blob: 1a0b8f341e478cd88b98c10b31a2c1a6605288f9 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000011 generate random permutation
12
Guido van Rossume7b146f2000-02-04 15:28:42 +000013 distributions on the real line:
14 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000015 uniform
Guido van Rossume7b146f2000-02-04 15:28:42 +000016 normal (Gaussian)
17 lognormal
18 negative exponential
19 gamma
20 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000021 pareto
22 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000023
Guido van Rossume7b146f2000-02-04 15:28:42 +000024 distributions on the circle (angles 0 to 2pi)
25 ---------------------------------------------
26 circular uniform
27 von Mises
28
Raymond Hettinger40f62172002-12-29 23:03:38 +000029General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000030
Raymond Hettinger40f62172002-12-29 23:03:38 +000031* The period is 2**19937-1.
32* It is one of the most extensively tested generators in existence
33* Without a direct way to compute N steps forward, the
34 semantics of jumpahead(n) are weakened to simply jump
35 to another distant state and rely on the large period
36 to avoid overlapping sequences.
37* The random() method is implemented in C, executes in
38 a single Python step, and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000039
Guido van Rossume7b146f2000-02-04 15:28:42 +000040"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000041
Tim Petersd7b5e882001-01-25 03:36:26 +000042from math import log as _log, exp as _exp, pi as _pi, e as _e
43from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Tim Peters9146f272002-08-16 03:41:39 +000044from math import floor as _floor
Guido van Rossumff03b1a1994-03-09 12:55:02 +000045
Raymond Hettingerf24eb352002-11-12 17:41:57 +000046__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000047 "randrange","shuffle","normalvariate","lognormvariate",
48 "cunifvariate","expovariate","vonmisesvariate","gammavariate",
49 "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger40f62172002-12-29 23:03:38 +000050 "getstate","setstate","jumpahead"]
Tim Petersd7b5e882001-01-25 03:36:26 +000051
52NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000053TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000054LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000055SG_MAGICCONST = 1.0 + _log(4.5)
Tim Petersd7b5e882001-01-25 03:36:26 +000056
57# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000058# Adrian Baddeley. Adapted by Raymond Hettinger for use with
59# the Mersenne Twister core generator.
Tim Petersd7b5e882001-01-25 03:36:26 +000060
Raymond Hettinger145a4a02003-01-07 10:25:55 +000061import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000062
Raymond Hettinger145a4a02003-01-07 10:25:55 +000063class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000064 """Random number generator base class used by bound module functions.
65
66 Used to instantiate instances of Random to get generators that don't
67 share state. Especially useful for multi-threaded programs, creating
68 a different instance of Random for each thread, and using the jumpahead()
69 method to ensure that the generated sequences seen by each thread don't
70 overlap.
71
72 Class Random can also be subclassed if you want to use a different basic
73 generator of your own devising: in that case, override the following
74 methods: random(), seed(), getstate(), setstate() and jumpahead().
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000075
Raymond Hettingerc32f0332002-05-23 19:44:49 +000076 """
Tim Petersd7b5e882001-01-25 03:36:26 +000077
Raymond Hettinger40f62172002-12-29 23:03:38 +000078 VERSION = 2 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000079
80 def __init__(self, x=None):
81 """Initialize an instance.
82
83 Optional argument x controls seeding, as for Random.seed().
84 """
85
86 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +000087 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +000088
Tim Peters0de88fc2001-02-01 04:59:18 +000089 def seed(self, a=None):
90 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +000091
Tim Peters0de88fc2001-02-01 04:59:18 +000092 None or no argument seeds from current time.
93
Tim Petersbcd725f2001-02-01 10:06:53 +000094 If a is not None or an int or long, hash(a) is used instead.
Tim Petersd7b5e882001-01-25 03:36:26 +000095 """
96
Raymond Hettinger145a4a02003-01-07 10:25:55 +000097 super(Random, self).seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +000098 self.gauss_next = None
99
Tim Peterscd804102001-01-25 20:25:57 +0000100 def getstate(self):
101 """Return internal state; can be passed to setstate() later."""
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000102 return self.VERSION, super(Random, self).getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000103
104 def setstate(self, state):
105 """Restore internal state from object returned by getstate()."""
