blob: 8560fb9a25d755f9f92f0838b8f1a38c29d0f92e [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000011 generate random permutation
12
Guido van Rossume7b146f2000-02-04 15:28:42 +000013 distributions on the real line:
14 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000015 uniform
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +000016 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000017 normal (Gaussian)
18 lognormal
19 negative exponential
20 gamma
21 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000022 pareto
23 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000024
Guido van Rossume7b146f2000-02-04 15:28:42 +000025 distributions on the circle (angles 0 to 2pi)
26 ---------------------------------------------
27 circular uniform
28 von Mises
29
Raymond Hettinger40f62172002-12-29 23:03:38 +000030General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000031
Raymond Hettinger40f62172002-12-29 23:03:38 +000032* The period is 2**19937-1.
Tim Peters0e115952006-06-10 22:51:45 +000033* It is one of the most extensively tested generators in existence.
34* Without a direct way to compute N steps forward, the semantics of
35 jumpahead(n) are weakened to simply jump to another distant state and rely
36 on the large period to avoid overlapping sequences.
37* The random() method is implemented in C, executes in a single Python step,
38 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000039
Guido van Rossume7b146f2000-02-04 15:28:42 +000040"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000041
Raymond Hettingerc4f7bab2008-03-23 19:37:53 +000042from __future__ import division
Raymond Hettinger2f726e92003-10-05 09:09:15 +000043from warnings import warn as _warn
44from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
Raymond Hettinger91e27c22005-08-19 01:36:35 +000045from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Tim Petersd7b5e882001-01-25 03:36:26 +000046from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000047from os import urandom as _urandom
48from binascii import hexlify as _hexlify
Raymond Hettingerffd2a422010-09-10 10:47:22 +000049import hashlib as _hashlib
Guido van Rossumff03b1a1994-03-09 12:55:02 +000050
Raymond Hettingerf24eb352002-11-12 17:41:57 +000051__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000052 "randrange","shuffle","normalvariate","lognormvariate",
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +000053 "expovariate","vonmisesvariate","gammavariate","triangular",
Raymond Hettingerf8a52d32003-08-05 12:23:19 +000054 "gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger356a4592004-08-30 06:14:31 +000055 "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
Raymond Hettinger23f12412004-09-13 22:23:21 +000056 "SystemRandom"]
Tim Petersd7b5e882001-01-25 03:36:26 +000057
58NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000059TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000060LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000061SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000062BPF = 53 # Number of bits in a float
Tim Peters7c2a85b2004-08-31 02:19:55 +000063RECIP_BPF = 2**-BPF
Tim Petersd7b5e882001-01-25 03:36:26 +000064
Raymond Hettinger356a4592004-08-30 06:14:31 +000065
Tim Petersd7b5e882001-01-25 03:36:26 +000066# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000067# Adrian Baddeley. Adapted by Raymond Hettinger for use with
Raymond Hettinger3fa19d72004-08-31 01:05:15 +000068# the Mersenne Twister and os.urandom() core generators.
Tim Petersd7b5e882001-01-25 03:36:26 +000069
Raymond Hettinger145a4a02003-01-07 10:25:55 +000070import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000071
Raymond Hettinger145a4a02003-01-07 10:25:55 +000072class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000073 """Random number generator base class used by bound module functions.
74
75 Used to instantiate instances of Random to get generators that don't
76 share state. Especially useful for multi-threaded programs, creating
77 a different instance of Random for each thread, and using the jumpahead()
78 method to ensure that the generated sequences seen by each thread don't
79 overlap.
80
81 Class Random can also be subclassed if you want to use a different basic
82 generator of your own devising: in that case, override the following
Benjamin Petersonf2eb2b42008-07-30 13:46:53 +000083 methods: random(), seed(), getstate(), setstate() and jumpahead().
84 Optionally, implement a getrandbits() method so that randrange() can cover
85 arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000086
Raymond Hettingerc32f0332002-05-23 19:44:49 +000087 """
Tim Petersd7b5e882001-01-25 03:36:26 +000088
Martin v. Löwis6b449f42007-12-03 19:20:02 +000089 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000090
91 def __init__(self, x=None):
92 """Initialize an instance.
93
94 Optional argument x controls seeding, as for Random.seed().
95 """
96
97 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +000098 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +000099
Tim Peters0de88fc2001-02-01 04:59:18 +0000100 def seed(self, a=None):
101 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +0000102
Raymond Hettinger23f12412004-09-13 22:23:21 +0000103 None or no argument seeds from current time or from an operating
104 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +0000105
Tim Petersbcd725f2001-02-01 10:06:53 +0000106 If a is not None or an int or long, hash(a) is used instead.
