfree(b);
421 return NULL;
422 }
423 Bcopy(b1, b);
424 Bfree(b);
425 b = b1;
426 }
427 b->x[wds++] = (ULong)carry;
428 b->wds = wds;
429 }
430 return b;
431}
432
433/* convert a string s containing nd decimal digits (possibly containing a
434 decimal separator at position nd0, which is ignored) to a Bigint. This
435 function carries on where the parsing code in _Py_dg_strtod leaves off: on
436 entry, y9 contains the result of converting the first 9 digits. Returns
437 NULL on failure. */
438
439static Bigint *
Mark Dickinsond2a99402010-01-13 22:20:10 +0000440s2b(const char *s, int nd0, int nd, ULong y9)
Mark Dickinsonbb282852009-10-24 12:13:30 +0000441{
442 Bigint *b;
443 int i, k;
444 Long x, y;
445
446 x = (nd + 8) / 9;
447 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
448 b = Balloc(k);
449 if (b == NULL)
450 return NULL;
451 b->x[0] = y9;
452 b->wds = 1;
453
Mark Dickinsond2a99402010-01-13 22:20:10 +0000454 if (nd <= 9)
455 return b;
456
457 s += 9;
458 for (i = 9; i < nd0; i++) {
459 b = multadd(b, 10, *s++ - '0');
460 if (b == NULL)
461 return NULL;
Mark Dickinsonbb282852009-10-24 12:13:30 +0000462 }
Mark Dickinsond2a99402010-01-13 22:20:10 +0000463 s++;
Mark Dickinsonbb282852009-10-24 12:13:30 +0000464 for(; i < nd; i++) {
465 b = multadd(b, 10, *s++ - '0');
466 if (b == NULL)
467 return NULL;
468 }
469 return b;
470}
471
472/* count leading 0 bits in the 32-bit integer x. */
473
474static int
475hi0bits(ULong x)
476{
477 int k = 0;
478
479 if (!(x & 0xffff0000)) {
480 k = 16;
481 x <<= 16;
482 }
483 if (!(x & 0xff000000)) {
484 k += 8;
485 x <<= 8;
486 }
487 if (!(x & 0xf0000000)) {
488 k += 4;
489 x <<= 4;
490 }
491 if (!(x & 0xc0000000)) {
492 k += 2;
493 x <<= 2;
494 }
495 if (!(x & 0x80000000)) {
496 k++;
497 if (!(x & 0x40000000))
498 return 32;
499 }
500 return k;
501}
502
503/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
504 number of bits. */
505
506static int
507lo0bits(ULong *y)
508{
509 int k;
510 ULong x = *y;
511
512 if (x & 7) {
513 if (x & 1)
514 return 0;
515 if (x & 2) {
516 *y = x >> 1;
517 return 1;
518 }
519 *y = x >> 2;
520 return 2;
521 }
522 k = 0;
523 if (!(x & 0xffff)) {
524 k = 16;
525 x >>= 16;
526 }
527 if (!(x & 0xff)) {
528 k += 8;
529 x >>= 8;
530 }
531 if (!(x & 0xf)) {
532 k += 4;
533 x >>= 4;
534 }
535 if (!(x & 0x3)) {
536 k += 2;
537 x >>= 2;
538 }
539 if (!(x & 1)) {
540 k++;
541 x >>= 1;
542 if (!x)
543 return 32;
544 }
545 *y = x;
546 return k;
547}
548
549/* convert a small nonnegative integer to a Bigint */
550
551static Bigint *
552i2b(int i)
553{
554 Bigint *b;
555
556 b = Balloc(1);
557 if (b == NULL)
558 return NULL;
559 b->x[0] = i;
560 b->wds = 1;
561 return b;
562}
563
564/* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores
565 the signs of a and b. */
566
567static Bigint *
568mult(Bigint *a, Bigint *b)
569{
570 Bigint *c;
571 int k, wa, wb, wc;
572 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
573 ULong y;
574#ifdef ULLong
575 ULLong carry, z;
576#else
577 ULong carry, z;
578 ULong z2;
579#endif
580
581 if (a->wds < b->wds) {
582 c = a;
583 a = b;
584 b = c;
585 }
586 k = a->k;
587 wa = a->wds;
588 wb = b->wds;
589 wc = wa + wb;
590 if (wc > a->maxwds)
591 k++;
592 c = Balloc(k);
593 if (c == NULL)
594 return NULL;
595 for(x = c->x, xa = x + wc; x < xa; x++)
596 *x = 0;
597 xa = a->x;
598 xae = xa + wa;
599 xb = b->x;
600 xbe = xb + wb;
601 xc0 = c->x;
602#ifdef ULLong
603 for(; xb < xbe; xc0++) {
604 if ((y = *xb++)) {
605 x = xa;
606 xc = xc0;
607 carry = 0;
608 do {
609 z = *x++ * (ULLong)y + *xc + carry;
610 carry = z >> 32;
611 *xc++ = (ULong)(z & FFFFFFFF);
612 }
613 while(x < xae);
614 *xc = (ULong)carry;
615 }
616 }
617#else
618 for(; xb < xbe; xb++, xc0++) {
619 if (y = *xb & 0xffff) {
620 x = xa;
621 xc = xc0;
622 carry = 0;
623 do {
624 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
625 carry = z >> 16;
626 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
627 carry = z2 >> 16;
628 Storeinc(xc, z2, z);
629 }
630 while(x < xae);
631 *xc = carry;
632 }
633 if (y = *xb >> 16) {
634 x = xa;
635 xc = xc0;
636 carry = 0;
637 z2 = *xc;
638 do {
639 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
640 carry = z >> 16;
641 Storeinc(xc, z, z2);
642 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
643 carry = z2 >> 16;
644 }
645 while(x < xae);
646 *xc = z2;
647 }
648 }
649#endif
650 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
651 c->wds = wc;
652 return c;
653}
654
655/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
656
657static Bigint *p5s;
658
659/* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on
660 failure; if the returned pointer is distinct from b then the original
661 Bigint b will have been Bfree'd. Ignores the sign of b. */
662
663static Bigint *
664pow5mult(Bigint *b, int k)
665{
666 Bigint *b1, *p5, *p51;
667 int i;
668 static int p05[3] = { 5, 25, 125 };
669
670 if ((i = k & 3)) {
671 b = multadd(b, p05[i-1], 0);
672 if (b == NULL)
673 return NULL;
674 }
675
676 if (!(k >>= 2))
677 return b;
678 p5 = p5s;
679 if (!p5) {
680 /* first time */
681 p5 = i2b(625);
682 if (p5 == NULL) {
683 Bfree(b);
684 return NULL;
685 }
686 p5s = p5;
687 p5->next = 0;
688 }
689 for(;;) {
690 if (k & 1) {
691 b1 = mult(b, p5);
692 Bfree(b);
693 b = b1;
694 if (b == NULL)
695 return NULL;
696 }
697 if (!(k >>= 1))
698 break;
699 p51 = p5->next;
700 if (!p51) {
701 p51 = mult(p5,p5);
702 if (p51 == NULL) {
703 Bfree(b);
704 return NULL;
705 }
706 p51->next = 0;
707 p5->next = p51;
708 }
709 p5 = p51;
710 }
711 return b;
712}
713
714/* shift a Bigint b left by k bits. Return a pointer to the shifted result,
715 or NULL on failure. If the returned pointer is distinct from b then the
716 original b will have been Bfree'd. Ignores the sign of b. */
717
718static Bigint *
719lshift(Bigint *b, int k)
720{
721 int i, k1, n, n1;
722 Bigint *b1;
723 ULong *x, *x1, *xe, z;
724
725 n = k >> 5;
726 k1 = b->k;
727 n1 = n + b->wds + 1;
728 for(i = b->maxwds; n1 > i; i <<= 1)
729 k1++;
730 b1 = Balloc(k1);
731 if (b1 == NULL) {
732 Bfree(b);
733 return NULL;
734 }
735 x1 = b1->x;
736 for(i = 0; i < n; i++)
737 *x1++ = 0;
738 x = b->x;
739 xe = x + b->wds;
740 if (k &= 0x1f) {
741 k1 = 32 - k;
742 z = 0;
743 do {
744 *x1++ = *x << k | z;
745 z = *x++ >> k1;
746 }
747 while(x < xe);
748 if ((*x1 = z))
749 ++n1;
750 }
751 else do
752 *x1++ = *x++;
753 while(x < xe);
754 b1->wds = n1 - 1;
755 Bfree(b);
756 return b1;
757}
758
759/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
760 1 if a > b. Ignores signs of a and b. */
761
762static int
763cmp(Bigint *a, Bigint *b)
764{
765 ULong *xa, *xa0, *xb, *xb0;
766 int i, j;
767
768 i = a->wds;
769 j = b->wds;
770#ifdef DEBUG
771 if (i > 1 && !a->x[i-1])
772 Bug("cmp called with a->x[a->wds-1] == 0");
773 if (j > 1 && !b->x[j-1])
774 Bug("cmp called with b->x[b->wds-1] == 0");
775#endif