106 version = state[0]
Raymond Hettinger40f62172002-12-29 23:03:38 +0000107 if version == 2:
108 version, internalstate, self.gauss_next = state
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000109 super(Random, self).setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000110 else:
111 raise ValueError("state with version %s passed to "
112 "Random.setstate() of version %s" %
113 (version, self.VERSION))
114
Tim Peterscd804102001-01-25 20:25:57 +0000115## ---- Methods below this point do not need to be overridden when
116## ---- subclassing for the purpose of using a different core generator.
117
118## -------------------- pickle support -------------------
119
120 def __getstate__(self): # for pickle
121 return self.getstate()
122
123 def __setstate__(self, state): # for pickle
124 self.setstate(state)
125
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000126 def __reduce__(self):
127 return self.__class__, (), self.getstate()
128
Tim Peterscd804102001-01-25 20:25:57 +0000129## -------------------- integer methods -------------------
130
Tim Petersd7b5e882001-01-25 03:36:26 +0000131 def randrange(self, start, stop=None, step=1, int=int, default=None):
132 """Choose a random item from range(start, stop[, step]).
133
134 This fixes the problem with randint() which includes the
135 endpoint; in Python this is usually not what you want.
136 Do not supply the 'int' and 'default' arguments.
137 """
138
139 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000140 # common case while still doing adequate error checking.
Tim Petersd7b5e882001-01-25 03:36:26 +0000141 istart = int(start)
142 if istart != start:
143 raise ValueError, "non-integer arg 1 for randrange()"
144 if stop is default:
145 if istart > 0:
146 return int(self.random() * istart)
147 raise ValueError, "empty range for randrange()"
Tim Peters9146f272002-08-16 03:41:39 +0000148
149 # stop argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000150 istop = int(stop)
151 if istop != stop:
152 raise ValueError, "non-integer stop for randrange()"
Tim Peters9146f272002-08-16 03:41:39 +0000153 if step == 1 and istart < istop:
Tim Peters76ca1d42003-06-19 03:46:46 +0000154 # Note that
155 # int(istart + self.random()*(istop - istart))
156 # instead would be incorrect. For example, consider istart
157 # = -2 and istop = 0. Then the guts would be in
158 # -2.0 to 0.0 exclusive on both ends (ignoring that random()
159 # might return 0.0), and because int() truncates toward 0, the
160 # final result would be -1 or 0 (instead of -2 or -1).
161 # istart + int(self.random()*(istop - istart))
162 # would also be incorrect, for a subtler reason: the RHS
163 # can return a long, and then randrange() would also return
164 # a long, but we're supposed to return an int (for backward
165 # compatibility).
166 return int(istart + int(self.random()*(istop - istart)))
Tim Petersd7b5e882001-01-25 03:36:26 +0000167 if step == 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000168 raise ValueError, "empty range for randrange()"
Tim Peters9146f272002-08-16 03:41:39 +0000169
170 # Non-unit step argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000171 istep = int(step)
172 if istep != step:
173 raise ValueError, "non-integer step for randrange()"
174 if istep > 0:
175 n = (istop - istart + istep - 1) / istep
176 elif istep < 0:
177 n = (istop - istart + istep + 1) / istep
178 else:
179 raise ValueError, "zero step for randrange()"
180
181 if n <= 0:
182 raise ValueError, "empty range for randrange()"
183 return istart + istep*int(self.random() * n)
184
185 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000186 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000187 """
188
189 return self.randrange(a, b+1)
190
Tim Peterscd804102001-01-25 20:25:57 +0000191## -------------------- sequence methods -------------------
192
Tim Petersd7b5e882001-01-25 03:36:26 +0000193 def choice(self, seq):
194 """Choose a random element from a non-empty sequence."""
195 return seq[int(self.random() * len(seq))]
196
197 def shuffle(self, x, random=None, int=int):
198 """x, random=random.random -> shuffle list x in place; return None.
199
200 Optional arg random is a 0-argument function returning a random
201 float in [0.0, 1.0); by default, the standard random.random.
202
203 Note that for even rather small len(x), the total number of
204 permutations of x is larger than the period of most random number
205 generators; this implies that "most" permutations of a long
206 sequence can never be generated.