Tim Petersd7b5e882001-01-25 03:36:26 +0000107 """
108
Raymond Hettinger3081d592003-08-09 18:30:57 +0000109 if a is None:
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000110 try:
111 a = long(_hexlify(_urandom(16)), 16)
112 except NotImplementedError:
Raymond Hettinger356a4592004-08-30 06:14:31 +0000113 import time
114 a = long(time.time() * 256) # use fractional seconds
Raymond Hettinger356a4592004-08-30 06:14:31 +0000115
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000116 super(Random, self).seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000117 self.gauss_next = None
118
Tim Peterscd804102001-01-25 20:25:57 +0000119 def getstate(self):
120 """Return internal state; can be passed to setstate() later."""
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000121 return self.VERSION, super(Random, self).getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000122
123 def setstate(self, state):
124 """Restore internal state from object returned by getstate()."""
125 version = state[0]
Martin v. Löwis6b449f42007-12-03 19:20:02 +0000126 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000127 version, internalstate, self.gauss_next = state
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000128 super(Random, self).setstate(internalstate)
Martin v. Löwis6b449f42007-12-03 19:20:02 +0000129 elif version == 2:
130 version, internalstate, self.gauss_next = state
131 # In version 2, the state was saved as signed ints, which causes
132 # inconsistencies between 32/64-bit systems. The state is
133 # really unsigned 32-bit ints, so we convert negative ints from
134 # version 2 to positive longs for version 3.
135 try:
136 internalstate = tuple( long(x) % (2**32) for x in internalstate )
137 except ValueError, e:
138 raise TypeError, e
139 super(Random, self).setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000140 else:
141 raise ValueError("state with version %s passed to "
142 "Random.setstate() of version %s" %
143 (version, self.VERSION))
144
Raymond Hettingerffd2a422010-09-10 10:47:22 +0000145 def jumpahead(self, n):
146 """Change the internal state to one that is likely far away
147 from the current state. This method will not be in Py3.x,
148 so it is better to simply reseed.
149 """
150 # The super.jumpahead() method uses shuffling to change state,
151 # so it needs a large and "interesting" n to work with. Here,
152 # we use hashing to create a large n for the shuffle.
153 s = repr(n) + repr(self.getstate())
154 n = int(_hashlib.new('sha512', s).hexdigest(), 16)
155 super(Random, self).jumpahead(n)
156
Tim Peterscd804102001-01-25 20:25:57 +0000157## ---- Methods below this point do not need to be overridden when
158## ---- subclassing for the purpose of using a different core generator.
159
160## -------------------- pickle support -------------------
161
162 def __getstate__(self): # for pickle
163 return self.getstate()
164
165 def __setstate__(self, state): # for pickle
166 self.setstate(state)
167
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000168 def __reduce__(self):
169 return self.__class__, (), self.getstate()
170
Tim Peterscd804102001-01-25 20:25:57 +0000171## -------------------- integer methods -------------------
172
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000173 def randrange(self, start, stop=None, step=1, int=int, default=None,
174 maxwidth=1L<<BPF):
Tim Petersd7b5e882001-01-25 03:36:26 +0000175 """Choose a random item from range(start, stop[, step]).
176
177 This fixes the problem with randint() which includes the
178 endpoint; in Python this is usually not what you want.
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000179 Do not supply the 'int', 'default', and 'maxwidth' arguments.
Tim Petersd7b5e882001-01-25 03:36:26 +0000180 """
181
182 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000183 # common case while still doing adequate error checking.
Tim Petersd7b5e882001-01-25 03:36:26 +0000184 istart = int(start)
185 if istart != start:
186 raise ValueError, "non-integer arg 1 for randrange()"
187 if stop is default:
188 if istart > 0:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000189 if istart >= maxwidth:
190 return self._randbelow(istart)
Tim Petersd7b5e882001-01-25 03:36:26 +0000191 return int(self.random() * istart)
192 raise ValueError, "empty range for randrange()"
Tim Peters9146f272002-08-16 03:41:39 +0000193
194 # stop argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000195 istop = int(stop)
196 if istop != stop:
197 raise ValueError, "non-integer stop for randrange()"
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000198 width = istop - istart
199 if step == 1 and width > 0:
Tim Peters76ca1d42003-06-19 03:46:46 +0000200 # Note that
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000201 # int(istart + self.random()*width)
Tim Peters76ca1d42003-06-19 03:46:46 +0000202 # instead would be incorrect. For example, consider istart
203 # = -2 and istop = 0. Then the guts would be in
204 # -2.0 to 0.0 exclusive on both ends (ignoring that random()
205 # might return 0.0), and because int() truncates toward 0, the
206 # final result would be -1 or 0 (instead of -2 or -1).