776 if (i -= j)
777 return i;
778 xa0 = a->x;
779 xa = xa0 + j;
780 xb0 = b->x;
781 xb = xb0 + j;
782 for(;;) {
783 if (*--xa != *--xb)
784 return *xa < *xb ? -1 : 1;
785 if (xa <= xa0)
786 break;
787 }
788 return 0;
789}
790
791/* Take the difference of Bigints a and b, returning a new Bigint. Returns
792 NULL on failure. The signs of a and b are ignored, but the sign of the
793 result is set appropriately. */
794
795static Bigint *
796diff(Bigint *a, Bigint *b)
797{
798 Bigint *c;
799 int i, wa, wb;
800 ULong *xa, *xae, *xb, *xbe, *xc;
801#ifdef ULLong
802 ULLong borrow, y;
803#else
804 ULong borrow, y;
805 ULong z;
806#endif
807
808 i = cmp(a,b);
809 if (!i) {
810 c = Balloc(0);
811 if (c == NULL)
812 return NULL;
813 c->wds = 1;
814 c->x[0] = 0;
815 return c;
816 }
817 if (i < 0) {
818 c = a;
819 a = b;
820 b = c;
821 i = 1;
822 }
823 else
824 i = 0;
825 c = Balloc(a->k);
826 if (c == NULL)
827 return NULL;
828 c->sign = i;
829 wa = a->wds;
830 xa = a->x;
831 xae = xa + wa;
832 wb = b->wds;
833 xb = b->x;
834 xbe = xb + wb;
835 xc = c->x;
836 borrow = 0;
837#ifdef ULLong
838 do {
839 y = (ULLong)*xa++ - *xb++ - borrow;
840 borrow = y >> 32 & (ULong)1;
841 *xc++ = (ULong)(y & FFFFFFFF);
842 }
843 while(xb < xbe);
844 while(xa < xae) {
845 y = *xa++ - borrow;
846 borrow = y >> 32 & (ULong)1;
847 *xc++ = (ULong)(y & FFFFFFFF);
848 }
849#else
850 do {
851 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
852 borrow = (y & 0x10000) >> 16;
853 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
854 borrow = (z & 0x10000) >> 16;
855 Storeinc(xc, z, y);
856 }
857 while(xb < xbe);
858 while(xa < xae) {
859 y = (*xa & 0xffff) - borrow;
860 borrow = (y & 0x10000) >> 16;
861 z = (*xa++ >> 16) - borrow;
862 borrow = (z & 0x10000) >> 16;
863 Storeinc(xc, z, y);
864 }
865#endif
866 while(!*--xc)
867 wa--;
868 c->wds = wa;
869 return c;
870}
871
872/* Given a positive normal double x, return the difference between x and the next
873 double up. Doesn't give correct results for subnormals. */
874
875static double
876ulp(U *x)
877{
878 Long L;
879 U u;
880
881 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
882 word0(&u) = L;
883 word1(&u) = 0;
884 return dval(&u);
885}
886
887/* Convert a Bigint to a double plus an exponent */
888
889static double
890b2d(Bigint *a, int *e)
891{
892 ULong *xa, *xa0, w, y, z;
893 int k;
894 U d;
895
896 xa0 = a->x;
897 xa = xa0 + a->wds;
898 y = *--xa;
899#ifdef DEBUG
900 if (!y) Bug("zero y in b2d");
901#endif
902 k = hi0bits(y);
903 *e = 32 - k;
904 if (k < Ebits) {
905 word0(&d) = Exp_1 | y >> (Ebits - k);
906 w = xa > xa0 ? *--xa : 0;
907 word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
908 goto ret_d;
909 }
910 z = xa > xa0 ? *--xa : 0;
911 if (k -= Ebits) {
912 word0(&d) = Exp_1 | y << k | z >> (32 - k);
913 y = xa > xa0 ? *--xa : 0;
914 word1(&d) = z << k | y >> (32 - k);
915 }
916 else {
917 word0(&d) = Exp_1 | y;
918 word1(&d) = z;
919 }
920 ret_d:
921 return dval(&d);
922}
923
924/* Convert a double to a Bigint plus an exponent. Return NULL on failure.
925
926 Given a finite nonzero double d, return an odd Bigint b and exponent *e
927 such that fabs(d) = b * 2**e. On return, *bbits gives the number of
Mark Dickinson2bcd1772010-01-04 21:32:02 +0000928 significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
Mark Dickinsonbb282852009-10-24 12:13:30 +0000929
930 If d is zero, then b == 0, *e == -1010, *bbits = 0.
931 */
932
933
934static Bigint *
935d2b(U *d, int *e, int *bits)
936{
937 Bigint *b;
938 int de, k;
939 ULong *x, y, z;
940 int i;
941
942 b = Balloc(1);
943 if (b == NULL)
944 return NULL;
945 x = b->x;
946
947 z = word0(d) & Frac_mask;
948 word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */
949 if ((de = (int)(word0(d) >> Exp_shift)))
950 z |= Exp_msk1;
951 if ((y = word1(d))) {
952 if ((k = lo0bits(&y))) {
953 x[0] = y | z << (32 - k);
954 z >>= k;
955 }
956 else
957 x[0] = y;
958 i =
959 b->wds = (x[1] = z) ? 2 : 1;
960 }
961 else {
962 k = lo0bits(&z);
963 x[0] = z;
964 i =
965 b->wds = 1;
966 k += 32;
967 }
968 if (de) {
969 *e = de - Bias - (P-1) + k;
970 *bits = P - k;
971 }
972 else {
973 *e = de - Bias - (P-1) + 1 + k;
974 *bits = 32*i - hi0bits(x[i-1]);
975 }
976 return b;
977}
978
979/* Compute the ratio of two Bigints, as a double. The result may have an
980 error of up to 2.5 ulps. */
981
982static double
983ratio(Bigint *a, Bigint *b)
984{
985 U da, db;
986 int k, ka, kb;
987
988 dval(&da) = b2d(a, &ka);
989 dval(&db) = b2d(b, &kb);
990 k = ka - kb + 32*(a->wds - b->wds);
991 if (k > 0)
992 word0(&da) += k*Exp_msk1;
993 else {
994 k = -k;
995 word0(&db) += k*Exp_msk1;
996 }
997 return dval(&da) / dval(&db);
998}
999
1000static const double
1001tens[] = {
1002 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1003 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1004 1e20, 1e21, 1e22
1005};
1006
1007static const double
1008bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1009static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1010 9007199254740992.*9007199254740992.e-256
1011 /* = 2^106 * 1e-256 */
1012};
1013/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1014/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1015#define Scale_Bit 0x10
1016#define n_bigtens 5
1017
1018#define ULbits 32
1019#define kshift 5
1020#define kmask 31
1021
1022
1023static int
1024dshift(Bigint *b, int p2)
1025{
1026 int rv = hi0bits(b->x[b->wds-1]) - 4;
1027 if (p2 > 0)
1028 rv -= p2;
1029 return rv & kmask;
1030}
1031
1032/* special case of Bigint division. The quotient is always in the range 0 <=
1033 quotient < 10, and on entry the divisor S is normalized so that its top 4
1034 bits (28--31) are zero and bit 27 is set. */
1035
1036static int
1037quorem(Bigint *b, Bigint *S)
1038{
1039 int n;
1040 ULong *bx, *bxe, q, *sx, *sxe;
1041#ifdef ULLong
1042 ULLong borrow, carry, y, ys;
1043#else
1044 ULong borrow, carry, y, ys;
1045 ULong si, z, zs;
1046#endif
1047
1048 n = S->wds;
1049#ifdef DEBUG
1050 /*debug*/ if (b->wds > n)
1051 /*debug*/ Bug("oversize b in quorem");
1052#endif
1053 if (b->wds < n)
1054 return 0;
1055 sx = S->x;
1056 sxe = sx + --n;
1057 bx = b->x;
1058 bxe = bx + n;
1059 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
1060#ifdef DEBUG
1061 /*debug*/ if (q > 9)
1062 /*debug*/ Bug("oversized quotient in quorem");
1063#endif
1064 if (q) {
1065 borrow = 0;
1066 carry = 0;
1067 do {
1068#ifdef ULLong
1069 ys = *sx++ * (ULLong)q + carry;
1070 carry = ys >> 32;
1071 y = *bx - (ys & FFFFFFFF) - borrow;
1072 borrow = y >> 32 & (ULong)1;
1073 *bx++ = (ULong)(y & FFFFFFFF);
1074#else
1075 si = *sx++;
1076 ys = (si & 0xffff) * q + carry;
1077 zs = (si >> 16) * q + (ys >> 16);
1078 carry = zs >> 16;
1079 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1080 borrow = (y & 0x10000) >> 16;
1081 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1082 borrow = (z & 0x10000) >> 16;