207 """
208
209 if random is None:
210 random = self.random
211 for i in xrange(len(x)-1, 0, -1):
Tim Peterscd804102001-01-25 20:25:57 +0000212 # pick an element in x[:i+1] with which to exchange x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000213 j = int(random() * (i+1))
214 x[i], x[j] = x[j], x[i]
215
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000216 def sample(self, population, k):
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000217 """Chooses k unique random elements from a population sequence.
218
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000219 Returns a new list containing elements from the population while
220 leaving the original population unchanged. The resulting list is
221 in selection order so that all sub-slices will also be valid random
222 samples. This allows raffle winners (the sample) to be partitioned
223 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000224
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000225 Members of the population need not be hashable or unique. If the
226 population contains repeats, then each occurrence is a possible
227 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000228
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000229 To choose a sample in a range of integers, use xrange as an argument.
230 This is especially fast and space efficient for sampling from a
231 large population: sample(xrange(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000232 """
233
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000234 # Sampling without replacement entails tracking either potential
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000235 # selections (the pool) in a list or previous selections in a
236 # dictionary.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000237
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000238 # When the number of selections is small compared to the population,
239 # then tracking selections is efficient, requiring only a small
240 # dictionary and an occasional reselection. For a larger number of
241 # selections, the pool tracking method is preferred since the list takes
242 # less space than the dictionary and it doesn't suffer from frequent
243 # reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000244
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000245 n = len(population)
246 if not 0 <= k <= n:
247 raise ValueError, "sample larger than population"
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000248 random = self.random
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000249 _int = int
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000250 result = [None] * k
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000251 if n < 6 * k: # if n len list takes less space than a k len dict
Raymond Hettinger311f4192002-11-18 09:01:24 +0000252 pool = list(population)
253 for i in xrange(k): # invariant: non-selected at [0,n-i)
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000254 j = _int(random() * (n-i))
Raymond Hettinger311f4192002-11-18 09:01:24 +0000255 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000256 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000257 else:
Raymond Hettinger311f4192002-11-18 09:01:24 +0000258 selected = {}
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000259 for i in xrange(k):
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000260 j = _int(random() * n)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000261 while j in selected:
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000262 j = _int(random() * n)
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000263 result[i] = selected[j] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000264 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000265
Tim Peterscd804102001-01-25 20:25:57 +0000266## -------------------- real-valued distributions -------------------
267
268## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000269
270 def uniform(self, a, b):
271 """Get a random number in the range [a, b)."""
272 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000273
Tim Peterscd804102001-01-25 20:25:57 +0000274## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000275
Tim Petersd7b5e882001-01-25 03:36:26 +0000276 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000277 """Normal distribution.
278
279 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000280
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000281 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000282 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000283
Tim Petersd7b5e882001-01-25 03:36:26 +0000284 # Uses Kinderman and Monahan method. Reference: Kinderman,
285 # A.J. and Monahan, J.F., "Computer generation of random
286 # variables using the ratio of uniform deviates", ACM Trans
287 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000288
Tim Petersd7b5e882001-01-25 03:36:26 +0000289 random = self.random
Raymond Hettinger311f4192002-11-18 09:01:24 +0000290 while True:
Tim Peters0c9886d2001-01-15 01:18:21 +0000291 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000292 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000293 z = NV_MAGICCONST*(u1-0.5)/u2
294 zz = z*z/4.0
295 if zz <= -_log(u2):
296 break
297 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000298
Tim Peterscd804102001-01-25 20:25:57 +0000299## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000300
301 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000302 """Log normal distribution.
303
304 If you take the natural logarithm of this distribution, you'll get a
305 normal distribution with mean mu and standard deviation sigma.
306 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000307
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000308 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000309 return _exp(self.normalvariate(mu, sigma))
310
Tim Peterscd804102001-01-25 20:25:57 +0000311## -------------------- circular uniform --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000312
313 def cunifvariate(self, mean, arc):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000314 """Circular uniform distribution.
315
316 mean is the mean angle, and arc is the range of the distribution,
317 centered around the mean angle. Both values must be expressed in
318 radians. Returned values range between mean - arc/2 and
319 mean + arc/2 and are normalized to between 0 and pi.