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000207 # istart + int(self.random()*width)
Tim Peters76ca1d42003-06-19 03:46:46 +0000208 # would also be incorrect, for a subtler reason: the RHS
209 # can return a long, and then randrange() would also return
210 # a long, but we're supposed to return an int (for backward
211 # compatibility).
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000212
213 if width >= maxwidth:
Tim Peters58eb11c2004-01-18 20:29:55 +0000214 return int(istart + self._randbelow(width))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000215 return int(istart + int(self.random()*width))
Tim Petersd7b5e882001-01-25 03:36:26 +0000216 if step == 1:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000217 raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
Tim Peters9146f272002-08-16 03:41:39 +0000218
219 # Non-unit step argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000220 istep = int(step)
221 if istep != step:
222 raise ValueError, "non-integer step for randrange()"
223 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000224 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000225 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000226 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000227 else:
228 raise ValueError, "zero step for randrange()"
229
230 if n <= 0:
231 raise ValueError, "empty range for randrange()"
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000232
233 if n >= maxwidth:
Raymond Hettinger94547f72006-12-20 06:42:06 +0000234 return istart + istep*self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000235 return istart + istep*int(self.random() * n)
236
237 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000238 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000239 """
240
241 return self.randrange(a, b+1)
242
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000243 def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
244 _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
245 """Return a random int in the range [0,n)
246
247 Handles the case where n has more bits than returned
248 by a single call to the underlying generator.
249 """
250
251 try:
252 getrandbits = self.getrandbits
253 except AttributeError:
254 pass
255 else:
256 # Only call self.getrandbits if the original random() builtin method
257 # has not been overridden or if a new getrandbits() was supplied.
258 # This assures that the two methods correspond.
259 if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
260 k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
261 r = getrandbits(k)
262 while r >= n:
263 r = getrandbits(k)
264 return r
265 if n >= _maxwidth:
266 _warn("Underlying random() generator does not supply \n"
267 "enough bits to choose from a population range this large")
268 return int(self.random() * n)
269
Tim Peterscd804102001-01-25 20:25:57 +0000270## -------------------- sequence methods -------------------
271
Tim Petersd7b5e882001-01-25 03:36:26 +0000272 def choice(self, seq):
273 """Choose a random element from a non-empty sequence."""
Raymond Hettinger5dae5052004-06-07 02:07:15 +0000274 return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
Tim Petersd7b5e882001-01-25 03:36:26 +0000275
276 def shuffle(self, x, random=None, int=int):
277 """x, random=random.random -> shuffle list x in place; return None.
278
279 Optional arg random is a 0-argument function returning a random
280 float in [0.0, 1.0); by default, the standard random.random.
Tim Petersd7b5e882001-01-25 03:36:26 +0000281 """
282
283 if random is None:
284 random = self.random
Raymond Hettinger85c20a42003-11-06 14:06:48 +0000285 for i in reversed(xrange(1, len(x))):
Tim Peterscd804102001-01-25 20:25:57 +0000286 # pick an element in x[:i+1] with which to exchange x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000287 j = int(random() * (i+1))
288 x[i], x[j] = x[j], x[i]
289
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000290 def sample(self, population, k):
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000291 """Chooses k unique random elements from a population sequence.
292
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000293 Returns a new list containing elements from the population while
294 leaving the original population unchanged. The resulting list is
295 in selection order so that all sub-slices will also be valid random
296 samples. This allows raffle winners (the sample) to be partitioned
297 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000298
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000299 Members of the population need not be hashable or unique. If the
300 population contains repeats, then each occurrence is a possible
301 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000302
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000303 To choose a sample in a range of integers, use xrange as an argument.