1083 Storeinc(bx, z, y);
1084#endif
1085 }
1086 while(sx <= sxe);
1087 if (!*bxe) {
1088 bx = b->x;
1089 while(--bxe > bx && !*bxe)
1090 --n;
1091 b->wds = n;
1092 }
1093 }
1094 if (cmp(b, S) >= 0) {
1095 q++;
1096 borrow = 0;
1097 carry = 0;
1098 bx = b->x;
1099 sx = S->x;
1100 do {
1101#ifdef ULLong
1102 ys = *sx++ + carry;
1103 carry = ys >> 32;
1104 y = *bx - (ys & FFFFFFFF) - borrow;
1105 borrow = y >> 32 & (ULong)1;
1106 *bx++ = (ULong)(y & FFFFFFFF);
1107#else
1108 si = *sx++;
1109 ys = (si & 0xffff) + carry;
1110 zs = (si >> 16) + (ys >> 16);
1111 carry = zs >> 16;
1112 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1113 borrow = (y & 0x10000) >> 16;
1114 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1115 borrow = (z & 0x10000) >> 16;
1116 Storeinc(bx, z, y);
1117#endif
1118 }
1119 while(sx <= sxe);
1120 bx = b->x;
1121 bxe = bx + n;
1122 if (!*bxe) {
1123 while(--bxe > bx && !*bxe)
1124 --n;
1125 b->wds = n;
1126 }
1127 }
1128 return q;
1129}
1130
Mark Dickinson5818e012010-01-13 19:02:37 +00001131/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001132
Mark Dickinson5818e012010-01-13 19:02:37 +00001133 Assuming that x is finite and nonnegative (positive zero is fine
1134 here) and x / 2^bc.scale is exactly representable as a double,
1135 sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001136
1137static double
1138sulp(U *x, BCinfo *bc)
1139{
1140 U u;
1141
Mark Dickinson02139d72010-01-13 22:15:53 +00001142 if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001143 /* rv/2^bc->scale is subnormal */
1144 word0(&u) = (P+2)*Exp_msk1;
1145 word1(&u) = 0;
1146 return u.d;
1147 }
Mark Dickinson5818e012010-01-13 19:02:37 +00001148 else {
1149 assert(word0(x) || word1(x)); /* x != 0.0 */
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001150 return ulp(x);
Mark Dickinson5818e012010-01-13 19:02:37 +00001151 }
Mark Dickinson5ff4f272010-01-12 22:55:51 +00001152}
Mark Dickinsonbb282852009-10-24 12:13:30 +00001153
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001154/* The bigcomp function handles some hard cases for strtod, for inputs
1155 with more than STRTOD_DIGLIM digits. It's called once an initial
1156 estimate for the double corresponding to the input string has
1157 already been obtained by the code in _Py_dg_strtod.
1158
1159 The bigcomp function is only called after _Py_dg_strtod has found a
1160 double value rv such that either rv or rv + 1ulp represents the
1161 correctly rounded value corresponding to the original string. It
1162 determines which of these two values is the correct one by
1163 computing the decimal digits of rv + 0.5ulp and comparing them with
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001164 the corresponding digits of s0.
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001165
1166 In the following, write dv for the absolute value of the number represented
1167 by the input string.
1168
1169 Inputs:
1170
1171 s0 points to the first significant digit of the input string.
1172
1173 rv is a (possibly scaled) estimate for the closest double value to the
1174 value represented by the original input to _Py_dg_strtod. If
1175 bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1176 the input value.
1177
1178 bc is a struct containing information gathered during the parsing and
1179 estimation steps of _Py_dg_strtod. Description of fields follows:
1180
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001181 bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
1182 normal use, it should almost always be 1 when bigcomp is entered.
1183
1184 bc->e0 gives the exponent of the input value, such that dv = (integer
1185 given by the bd->nd digits of s0) * 10**e0
1186
Mark Dickinsond2a99402010-01-13 22:20:10 +00001187 bc->nd gives the total number of significant digits of s0. It will
1188 be at least 1.
Mark Dickinsonb26d56a2010-01-13 18:21:53 +00001189
1190 bc->nd0 gives the number of significant digits of s0 before the
1191 decimal separator. If there's no decimal separator, bc->nd0 ==
1192 bc->nd.
1193
1194 bc->scale is the value used to scale rv to avoid doing arithmetic with
1195 subnormal values. It's either 0 or 2*P (=106).
1196
1197 Outputs:
1198
1199 On successful exit, rv/2^(bc->scale) is the closest double to dv.
1200
1201 Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001202
1203static int
1204bigcomp(U *rv, const char *s0, BCinfo *bc)
1205{
1206 Bigint *b, *d;
Mark Dickinson50b60c62010-01-14 13:14:49 +00001207 int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001208
Mark Dickinsond2a99402010-01-13 22:20:10 +00001209 dd = 0; /* silence compiler warning about possibly unused variable */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001210 nd = bc->nd;
1211 nd0 = bc->nd0;
Mark Dickinson8efef5c2010-01-12 22:23:56 +00001212 p5 = nd + bc->e0;
Mark Dickinsond2a99402010-01-13 22:20:10 +00001213 if (rv->d == 0.) {
1214 /* special case because d2b doesn't handle 0.0 */
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001215 b = i2b(0);
Mark Dickinsonbb282852009-10-24 12:13:30 +00001216 if (b == NULL)
1217 return -1;
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001218 p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */
1219 bbits = 0;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001220 }
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001221 else {
Mark Dickinsonbb282852009-10-24 12:13:30 +00001222 b = d2b(rv, &p2, &bbits);
1223 if (b == NULL)
1224 return -1;
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001225 p2 -= bc->scale;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001226 }
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001227 /* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */
1228
1229 /* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such
1230 that b << i has at most P significant bits and p2 - i >= Emin - P +
1231 1. */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001232 i = P - bbits;
Mark Dickinsond2a99402010-01-13 22:20:10 +00001233 if (i > p2 - (Emin - P + 1))
1234 i = p2 - (Emin - P + 1);
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001235 /* increment i so that we shift b by an extra bit; then or-ing a 1 into
1236 the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */
1237 b = lshift(b, ++i);
1238 if (b == NULL)
1239 return -1;
Mark Dickinson50b60c62010-01-14 13:14:49 +00001240 /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
1241 case, this is used for round to even. */
1242 odd = b->x[0] & 2;
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001243 b->x[0] |= 1;
1244
Mark Dickinsonbb282852009-10-24 12:13:30 +00001245 p2 -= p5 + i;
1246 d = i2b(1);
1247 if (d == NULL) {
1248 Bfree(b);
1249 return -1;
1250 }
1251 /* Arrange for convenient computation of quotients:
1252 * shift left if necessary so divisor has 4 leading 0 bits.