320
321 Deprecated in version 2.3. Use:
322 (mean + arc * (Random.random() - 0.5)) % Math.pi
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000323
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000324 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000325 # mean: mean angle (in radians between 0 and pi)
326 # arc: range of distribution (in radians between 0 and pi)
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000327 import warnings
328 warnings.warn("The cunifvariate function is deprecated; Use (mean "
329 "+ arc * (Random.random() - 0.5)) % Math.pi instead",
330 DeprecationWarning)
Tim Petersd7b5e882001-01-25 03:36:26 +0000331
332 return (mean + arc * (self.random() - 0.5)) % _pi
333
Tim Peterscd804102001-01-25 20:25:57 +0000334## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000335
336 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000337 """Exponential distribution.
338
339 lambd is 1.0 divided by the desired mean. (The parameter would be
340 called "lambda", but that is a reserved word in Python.) Returned
341 values range from 0 to positive infinity.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000342
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000343 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000344 # lambd: rate lambd = 1/mean
345 # ('lambda' is a Python reserved word)
346
347 random = self.random
Tim Peters0c9886d2001-01-15 01:18:21 +0000348 u = random()
349 while u <= 1e-7:
350 u = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000351 return -_log(u)/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000352
Tim Peterscd804102001-01-25 20:25:57 +0000353## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000354
Tim Petersd7b5e882001-01-25 03:36:26 +0000355 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000356 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000357
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000358 mu is the mean angle, expressed in radians between 0 and 2*pi, and
359 kappa is the concentration parameter, which must be greater than or
360 equal to zero. If kappa is equal to zero, this distribution reduces
361 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000362
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000363 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000364 # mu: mean angle (in radians between 0 and 2*pi)
365 # kappa: concentration parameter kappa (>= 0)
366 # if kappa = 0 generate uniform random angle
367
368 # Based upon an algorithm published in: Fisher, N.I.,
369 # "Statistical Analysis of Circular Data", Cambridge
370 # University Press, 1993.
371
372 # Thanks to Magnus Kessler for a correction to the
373 # implementation of step 4.
374
375 random = self.random
376 if kappa <= 1e-6:
377 return TWOPI * random()
378
379 a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
380 b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
381 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000382
Raymond Hettinger311f4192002-11-18 09:01:24 +0000383 while True:
Tim Peters0c9886d2001-01-15 01:18:21 +0000384 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000385
386 z = _cos(_pi * u1)
387 f = (1.0 + r * z)/(r + z)
388 c = kappa * (r - f)
389
390 u2 = random()
391
392 if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
Tim Peters0c9886d2001-01-15 01:18:21 +0000393 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000394
395 u3 = random()
396 if u3 > 0.5:
397 theta = (mu % TWOPI) + _acos(f)
398 else:
399 theta = (mu % TWOPI) - _acos(f)
400
401 return theta
402
Tim Peterscd804102001-01-25 20:25:57 +0000403## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000404
405 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000406 """Gamma distribution. Not the gamma function!
407
408 Conditions on the parameters are alpha > 0 and beta > 0.
409
410 """
Tim Peters8ac14952002-05-23 15:15:30 +0000411
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000412 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000413
Guido van Rossum570764d2002-05-14 14:08:12 +0000414 # Warning: a few older sources define the gamma distribution in terms
415 # of alpha > -1.0
416 if alpha <= 0.0 or beta <= 0.0:
417 raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
Tim Peters8ac14952002-05-23 15:15:30 +0000418
Tim Petersd7b5e882001-01-25 03:36:26 +0000419 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000420 if alpha > 1.0:
421
422 # Uses R.C.H. Cheng, "The generation of Gamma
423 # variables with non-integral shape parameters",
424 # Applied Statistics, (1977), 26, No. 1, p71-74
425
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000426 ainv = _sqrt(2.0 * alpha - 1.0)
427 bbb = alpha - LOG4
428 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000429
Raymond Hettinger311f4192002-11-18 09:01:24 +0000430 while True:
Tim Petersd7b5e882001-01-25 03:36:26 +0000431 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000432 if not 1e-7 < u1 < .9999999:
433 continue
434 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000435 v = _log(u1/(1.0-u1))/ainv
436 x = alpha*_exp(v)
437 z = u1*u1*u2
438 r = bbb+ccc*v-x
439 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000440 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000441
442 elif alpha == 1.0:
443 # expovariate(1)
444 u = random()
445 while u <= 1e-7:
446 u = random()
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000447 return -_log(u) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000448
449 else: # alpha is between 0 and 1 (exclusive)
450
451 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
452
Raymond Hettinger311f4192002-11-18 09:01:24 +0000453 while True:
Tim Petersd7b5e882001-01-25 03:36:26 +0000454 u = random()
455 b = (_e + alpha)/_e
456 p = b*u
457 if p <= 1.0:
458 x = pow(p, 1.0/alpha)
459 else:
460 # p > 1
461 x = -_log((b-p)/alpha)
462 u1 = random()
463 if not (((p <= 1.0) and (u1 > _exp(-x))) or
464 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
465 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000466 return x * beta
467
468
469 def stdgamma(self, alpha, ainv, bbb, ccc):
470 # This method was (and shall remain) undocumented.
471 # This method is deprecated
472 # for the following reasons:
473 # 1. Returns same as .gammavariate(alpha, 1.0)
474 # 2. Requires caller to provide 3 extra arguments
475 # that are functions of alpha anyway
476 # 3. Can't be used for alpha < 0.5
477
478 # ainv = sqrt(2 * alpha - 1)
479 # bbb = alpha - log(4)
480 # ccc = alpha + ainv
481 import warnings
482 warnings.warn("The stdgamma function is deprecated; "
483 "use gammavariate() instead",
484 DeprecationWarning)
485 return self.gammavariate(alpha, 1.0)
486
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000487
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000488
Tim Peterscd804102001-01-25 20:25:57 +0000489## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000490
Tim Petersd7b5e882001-01-25 03:36:26 +0000491 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000492 """Gaussian distribution.
493
494 mu is the mean, and sigma is the standard deviation. This is
495 slightly faster than the normalvariate() function.
496
497 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000498
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000499 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000500
Tim Petersd7b5e882001-01-25 03:36:26 +0000501 # When x and y are two variables from [0, 1), uniformly
502 # distributed, then
503 #
504 # cos(2*pi*x)*sqrt(-2*log(1-y))
505 # sin(2*pi*x)*sqrt(-2*log(1-y))
506 #
507 # are two *independent* variables with normal distribution
508 # (mu = 0, sigma = 1).
509 # (Lambert Meertens)
510 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000511
Tim Petersd7b5e882001-01-25 03:36:26 +0000512 # Multithreading note: When two threads call this function
513 # simultaneously, it is possible that they will receive the
514 # same return value. The window is very small though. To
515 # avoid this, you have to use a lock around all calls. (I
516 # didn't want to slow this down in the serial case by using a
517 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000518
Tim Petersd7b5e882001-01-25 03:36:26 +0000519 random = self.random
520 z = self.gauss_next
521 self.gauss_next = None
522 if z is None:
523 x2pi = random() * TWOPI
524 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
525 z = _cos(x2pi) * g2rad
526 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000527
Tim Petersd7b5e882001-01-25 03:36:26 +0000528 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000529
Tim Peterscd804102001-01-25 20:25:57 +0000530## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000531## See
532## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
533## for Ivan Frohne's insightful analysis of why the original implementation:
534##
535## def betavariate(self, alpha, beta):
536## # Discrete Event Simulation in C, pp 87-88.
537##
538## y = self.expovariate(alpha)
539## z = self.expovariate(1.0/beta)
540## return z/(y+z)
541##
542## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000543
Tim Petersd7b5e882001-01-25 03:36:26 +0000544 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000545 """Beta distribution.
546
547 Conditions on the parameters are alpha > -1 and beta} > -1.
548 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000549
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000550 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000551
Tim Peters85e2e472001-01-26 06:49:56 +0000552 # This version due to Janne Sinkkonen, and matches all the std
553 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
554 y = self.gammavariate(alpha, 1.)
555 if y == 0:
556 return 0.0
557 else:
558 return y / (y + self.gammavariate(beta, 1.))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000559
Tim Peterscd804102001-01-25 20:25:57 +0000560## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000561
Tim Petersd7b5e882001-01-25 03:36:26 +0000562 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000563 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000564 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000565
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000566 u = 1.0 - self.random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000567 return 1.0 / pow(u, 1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000568
Tim Peterscd804102001-01-25 20:25:57 +0000569## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000570
Tim Petersd7b5e882001-01-25 03:36:26 +0000571 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000572 """Weibull distribution.