1253 */
1254 if (p5 > 0) {
1255 d = pow5mult(d, p5);
1256 if (d == NULL) {
1257 Bfree(b);
1258 return -1;
1259 }
1260 }
1261 else if (p5 < 0) {
1262 b = pow5mult(b, -p5);
1263 if (b == NULL) {
1264 Bfree(d);
1265 return -1;
1266 }
1267 }
1268 if (p2 > 0) {
1269 b2 = p2;
1270 d2 = 0;
1271 }
1272 else {
1273 b2 = 0;
1274 d2 = -p2;
1275 }
1276 i = dshift(d, d2);
1277 if ((b2 += i) > 0) {
1278 b = lshift(b, b2);
1279 if (b == NULL) {
1280 Bfree(d);
1281 return -1;
1282 }
1283 }
1284 if ((d2 += i) > 0) {
1285 d = lshift(d, d2);
1286 if (d == NULL) {
1287 Bfree(b);
1288 return -1;
1289 }
1290 }
1291
Mark Dickinsond2a99402010-01-13 22:20:10 +00001292 /* if b >= d, round down */
Mark Dickinson8efef5c2010-01-12 22:23:56 +00001293 if (cmp(b, d) >= 0) {
1294 dd = -1;
1295 goto ret;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001296 }
Mark Dickinson50b60c62010-01-14 13:14:49 +00001297
Mark Dickinsonbb282852009-10-24 12:13:30 +00001298 /* Compare b/d with s0 */
Mark Dickinsond2a99402010-01-13 22:20:10 +00001299 for(i = 0; i < nd0; i++) {
1300 b = multadd(b, 10, 0);
1301 if (b == NULL) {
1302 Bfree(d);
1303 return -1;
1304 }
1305 dd = *s0++ - '0' - quorem(b, d);
1306 if (dd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001307 goto ret;
1308 if (!b->x[0] && b->wds == 1) {
Mark Dickinson03774fa2010-01-14 13:02:36 +00001309 if (i < nd - 1)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001310 dd = 1;
1311 goto ret;
1312 }
Mark Dickinsonbb282852009-10-24 12:13:30 +00001313 }
Mark Dickinsond2a99402010-01-13 22:20:10 +00001314 s0++;
1315 for(; i < nd; i++) {
1316 b = multadd(b, 10, 0);
1317 if (b == NULL) {
1318 Bfree(d);
1319 return -1;
1320 }
1321 dd = *s0++ - '0' - quorem(b, d);
1322 if (dd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001323 goto ret;
1324 if (!b->x[0] && b->wds == 1) {
Mark Dickinson03774fa2010-01-14 13:02:36 +00001325 if (i < nd - 1)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001326 dd = 1;
1327 goto ret;
1328 }
Mark Dickinsonbb282852009-10-24 12:13:30 +00001329 }
1330 if (b->x[0] || b->wds > 1)
1331 dd = -1;
1332 ret:
1333 Bfree(b);
1334 Bfree(d);
Mark Dickinson50b60c62010-01-14 13:14:49 +00001335 if (dd > 0 || (dd == 0 && odd))
Mark Dickinson6e0d3d62010-01-13 20:55:03 +00001336 dval(rv) += sulp(rv, bc);
Mark Dickinsonbb282852009-10-24 12:13:30 +00001337 return 0;
1338}
1339
1340double
1341_Py_dg_strtod(const char *s00, char **se)
1342{
Mark Dickinsond2a99402010-01-13 22:20:10 +00001343 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dp0, dp1, dplen, e, e1, error;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001344 int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1345 const char *s, *s0, *s1;
1346 double aadj, aadj1;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001347 U aadj2, adj, rv, rv0;
Mark Dickinson0ca74522010-01-11 17:15:13 +00001348 ULong y, z, L;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001349 BCinfo bc;
1350 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1351
Mark Dickinsond2a99402010-01-13 22:20:10 +00001352 sign = nz0 = nz = dplen = 0;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001353 dval(&rv) = 0.;
1354 for(s = s00;;s++) switch(*s) {
1355 case '-':
1356 sign = 1;
1357 /* no break */
1358 case '+':
1359 if (*++s)
1360 goto break2;
1361 /* no break */
1362 case 0:
1363 goto ret0;
1364 /* modify original dtoa.c so that it doesn't accept leading whitespace
1365 case '\t':
1366 case '\n':
1367 case '\v':
1368 case '\f':
1369 case '\r':
1370 case ' ':
1371 continue;
1372 */
1373 default:
1374 goto break2;
1375 }
1376 break2:
1377 if (*s == '0') {
1378 nz0 = 1;
1379 while(*++s == '0') ;
1380 if (!*s)
1381 goto ret;
1382 }
1383 s0 = s;
1384 y = z = 0;
1385 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1386 if (nd < 9)
1387 y = 10*y + c - '0';
1388 else if (nd < 16)
1389 z = 10*z + c - '0';
1390 nd0 = nd;
Mark Dickinsond2a99402010-01-13 22:20:10 +00001391 dp0 = dp1 = s - s0;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001392 if (c == '.') {
1393 c = *++s;
Mark Dickinsond2a99402010-01-13 22:20:10 +00001394 dp1 = s - s0;
1395 dplen = 1;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001396 if (!nd) {
1397 for(; c == '0'; c = *++s)
1398 nz++;
1399 if (c > '0' && c <= '9') {
1400 s0 = s;
1401 nf += nz;
1402 nz = 0;
1403 goto have_dig;
1404 }
1405 goto dig_done;
1406 }
1407 for(; c >= '0' && c <= '9'; c = *++s) {
1408 have_dig:
1409 nz++;
1410 if (c -= '0') {
1411 nf += nz;
1412 for(i = 1; i < nz; i++)
1413 if (nd++ < 9)
1414 y *= 10;
1415 else if (nd <= DBL_DIG + 1)
1416 z *= 10;
1417 if (nd++ < 9)
1418 y = 10*y + c;
1419 else if (nd <= DBL_DIG + 1)
1420 z = 10*z + c;
1421 nz = 0;
1422 }
1423 }
1424 }
1425 dig_done:
1426 e = 0;
1427 if (c == 'e' || c == 'E') {
1428 if (!nd && !nz && !nz0) {
1429 goto ret0;
1430 }
1431 s00 = s;
1432 esign = 0;
1433 switch(c = *++s) {
1434 case '-':
1435 esign = 1;
1436 case '+':
1437 c = *++s;
1438 }
1439 if (c >= '0' && c <= '9') {
1440 while(c == '0')
1441 c = *++s;
1442 if (c > '0' && c <= '9') {
1443 L = c - '0';
1444 s1 = s;
1445 while((c = *++s) >= '0' && c <= '9')
1446 L = 10*L + c - '0';
Mark Dickinson0ca74522010-01-11 17:15:13 +00001447 if (s - s1 > 8 || L > MAX_ABS_EXP)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001448 /* Avoid confusion from exponents
1449 * so large that e might overflow.
1450 */
Mark Dickinson0ca74522010-01-11 17:15:13 +00001451 e = (int)MAX_ABS_EXP; /* safe for 16 bit ints */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001452 else
1453 e = (int)L;
1454 if (esign)
1455 e = -e;
1456 }
1457 else
1458 e = 0;
1459 }
1460 else
1461 s = s00;
1462 }
1463 if (!nd) {
1464 if (!nz && !nz0) {
1465 ret0:
1466 s = s00;
1467 sign = 0;
1468 }
1469 goto ret;
1470 }
1471 bc.e0 = e1 = e -= nf;
1472
1473 /* Now we have nd0 digits, starting at s0, followed by a
1474 * decimal point, followed by nd-nd0 digits. The number we're
1475 * after is the integer represented by those digits times
1476 * 10**e */
1477
1478 if (!nd0)
1479 nd0 = nd;
1480 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1481 dval(&rv) = y;
1482 if (k > 9) {
1483 dval(&rv) = tens[k - 9] * dval(&rv) + z;
1484 }
1485 bd0 = 0;
1486 if (nd <= DBL_DIG
1487 && Flt_Rounds == 1
1488 ) {
1489 if (!e)
1490 goto ret;
1491 if (e > 0) {
1492 if (e <= Ten_pmax) {
1493 dval(&rv) *= tens[e];
1494 goto ret;
1495 }
1496 i = DBL_DIG - nd;
1497 if (e <= Ten_pmax + i) {
1498 /* A fancier test would sometimes let us do
1499 * this for larger i values.