573
574 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000575
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000576 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000577 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000578
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000579 u = 1.0 - self.random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000580 return alpha * pow(-_log(u), 1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000581
Raymond Hettinger40f62172002-12-29 23:03:38 +0000582## -------------------- Wichmann-Hill -------------------
583
584class WichmannHill(Random):
585
586 VERSION = 1 # used by getstate/setstate
587
588 def seed(self, a=None):
589 """Initialize internal state from hashable object.
590
591 None or no argument seeds from current time.
592
593 If a is not None or an int or long, hash(a) is used instead.
594
595 If a is an int or long, a is used directly. Distinct values between
596 0 and 27814431486575L inclusive are guaranteed to yield distinct
597 internal states (this guarantee is specific to the default
598 Wichmann-Hill generator).
599 """
600
601 if a is None:
602 # Initialize from current time
603 import time
604 a = long(time.time() * 256)
605
606 if not isinstance(a, (int, long)):
607 a = hash(a)
608
609 a, x = divmod(a, 30268)
610 a, y = divmod(a, 30306)
611 a, z = divmod(a, 30322)
612 self._seed = int(x)+1, int(y)+1, int(z)+1
613
614 self.gauss_next = None
615
616 def random(self):
617 """Get the next random number in the range [0.0, 1.0)."""
618
619 # Wichman-Hill random number generator.
620 #
621 # Wichmann, B. A. & Hill, I. D. (1982)
622 # Algorithm AS 183:
623 # An efficient and portable pseudo-random number generator
624 # Applied Statistics 31 (1982) 188-190
625 #
626 # see also:
627 # Correction to Algorithm AS 183
628 # Applied Statistics 33 (1984) 123
629 #
630 # McLeod, A. I. (1985)
631 # A remark on Algorithm AS 183
632 # Applied Statistics 34 (1985),198-200
633
634 # This part is thread-unsafe:
635 # BEGIN CRITICAL SECTION
636 x, y, z = self._seed
637 x = (171 * x) % 30269
638 y = (172 * y) % 30307
639 z = (170 * z) % 30323
640 self._seed = x, y, z
641 # END CRITICAL SECTION
642
643 # Note: on a platform using IEEE-754 double arithmetic, this can
644 # never return 0.0 (asserted by Tim; proof too long for a comment).
645 return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
646
647 def getstate(self):
648 """Return internal state; can be passed to setstate() later."""
649 return self.VERSION, self._seed, self.gauss_next
650
651 def setstate(self, state):
652 """Restore internal state from object returned by getstate()."""
653 version = state[0]
654 if version == 1:
655 version, self._seed, self.gauss_next = state
656 else:
657 raise ValueError("state with version %s passed to "
658 "Random.setstate() of version %s" %
659 (version, self.VERSION))
660
661 def jumpahead(self, n):
662 """Act as if n calls to random() were made, but quickly.
663
664 n is an int, greater than or equal to 0.
665
666 Example use: If you have 2 threads and know that each will
667 consume no more than a million random numbers, create two Random
668 objects r1 and r2, then do
669 r2.setstate(r1.getstate())
670 r2.jumpahead(1000000)
671 Then r1 and r2 will use guaranteed-disjoint segments of the full
672 period.
673 """
674
675 if not n >= 0:
676 raise ValueError("n must be >= 0")
677 x, y, z = self._seed
678 x = int(x * pow(171, n, 30269)) % 30269
679 y = int(y * pow(172, n, 30307)) % 30307
680 z = int(z * pow(170, n, 30323)) % 30323
681 self._seed = x, y, z
682
683 def __whseed(self, x=0, y=0, z=0):
684 """Set the Wichmann-Hill seed from (x, y, z).
685
686 These must be integers in the range [0, 256).
687 """
688
689 if not type(x) == type(y) == type(z) == int:
690 raise TypeError('seeds must be integers')
691 if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
692 raise ValueError('seeds must be in range(0, 256)')
693 if 0 == x == y == z:
694 # Initialize from current time
695 import time
696 t = long(time.time() * 256)
697 t = int((t&0xffffff) ^ (t>>24))
698 t, x = divmod(t, 256)
699 t, y = divmod(t, 256)
700 t, z = divmod(t, 256)
701 # Zero is a poor seed, so substitute 1
702 self._seed = (x or 1, y or 1, z or 1)
703
704 self.gauss_next = None
705
706 def whseed(self, a=None):
707 """Seed from hashable object's hash code.