1500 */
1501 e -= i;
1502 dval(&rv) *= tens[i];
1503 dval(&rv) *= tens[e];
1504 goto ret;
1505 }
1506 }
1507 else if (e >= -Ten_pmax) {
1508 dval(&rv) /= tens[-e];
1509 goto ret;
1510 }
1511 }
1512 e1 += nd - k;
1513
1514 bc.scale = 0;
1515
1516 /* Get starting approximation = rv * 10**e1 */
1517
1518 if (e1 > 0) {
1519 if ((i = e1 & 15))
1520 dval(&rv) *= tens[i];
1521 if (e1 &= ~15) {
1522 if (e1 > DBL_MAX_10_EXP) {
1523 ovfl:
1524 errno = ERANGE;
1525 /* Can't trust HUGE_VAL */
1526 word0(&rv) = Exp_mask;
1527 word1(&rv) = 0;
1528 goto ret;
1529 }
1530 e1 >>= 4;
1531 for(j = 0; e1 > 1; j++, e1 >>= 1)
1532 if (e1 & 1)
1533 dval(&rv) *= bigtens[j];
1534 /* The last multiplication could overflow. */
1535 word0(&rv) -= P*Exp_msk1;
1536 dval(&rv) *= bigtens[j];
1537 if ((z = word0(&rv) & Exp_mask)
1538 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1539 goto ovfl;
1540 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1541 /* set to largest number */
1542 /* (Can't trust DBL_MAX) */
1543 word0(&rv) = Big0;
1544 word1(&rv) = Big1;
1545 }
1546 else
1547 word0(&rv) += P*Exp_msk1;
1548 }
1549 }
1550 else if (e1 < 0) {
1551 e1 = -e1;
1552 if ((i = e1 & 15))
1553 dval(&rv) /= tens[i];
1554 if (e1 >>= 4) {
1555 if (e1 >= 1 << n_bigtens)
1556 goto undfl;
1557 if (e1 & Scale_Bit)
1558 bc.scale = 2*P;
1559 for(j = 0; e1 > 0; j++, e1 >>= 1)
1560 if (e1 & 1)
1561 dval(&rv) *= tinytens[j];
1562 if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1563 >> Exp_shift)) > 0) {
1564 /* scaled rv is denormal; clear j low bits */
1565 if (j >= 32) {
1566 word1(&rv) = 0;
1567 if (j >= 53)
1568 word0(&rv) = (P+2)*Exp_msk1;
1569 else
1570 word0(&rv) &= 0xffffffff << (j-32);
1571 }
1572 else
1573 word1(&rv) &= 0xffffffff << j;
1574 }
1575 if (!dval(&rv)) {
1576 undfl:
1577 dval(&rv) = 0.;
1578 errno = ERANGE;
1579 goto ret;
1580 }
1581 }
1582 }
1583
1584 /* Now the hard part -- adjusting rv to the correct value.*/
1585
1586 /* Put digits into bd: true value = bd * 10^e */
1587
1588 bc.nd = nd;
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001589 bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001590 /* to silence an erroneous warning about bc.nd0 */
1591 /* possibly not being initialized. */
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001592 if (nd > STRTOD_DIGLIM) {
1593 /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
Mark Dickinsonbb282852009-10-24 12:13:30 +00001594 /* minimum number of decimal digits to distinguish double values */
1595 /* in IEEE arithmetic. */
1596 i = j = 18;
1597 if (i > nd0)
Mark Dickinsond2a99402010-01-13 22:20:10 +00001598 j += dplen;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001599 for(;;) {
Mark Dickinsond2a99402010-01-13 22:20:10 +00001600 if (--j <= dp1 && j >= dp0)
1601 j = dp0 - 1;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001602 if (s0[j] != '0')
1603 break;
1604 --i;
1605 }
1606 e += nd - i;
1607 nd = i;
1608 if (nd0 > nd)
1609 nd0 = nd;
1610 if (nd < 9) { /* must recompute y */
1611 y = 0;
1612 for(i = 0; i < nd0; ++i)
1613 y = 10*y + s0[i] - '0';
Mark Dickinsond2a99402010-01-13 22:20:10 +00001614 for(j = dp1; i < nd; ++i)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001615 y = 10*y + s0[j++] - '0';
1616 }
1617 }
Mark Dickinsond2a99402010-01-13 22:20:10 +00001618 bd0 = s2b(s0, nd0, nd, y);
Mark Dickinsonbb282852009-10-24 12:13:30 +00001619 if (bd0 == NULL)
1620 goto failed_malloc;
1621
1622 for(;;) {
1623 bd = Balloc(bd0->k);
1624 if (bd == NULL) {
1625 Bfree(bd0);
1626 goto failed_malloc;
1627 }
1628 Bcopy(bd, bd0);
1629 bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
1630 if (bb == NULL) {
1631 Bfree(bd);
1632 Bfree(bd0);
1633 goto failed_malloc;
1634 }
1635 bs = i2b(1);
1636 if (bs == NULL) {
1637 Bfree(bb);
1638 Bfree(bd);
1639 Bfree(bd0);
1640 goto failed_malloc;
1641 }
1642
1643 if (e >= 0) {
1644 bb2 = bb5 = 0;
1645 bd2 = bd5 = e;
1646 }
1647 else {
1648 bb2 = bb5 = -e;
1649 bd2 = bd5 = 0;
1650 }
1651 if (bbe >= 0)
1652 bb2 += bbe;
1653 else
1654 bd2 -= bbe;
1655 bs2 = bb2;
1656 j = bbe - bc.scale;
1657 i = j + bbbits - 1; /* logb(rv) */
1658 if (i < Emin) /* denormal */
1659 j += P - Emin;
1660 else
1661 j = P + 1 - bbbits;
1662 bb2 += j;
1663 bd2 += j;
1664 bd2 += bc.scale;
1665 i = bb2 < bd2 ? bb2 : bd2;
1666 if (i > bs2)
1667 i = bs2;
1668 if (i > 0) {
1669 bb2 -= i;
1670 bd2 -= i;
1671 bs2 -= i;
1672 }
1673 if (bb5 > 0) {
1674 bs = pow5mult(bs, bb5);
1675 if (bs == NULL) {
1676 Bfree(bb);
1677 Bfree(bd);
1678 Bfree(bd0);
1679 goto failed_malloc;
1680 }
1681 bb1 = mult(bs, bb);
1682 Bfree(bb);
1683 bb = bb1;
1684 if (bb == NULL) {
1685 Bfree(bs);
1686 Bfree(bd);
1687 Bfree(bd0);
1688 goto failed_malloc;
1689 }
1690 }
1691 if (bb2 > 0) {
1692 bb = lshift(bb, bb2);
1693 if (bb == NULL) {
1694 Bfree(bs);
1695 Bfree(bd);
1696 Bfree(bd0);
1697 goto failed_malloc;
1698 }
1699 }
1700 if (bd5 > 0) {
1701 bd = pow5mult(bd, bd5);
1702 if (bd == NULL) {
1703 Bfree(bb);
1704 Bfree(bs);
1705 Bfree(bd0);
1706 goto failed_malloc;
1707 }
1708 }
1709 if (bd2 > 0) {
1710 bd = lshift(bd, bd2);
1711 if (bd == NULL) {
1712 Bfree(bb);
1713 Bfree(bs);
1714 Bfree(bd0);
1715 goto failed_malloc;
1716 }
1717 }
1718 if (bs2 > 0) {
1719 bs = lshift(bs, bs2);
1720 if (bs == NULL) {
1721 Bfree(bb);
1722 Bfree(bd);
1723 Bfree(bd0);
1724 goto failed_malloc;
1725 }
1726 }
1727 delta = diff(bb, bd);
1728 if (delta == NULL) {
1729 Bfree(bb);
1730 Bfree(bs);
1731 Bfree(bd);
1732 Bfree(bd0);
1733 goto failed_malloc;
1734 }
1735 bc.dsign = delta->sign;
1736 delta->sign = 0;
1737 i = cmp(delta, bs);
1738 if (bc.nd > nd && i <= 0) {
1739 if (bc.dsign)
1740 break; /* Must use bigcomp(). */
1741 {
1742 bc.nd = nd;
1743 i = -1; /* Discarded digits make delta smaller. */
1744 }
1745 }
1746
1747 if (i < 0) {
1748 /* Error is less than half an ulp -- check for
1749 * special case of mantissa a power of two.
1750 */
1751 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
1752 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1753 ) {
1754 break;
1755 }
1756 if (!delta->x[0] && delta->wds <= 1) {
1757 /* exact result */
1758 break;
1759 }
1760 delta = lshift(delta,Log2P);
1761 if (delta == NULL) {
1762 Bfree(bb);
1763 Bfree(bs);
1764 Bfree(bd);
1765 Bfree(bd0);
1766 goto failed_malloc;
1767 }
1768 if (cmp(delta, bs) > 0)
1769 goto drop_down;
1770 break;
1771 }
1772 if (i == 0) {
1773 /* exactly half-way between */
1774 if (bc.dsign) {
1775 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1776 && word1(&rv) == (
1777 (bc.scale &&
1778 (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1779 (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1780 0xffffffff)) {
1781 /*boundary case -- increment exponent*/
1782 word0(&rv) = (word0(&rv) & Exp_mask)
1783 + Exp_msk1
1784 ;
1785 word1(&rv) = 0;
1786 bc.dsign = 0;
1787 break;
1788 }
1789 }
1790 else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1791 drop_down:
1792 /* boundary case -- decrement exponent */
1793 if (bc.scale) {
1794 L = word0(&rv) & Exp_mask;
1795 if (L <= (2*P+1)*Exp_msk1) {
1796 if (L > (P+2)*Exp_msk1)
1797 /* round even ==> */
1798 /* accept rv */
1799 break;
1800 /* rv = smallest denormal */
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001801 if (bc.nd >nd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001802 break;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001803 goto undfl;
1804 }
1805 }
1806 L = (word0(&rv) & Exp_mask) - Exp_msk1;
1807 word0(&rv) = L | Bndry_mask1;
1808 word1(&rv) = 0xffffffff;
1809 break;
1810 }
1811 if (!(word1(&rv) & LSB))
1812 break;
1813 if (bc.dsign)
1814 dval(&rv) += ulp(&rv);
1815 else {
1816 dval(&rv) -= ulp(&rv);
1817 if (!dval(&rv)) {
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001818 if (bc.nd >nd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001819 break;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001820 goto undfl;
1821 }
1822 }
1823 bc.dsign = 1 - bc.dsign;
1824 break;
1825 }
1826 if ((aadj = ratio(delta, bs)) <= 2.) {
1827 if (bc.dsign)
1828 aadj = aadj1 = 1.;
1829 else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1830 if (word1(&rv) == Tiny1 && !word0(&rv)) {
Mark Dickinson5a0b3992010-01-10 13:06:31 +00001831 if (bc.nd >nd)
Mark Dickinsonbb282852009-10-24 12:13:30 +00001832 break;
Mark Dickinsonbb282852009-10-24 12:13:30 +00001833 goto undfl;
1834 }
1835 aadj = 1.;
1836 aadj1 = -1.;
1837 }
1838 else {
1839 /* special case -- power of FLT_RADIX to be */
1840 /* rounded down... */
1841
1842 if (aadj < 2./FLT_RADIX)
1843 aadj = 1./FLT_RADIX;
1844 else
1845 aadj *= 0.5;
1846 aadj1 = -aadj;
1847 }
1848 }
1849 else {
1850 aadj *= 0.5;
1851 aadj1 = bc.dsign ? aadj : -aadj;
1852 if (Flt_Rounds == 0)
1853 aadj1 += 0.5;
1854 }
1855 y = word0(&rv) & Exp_mask;
1856
1857 /* Check for overflow */
1858
1859 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1860 dval(&rv0) = dval(&rv);
1861 word0(&rv) -= P*Exp_msk1;
1862 adj.d = aadj1 * ulp(&rv);
1863 dval(&rv) += adj.d;
1864 if ((word0(&rv) & Exp_mask) >=
1865 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1866 if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
1867 goto ovfl;
1868 word0(&rv) = Big0;
1869 word1(&rv) = Big1;
1870 goto cont;
1871 }
1872 else
1873 word0(&rv) += P*Exp_msk1;
1874 }
1875 else {
1876 if (bc.scale && y <= 2*P*Exp_msk1) {
1877 if (aadj <= 0x7fffffff) {
1878 if ((z = (ULong)aadj) <= 0)
1879 z = 1;
1880 aadj = z;
1881 aadj1 = bc.dsign ? aadj : -aadj;
1882 }
1883 dval(&aadj2) = aadj1;
1884 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
1885 aadj1 = dval(&aadj2);
1886 }
1887 adj.d = aadj1 * ulp(&rv);
1888 dval(&rv) += adj.d;
1889 }
1890 z = word0(&rv) & Exp_mask;
1891 if (bc.nd == nd) {
1892 if (!bc.scale)
1893 if (y == z) {
1894 /* Can we stop now? */
1895 L = (Long)aadj;
1896 aadj -= L;
1897 /* The tolerances below are conservative. */
1898 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
1899 if (aadj < .4999999 || aadj > .5000001)
1900 break;
1901 }
1902 else if (aadj < .4999999/FLT_RADIX)
1903 break;
1904 }
1905 }
1906 cont:
1907 Bfree(bb);
1908 Bfree(bd);
1909 Bfree(bs);
1910 Bfree(delta);
1911 }
1912 Bfree(bb);
1913 Bfree(bd);
1914 Bfree(bs);
1915 Bfree(bd0);
1916 Bfree(delta);
1917 if (bc.nd > nd) {
1918 error = bigcomp(&rv, s0, &bc);
1919 if (error)
1920 goto failed_malloc;
1921 }
1922
1923 if (bc.scale) {
1924 word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
1925 word1(&rv0) = 0;
1926 dval(&rv) *= dval(&rv0);
1927 /* try to avoid the bug of testing an 8087 register value */
1928 if (!(word0(&rv) & Exp_mask))
1929 errno = ERANGE;
1930 }
1931 ret:
1932 if (se)
1933 *se = (char *)s;
1934 return sign ? -dval(&rv) : dval(&rv);
1935
1936 failed_malloc:
1937 if (se)
1938 *se = (char *)s00;
1939 errno = ENOMEM;
1940 return -1.0;
1941}
1942
1943static char *
1944rv_alloc(int i)
1945{
1946 int j, k, *r;
1947
1948 j = sizeof(ULong);
1949 for(k = 0;
1950 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
1951 j <<= 1)
1952 k++;
1953 r = (int*)Balloc(k);
1954 if (r == NULL)
1955 return NULL;
1956 *r = k;
1957 return (char *)(r+1);
1958}
1959
1960static char *
1961nrv_alloc(char *s, char **rve, int n)
1962{
1963 char *rv, *t;
1964
1965 rv = rv_alloc(n);
1966 if (rv == NULL)
1967 return NULL;
1968 t = rv;
1969 while((*t = *s++)) t++;
1970 if (rve)
1971 *rve = t;
1972 return rv;
1973}
1974
1975/* freedtoa(s) must be used to free values s returned by dtoa
1976 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
1977 * but for consistency with earlier versions of dtoa, it is optional
1978 * when MULTIPLE_THREADS is not defined.
1979 */
1980
1981void
1982_Py_dg_freedtoa(char *s)
1983{
1984 Bigint *b = (Bigint *)((int *)s - 1);
1985 b->maxwds = 1 << (b->k = *(int*)b);
1986 Bfree(b);
1987}
1988
1989/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1990 *
1991 * Inspired by "How to Print Floating-Point Numbers Accurately" by
1992 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
1993 *
1994 * Modifications:
1995 * 1. Rather than iterating, we use a simple numeric overestimate
1996 * to determine k = floor(log10(d)). We scale relevant
1997 * quantities using O(log2(k)) rather than O(k) multiplications.
1998 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1999 * try to generate digits strictly left to right. Instead, we
2000 * compute with fewer bits and propagate the carry if necessary
2001 * when rounding the final digit up. This is often faster.
2002 * 3. Under the assumption that input will be rounded nearest,
2003 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2004 * That is, we allow equality in stopping tests when the
2005 * round-nearest rule will give the same floating-point value
2006 * as would satisfaction of the stopping test with strict
2007 * inequality.
2008 * 4. We remove common factors of powers of 2 from relevant
2009 * quantities.
2010 * 5. When converting floating-point integers less than 1e16,
2011 * we use floating-point arithmetic rather than resorting
2012 * to multiple-precision integers.
2013 * 6. When asked to produce fewer than 15 digits, we first try
2014 * to get by with floating-point arithmetic; we resort to
2015 * multiple-precision integer arithmetic only if we cannot
2016 * guarantee that the floating-point calculation has given
2017 * the correctly rounded result. For k requested digits and
2018 * "uniformly" distributed input, the probability is
2019 * something like 10^(k-15) that we must resort to the Long
2020 * calculation.
2021 */
2022
2023/* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory
2024 leakage, a successful call to _Py_dg_dtoa should always be matched by a
2025 call to _Py_dg_freedtoa. */
2026
2027char *
2028_Py_dg_dtoa(double dd, int mode, int ndigits,
2029 int *decpt, int *sign, char **rve)
2030{
2031 /* Arguments ndigits, decpt, sign are similar to those
2032 of ecvt and fcvt; trailing zeros are suppressed from
2033 the returned string. If not null, *rve is set to point
2034 to the end of the return value. If d is +-Infinity or NaN,
2035 then *decpt is set to 9999.
2036
2037 mode:
2038 0 ==> shortest string that yields d when read in
2039 and rounded to nearest.
2040 1 ==> like 0, but with Steele & White stopping rule;
2041 e.g. with IEEE P754 arithmetic , mode 0 gives
2042 1e23 whereas mode 1 gives 9.999999999999999e22.
2043 2 ==> max(1,ndigits) significant digits. This gives a
2044 return value similar to that of ecvt, except
2045 that trailing zeros are suppressed.
2046 3 ==> through ndigits past the decimal point. This
2047 gives a return value similar to that from fcvt,
2048 except that trailing zeros are suppressed, and
2049 ndigits can be negative.
2050 4,5 ==> similar to 2 and 3, respectively, but (in
2051 round-nearest mode) with the tests of mode 0 to
2052 possibly return a shorter string that rounds to d.
2053 With IEEE arithmetic and compilation with
2054 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2055 as modes 2 and 3 when FLT_ROUNDS != 1.
2056 6-9 ==> Debugging modes similar to mode - 4: don't try
2057 fast floating-point estimate (if applicable).
2058
2059 Values of mode other than 0-9 are treated as mode 0.
2060
2061 Sufficient space is allocated to the return value
2062 to hold the suppressed trailing zeros.