708
709 None or no argument seeds from current time. It is not guaranteed
710 that objects with distinct hash codes lead to distinct internal
711 states.
712
713 This is obsolete, provided for compatibility with the seed routine
714 used prior to Python 2.1. Use the .seed() method instead.
715 """
716
717 if a is None:
718 self.__whseed()
719 return
720 a = hash(a)
721 a, x = divmod(a, 256)
722 a, y = divmod(a, 256)
723 a, z = divmod(a, 256)
724 x = (x + a) % 256 or 1
725 y = (y + a) % 256 or 1
726 z = (z + a) % 256 or 1
727 self.__whseed(x, y, z)
728
Tim Peterscd804102001-01-25 20:25:57 +0000729## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000730
Tim Petersd7b5e882001-01-25 03:36:26 +0000731def _test_generator(n, funccall):
Tim Peters0c9886d2001-01-15 01:18:21 +0000732 import time
733 print n, 'times', funccall
734 code = compile(funccall, funccall, 'eval')
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000735 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000736 sqsum = 0.0
737 smallest = 1e10
738 largest = -1e10
739 t0 = time.time()
740 for i in range(n):
741 x = eval(code)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000742 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000743 sqsum = sqsum + x*x
744 smallest = min(x, smallest)
745 largest = max(x, largest)
746 t1 = time.time()
747 print round(t1-t0, 3), 'sec,',
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000748 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000749 stddev = _sqrt(sqsum/n - avg*avg)
Tim Peters0c9886d2001-01-15 01:18:21 +0000750 print 'avg %g, stddev %g, min %g, max %g' % \
751 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000752
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000753
754def _test(N=2000):
Tim Petersd7b5e882001-01-25 03:36:26 +0000755 _test_generator(N, 'random()')
756 _test_generator(N, 'normalvariate(0.0, 1.0)')
757 _test_generator(N, 'lognormvariate(0.0, 1.0)')
758 _test_generator(N, 'cunifvariate(0.0, 1.0)')
Tim Petersd7b5e882001-01-25 03:36:26 +0000759 _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000760 _test_generator(N, 'gammavariate(0.01, 1.0)')
761 _test_generator(N, 'gammavariate(0.1, 1.0)')
Tim Peters8ac14952002-05-23 15:15:30 +0000762 _test_generator(N, 'gammavariate(0.1, 2.0)')
Tim Petersd7b5e882001-01-25 03:36:26 +0000763 _test_generator(N, 'gammavariate(0.5, 1.0)')
764 _test_generator(N, 'gammavariate(0.9, 1.0)')
765 _test_generator(N, 'gammavariate(1.0, 1.0)')
766 _test_generator(N, 'gammavariate(2.0, 1.0)')
767 _test_generator(N, 'gammavariate(20.0, 1.0)')
768 _test_generator(N, 'gammavariate(200.0, 1.0)')
769 _test_generator(N, 'gauss(0.0, 1.0)')
770 _test_generator(N, 'betavariate(3.0, 3.0)')
Tim Peterscd804102001-01-25 20:25:57 +0000771
Tim Peters715c4c42001-01-26 22:56:56 +0000772# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000773# as module-level functions. The functions share state across all uses
774#(both in the user's code and in the Python libraries), but that's fine
775# for most programs and is easier for the casual user than making them
776# instantiate their own Random() instance.
777
Tim Petersd7b5e882001-01-25 03:36:26 +0000778_inst = Random()
779seed = _inst.seed
780random = _inst.random
781uniform = _inst.uniform
782randint = _inst.randint
783choice = _inst.choice
784randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000785sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000786shuffle = _inst.shuffle
787normalvariate = _inst.normalvariate
788lognormvariate = _inst.lognormvariate
789cunifvariate = _inst.cunifvariate
790expovariate = _inst.expovariate
791vonmisesvariate = _inst.vonmisesvariate
792gammavariate = _inst.gammavariate
793stdgamma = _inst.stdgamma
794gauss = _inst.gauss
795betavariate = _inst.betavariate
796paretovariate = _inst.paretovariate
797weibullvariate = _inst.weibullvariate
798getstate = _inst.getstate
799setstate = _inst.setstate
Tim Petersd52269b2001-01-25 06:23:18 +0000800jumpahead = _inst.jumpahead
Tim Petersd7b5e882001-01-25 03:36:26 +0000801
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000802if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000803 _test()