2063 */
2064
2065 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2066 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2067 spec_case, try_quick;
2068 Long L;
2069 int denorm;
2070 ULong x;
2071 Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2072 U d2, eps, u;
2073 double ds;
2074 char *s, *s0;
2075
2076 /* set pointers to NULL, to silence gcc compiler warnings and make
2077 cleanup easier on error */
2078 mlo = mhi = b = S = 0;
2079 s0 = 0;
2080
2081 u.d = dd;
2082 if (word0(&u) & Sign_bit) {
2083 /* set sign for everything, including 0's and NaNs */
2084 *sign = 1;
2085 word0(&u) &= ~Sign_bit; /* clear sign bit */
2086 }
2087 else
2088 *sign = 0;
2089
2090 /* quick return for Infinities, NaNs and zeros */
2091 if ((word0(&u) & Exp_mask) == Exp_mask)
2092 {
2093 /* Infinity or NaN */
2094 *decpt = 9999;
2095 if (!word1(&u) && !(word0(&u) & 0xfffff))
2096 return nrv_alloc("Infinity", rve, 8);
2097 return nrv_alloc("NaN", rve, 3);
2098 }
2099 if (!dval(&u)) {
2100 *decpt = 1;
2101 return nrv_alloc("0", rve, 1);
2102 }
2103
2104 /* compute k = floor(log10(d)). The computation may leave k
2105 one too large, but should never leave k too small. */
2106 b = d2b(&u, &be, &bbits);
2107 if (b == NULL)
2108 goto failed_malloc;
2109 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2110 dval(&d2) = dval(&u);
2111 word0(&d2) &= Frac_mask1;
2112 word0(&d2) |= Exp_11;
2113
2114 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
2115 * log10(x) = log(x) / log(10)
2116 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2117 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2118 *
2119 * This suggests computing an approximation k to log10(d) by
2120 *
2121 * k = (i - Bias)*0.301029995663981
2122 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2123 *
2124 * We want k to be too large rather than too small.
2125 * The error in the first-order Taylor series approximation
2126 * is in our favor, so we just round up the constant enough
2127 * to compensate for any error in the multiplication of
2128 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2129 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2130 * adding 1e-13 to the constant term more than suffices.
2131 * Hence we adjust the constant term to 0.1760912590558.
2132 * (We could get a more accurate k by invoking log10,
2133 * but this is probably not worthwhile.)
2134 */
2135
2136 i -= Bias;
2137 denorm = 0;
2138 }
2139 else {
2140 /* d is denormalized */
2141
2142 i = bbits + be + (Bias + (P-1) - 1);
2143 x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2144 : word1(&u) << (32 - i);
2145 dval(&d2) = x;
2146 word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2147 i -= (Bias + (P-1) - 1) + 1;
2148 denorm = 1;
2149 }
2150 ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2151 i*0.301029995663981;
2152 k = (int)ds;
2153 if (ds < 0. && ds != k)
2154 k--; /* want k = floor(ds) */
2155 k_check = 1;
2156 if (k >= 0 && k <= Ten_pmax) {
2157 if (dval(&u) < tens[k])
2158 k--;
2159 k_check = 0;
2160 }
2161 j = bbits - i - 1;
2162 if (j >= 0) {
2163 b2 = 0;
2164 s2 = j;
2165 }
2166 else {
2167 b2 = -j;
2168 s2 = 0;
2169 }
2170 if (k >= 0) {
2171 b5 = 0;
2172 s5 = k;
2173 s2 += k;
2174 }
2175 else {
2176 b2 -= k;
2177 b5 = -k;
2178 s5 = 0;
2179 }
2180 if (mode < 0 || mode > 9)
2181 mode = 0;
2182
2183 try_quick = 1;
2184
2185 if (mode > 5) {
2186 mode -= 4;
2187 try_quick = 0;
2188 }
2189 leftright = 1;
2190 ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
2191 /* silence erroneous "gcc -Wall" warning. */
2192 switch(mode) {
2193 case 0:
2194 case 1:
2195 i = 18;
2196 ndigits = 0;
2197 break;
2198 case 2:
2199 leftright = 0;
2200 /* no break */
2201 case 4:
2202 if (ndigits <= 0)
2203 ndigits = 1;
2204 ilim = ilim1 = i = ndigits;
2205 break;
2206 case 3:
2207 leftright = 0;
2208 /* no break */
2209 case 5:
2210 i = ndigits + k + 1;
2211 ilim = i;
2212 ilim1 = i - 1;
2213 if (i <= 0)
2214 i = 1;
2215 }
2216 s0 = rv_alloc(i);
2217 if (s0 == NULL)
2218 goto failed_malloc;
2219 s = s0;
2220
2221
2222 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2223
2224 /* Try to get by with floating-point arithmetic. */
2225
2226 i = 0;
2227 dval(&d2) = dval(&u);
2228 k0 = k;
2229 ilim0 = ilim;
2230 ieps = 2; /* conservative */
2231 if (k > 0) {
2232 ds = tens[k&0xf];
2233 j = k >> 4;
2234 if (j & Bletch) {
2235 /* prevent overflows */
2236 j &= Bletch - 1;
2237 dval(&u) /= bigtens[n_bigtens-1];
2238 ieps++;
2239 }
2240 for(; j; j >>= 1, i++)
2241 if (j & 1) {
2242 ieps++;
2243 ds *= bigtens[i];
2244 }
2245 dval(&u) /= ds;
2246 }
2247 else if ((j1 = -k)) {
2248 dval(&u) *= tens[j1 & 0xf];
2249 for(j = j1 >> 4; j; j >>= 1, i++)
2250 if (j & 1) {
2251 ieps++;
2252 dval(&u) *= bigtens[i];
2253 }
2254 }
2255 if (k_check && dval(&u) < 1. && ilim > 0) {
2256 if (ilim1 <= 0)
2257 goto fast_failed;
2258 ilim = ilim1;
2259 k--;
2260 dval(&u) *= 10.;
2261 ieps++;
2262 }
2263 dval(&eps) = ieps*dval(&u) + 7.;
2264 word0(&eps) -= (P-1)*Exp_msk1;
2265 if (ilim == 0) {
2266 S = mhi = 0;
2267 dval(&u) -= 5.;
2268 if (dval(&u) > dval(&eps))
2269 goto one_digit;
2270 if (dval(&u) < -dval(&eps))
2271 goto no_digits;
2272 goto fast_failed;
2273 }
2274 if (leftright) {
2275 /* Use Steele & White method of only
2276 * generating digits needed.
2277 */
2278 dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2279 for(i = 0;;) {
2280 L = (Long)dval(&u);
2281 dval(&u) -= L;
2282 *s++ = '0' + (int)L;
2283 if (dval(&u) < dval(&eps))
2284 goto ret1;
2285 if (1. - dval(&u) < dval(&eps))
2286 goto bump_up;
2287 if (++i >= ilim)
2288 break;
2289 dval(&eps) *= 10.;
2290 dval(&u) *= 10.;
2291 }
2292 }
2293 else {
2294 /* Generate ilim digits, then fix them up. */
2295 dval(&eps) *= tens[ilim-1];
2296 for(i = 1;; i++, dval(&u) *= 10.) {
2297 L = (Long)(dval(&u));
2298 if (!(dval(&u) -= L))
2299 ilim = i;
2300 *s++ = '0' + (int)L;
2301 if (i == ilim) {
2302 if (dval(&u) > 0.5 + dval(&eps))
2303 goto bump_up;
2304 else if (dval(&u) < 0.5 - dval(&eps)) {
2305 while(*--s == '0');
2306 s++;
2307 goto ret1;
2308 }
2309 break;
2310 }
2311 }
2312 }
2313 fast_failed:
2314 s = s0;
2315 dval(&u) = dval(&d2);
2316 k = k0;
2317 ilim = ilim0;
2318 }
2319
2320 /* Do we have a "small" integer? */
2321
2322 if (be >= 0 && k <= Int_max) {
2323 /* Yes. */
2324 ds = tens[k];
2325 if (ndigits < 0 && ilim <= 0) {
2326 S = mhi = 0;
2327 if (ilim < 0 || dval(&u) <= 5*ds)
2328 goto no_digits;
2329 goto one_digit;
2330 }
2331 for(i = 1;; i++, dval(&u) *= 10.) {
2332 L = (Long)(dval(&u) / ds);
2333 dval(&u) -= L*ds;
2334 *s++ = '0' + (int)L;
2335 if (!dval(&u)) {
2336 break;
2337 }
2338 if (i == ilim) {
2339 dval(&u) += dval(&u);
2340 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2341 bump_up:
2342 while(*--s == '9')
2343 if (s == s0) {
2344 k++;
2345 *s = '0';
2346 break;
2347 }
2348 ++*s++;
2349 }
2350 break;
2351 }
2352 }
2353 goto ret1;
2354 }
2355
2356 m2 = b2;
2357 m5 = b5;
2358 if (leftright) {
2359 i =
2360 denorm ? be + (Bias + (P-1) - 1 + 1) :
2361 1 + P - bbits;
2362 b2 += i;
2363 s2 += i;
2364 mhi = i2b(1);
2365 if (mhi == NULL)
2366 goto failed_malloc;
2367 }
2368 if (m2 > 0 && s2 > 0) {
2369 i = m2 < s2 ? m2 : s2;
2370 b2 -= i;
2371 m2 -= i;
2372 s2 -= i;
2373 }
2374 if (b5 > 0) {
2375 if (leftright) {
2376 if (m5 > 0) {
2377 mhi = pow5mult(mhi, m5);
2378 if (mhi == NULL)
2379 goto failed_malloc;
2380 b1 = mult(mhi, b);
2381 Bfree(b);
2382 b = b1;
2383 if (b == NULL)
2384 goto failed_malloc;
2385 }
2386 if ((j = b5 - m5)) {
2387 b = pow5mult(b, j);
2388 if (b == NULL)
2389 goto failed_malloc;
2390 }
2391 }
2392 else {
2393 b = pow5mult(b, b5);
2394 if (b == NULL)
2395 goto failed_malloc;
2396 }
2397 }
2398 S = i2b(1);
2399 if (S == NULL)
2400 goto failed_malloc;
2401 if (s5 > 0) {
2402 S = pow5mult(S, s5);
2403 if (S == NULL)
2404 goto failed_malloc;
2405 }
2406
2407 /* Check for special case that d is a normalized power of 2. */
2408
2409 spec_case = 0;
2410 if ((mode < 2 || leftright)
2411 ) {
2412 if (!word1(&u) && !(word0(&u) & Bndry_mask)
2413 && word0(&u) & (Exp_mask & ~Exp_msk1)
2414 ) {
2415 /* The special case */
2416 b2 += Log2P;
2417 s2 += Log2P;
2418 spec_case = 1;
2419 }
2420 }
2421
2422 /* Arrange for convenient computation of quotients:
2423 * shift left if necessary so divisor has 4 leading 0 bits.
2424 *
2425 * Perhaps we should just compute leading 28 bits of S once
2426 * and for all and pass them and a shift to quorem, so it
2427 * can do shifts and ors to compute the numerator for q.
2428 */
2429 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
2430 i = 32 - i;
2431#define iInc 28
2432 i = dshift(S, s2);
2433 b2 += i;
2434 m2 += i;
2435 s2 += i;
2436 if (b2 > 0) {
2437 b = lshift(b, b2);
2438 if (b == NULL)
2439 goto failed_malloc;
2440 }
2441 if (s2 > 0) {
2442 S = lshift(S, s2);
2443 if (S == NULL)
2444 goto failed_malloc;
2445 }
2446 if (k_check) {
2447 if (cmp(b,S) < 0) {
2448 k--;
2449 b = multadd(b, 10, 0); /* we botched the k estimate */
2450 if (b == NULL)
2451 goto failed_malloc;
2452 if (leftright) {
2453 mhi = multadd(mhi, 10, 0);
2454 if (mhi == NULL)
2455 goto failed_malloc;
2456 }
2457 ilim = ilim1;
2458 }
2459 }
2460 if (ilim <= 0 && (mode == 3 || mode == 5)) {
2461 if (ilim < 0) {
2462 /* no digits, fcvt style */
2463 no_digits:
2464 k = -1 - ndigits;
2465 goto ret;
2466 }
2467 else {
2468 S = multadd(S, 5, 0);
2469 if (S == NULL)
2470 goto failed_malloc;
2471 if (cmp(b, S) <= 0)
2472 goto no_digits;
2473 }
2474 one_digit:
2475 *s++ = '1';
2476 k++;
2477 goto ret;
2478 }
2479 if (leftright) {
2480 if (m2 > 0) {
2481 mhi = lshift(mhi, m2);
2482 if (mhi == NULL)
2483 goto failed_malloc;
2484 }
2485
2486 /* Compute mlo -- check for special case
2487 * that d is a normalized power of 2.
2488 */
2489
2490 mlo = mhi;
2491 if (spec_case) {
2492 mhi = Balloc(mhi->k);
2493 if (mhi == NULL)
2494 goto failed_malloc;
2495 Bcopy(mhi, mlo);
2496 mhi = lshift(mhi, Log2P);
2497 if (mhi == NULL)
2498 goto failed_malloc;
2499 }
2500
2501 for(i = 1;;i++) {
2502 dig = quorem(b,S) + '0';
2503 /* Do we yet have the shortest decimal string
2504 * that will round to d?
2505 */
2506 j = cmp(b, mlo);
2507 delta = diff(S, mhi);
2508 if (delta == NULL)
2509 goto failed_malloc;
2510 j1 = delta->sign ? 1 : cmp(b, delta);
2511 Bfree(delta);
2512 if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2513 ) {
2514 if (dig == '9')
2515 goto round_9_up;
2516 if (j > 0)
2517 dig++;
2518 *s++ = dig;
2519 goto ret;
2520 }
2521 if (j < 0 || (j == 0 && mode != 1
2522 && !(word1(&u) & 1)
2523 )) {
2524 if (!b->x[0] && b->wds <= 1) {
2525 goto accept_dig;
2526 }
2527 if (j1 > 0) {
2528 b = lshift(b, 1);
2529 if (b == NULL)
2530 goto failed_malloc;
2531 j1 = cmp(b, S);
2532 if ((j1 > 0 || (j1 == 0 && dig & 1))
2533 && dig++ == '9')
2534 goto round_9_up;
2535 }
2536 accept_dig:
2537 *s++ = dig;
2538 goto ret;
2539 }
2540 if (j1 > 0) {
2541 if (dig == '9') { /* possible if i == 1 */
2542 round_9_up:
2543 *s++ = '9';
2544 goto roundoff;
2545 }
2546 *s++ = dig + 1;
2547 goto ret;
2548 }
2549 *s++ = dig;
2550 if (i == ilim)
2551 break;
2552 b = multadd(b, 10, 0);
2553 if (b == NULL)
2554 goto failed_malloc;
2555 if (mlo == mhi) {
2556 mlo = mhi = multadd(mhi, 10, 0);
2557 if (mlo == NULL)
2558 goto failed_malloc;
2559 }
2560 else {
2561 mlo = multadd(mlo, 10, 0);
2562 if (mlo == NULL)
2563 goto failed_malloc;
2564 mhi = multadd(mhi, 10, 0);
2565 if (mhi == NULL)
2566 goto failed_malloc;
2567 }
2568 }
2569 }
2570 else
2571 for(i = 1;; i++) {
2572 *s++ = dig = quorem(b,S) + '0';
2573 if (!b->x[0] && b->wds <= 1) {
2574 goto ret;
2575 }
2576 if (i >= ilim)
2577 break;
2578 b = multadd(b, 10, 0);
2579 if (b == NULL)
2580 goto failed_malloc;
2581 }
2582
2583 /* Round off last digit */
2584
2585 b = lshift(b, 1);
2586 if (b == NULL)
2587 goto failed_malloc;
2588 j = cmp(b, S);
2589 if (j > 0 || (j == 0 && dig & 1)) {
2590 roundoff:
2591 while(*--s == '9')
2592 if (s == s0) {
2593 k++;
2594 *s++ = '1';
2595 goto ret;
2596 }
2597 ++*s++;
2598 }
2599 else {
2600 while(*--s == '0');
2601 s++;
2602 }
2603 ret:
2604 Bfree(S);
2605 if (mhi) {
2606 if (mlo && mlo != mhi)
2607 Bfree(mlo);
2608 Bfree(mhi);
2609 }
2610 ret1:
2611 Bfree(b);
2612 *s = 0;
2613 *decpt = k + 1;
2614 if (rve)
2615 *rve = s;
2616 return s0;
2617 failed_malloc:
2618 if (S)
2619 Bfree(S);
2620 if (mlo && mlo != mhi)
2621 Bfree(mlo);
2622 if (mhi)
2623 Bfree(mhi);
2624 if (b)
2625 Bfree(b);
2626 if (s0)
2627 _Py_dg_freedtoa(s0);
2628 return NULL;
2629}
2630#ifdef __cplusplus
2631}
2632#endif
2633
2634#endif /* PY_NO_SHORT_FLOAT_REPR */