304 This is especially fast and space efficient for sampling from a
305 large population: sample(xrange(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000306 """
307
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000308 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000309 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000310
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000311 # When the number of selections is small compared to the
312 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000313 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000314 # a larger number of selections, the pool tracking method is
315 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000316 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000317
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000318 n = len(population)
319 if not 0 <= k <= n:
Raymond Hettinger22d8f7b2011-05-18 17:28:50 -0500320 raise ValueError("sample larger than population")
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000321 random = self.random
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000322 _int = int
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000323 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000324 setsize = 21 # size of a small set minus size of an empty list
325 if k > 5:
Tim Peters9e34c042005-08-26 15:20:46 +0000326 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Tim Petersc17976e2006-04-01 00:26:53 +0000327 if n <= setsize or hasattr(population, "keys"):
328 # An n-length list is smaller than a k-length set, or this is a
329 # mapping type so the other algorithm wouldn't work.
Raymond Hettinger311f4192002-11-18 09:01:24 +0000330 pool = list(population)
331 for i in xrange(k): # invariant: non-selected at [0,n-i)
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000332 j = _int(random() * (n-i))
Raymond Hettinger311f4192002-11-18 09:01:24 +0000333 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000334 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000335 else:
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000336 try:
Raymond Hettinger3c3346d2006-03-29 09:13:13 +0000337 selected = set()
338 selected_add = selected.add
339 for i in xrange(k):
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000340 j = _int(random() * n)
Raymond Hettinger3c3346d2006-03-29 09:13:13 +0000341 while j in selected:
342 j = _int(random() * n)
343 selected_add(j)
344 result[i] = population[j]
Tim Petersc17976e2006-04-01 00:26:53 +0000345 except (TypeError, KeyError): # handle (at least) sets
Raymond Hettinger3c3346d2006-03-29 09:13:13 +0000346 if isinstance(population, list):
347 raise
Tim Petersc17976e2006-04-01 00:26:53 +0000348 return self.sample(tuple(population), k)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000349 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000350
Tim Peterscd804102001-01-25 20:25:57 +0000351## -------------------- real-valued distributions -------------------
352
353## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000354
355 def uniform(self, a, b):
Raymond Hettinger2c0cdca2009-06-11 23:14:53 +0000356 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Tim Petersd7b5e882001-01-25 03:36:26 +0000357 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000358
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000359## -------------------- triangular --------------------
360
Raymond Hettingerc4f7bab2008-03-23 19:37:53 +0000361 def triangular(self, low=0.0, high=1.0, mode=None):
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000362 """Triangular distribution.
363
364 Continuous distribution bounded by given lower and upper limits,
365 and having a given mode value in-between.
366
367 http://en.wikipedia.org/wiki/Triangular_distribution
368
369 """
Andrew Svetlovb6cdae32013-04-12 23:39:33 +0300370 # Sanity check. According to the doc low must be less or equal to
371 # high. And mode should be somewhere between these bounds.
372 if low > high:
373 raise ValueError('high cannot be less then low.')
374 if mode is not None and (mode < low or mode > high):
375 raise ValueError('mode must be between low and high.')
376
377 if high == low:
378 return low
379
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000380 u = self.random()
Raymond Hettingerc4f7bab2008-03-23 19:37:53 +0000381 c = 0.5 if mode is None else (mode - low) / (high - low)
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000382 if u > c:
Raymond Hettingerc4f7bab2008-03-23 19:37:53 +0000383 u = 1.0 - u
384 c = 1.0 - c
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000385 low, high = high, low
386 return low + (high - low) * (u * c) ** 0.5
387
Tim Peterscd804102001-01-25 20:25:57 +0000388## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000389
Tim Petersd7b5e882001-01-25 03:36:26 +0000390 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000391 """Normal distribution.
392
393 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000394
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000395 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000396 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000397
Tim Petersd7b5e882001-01-25 03:36:26 +0000398 # Uses Kinderman and Monahan method. Reference: Kinderman,
399 # A.J. and Monahan, J.F., "Computer generation of random
400 # variables using the ratio of uniform deviates", ACM Trans
401 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000402
Tim Petersd7b5e882001-01-25 03:36:26 +0000403 random = self.random
Raymond Hettinger42406e62005-04-30 09:02:51 +0000404 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000405 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000406 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000407 z = NV_MAGICCONST*(u1-0.5)/u2
408 zz = z*z/4.0
409 if zz <= -_log(u2):
410 break
411 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000412
Tim Peterscd804102001-01-25 20:25:57 +0000413## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000414
415 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000416 """Log normal distribution.
417
418 If you take the natural logarithm of this distribution, you'll get a
419 normal distribution with mean mu and standard deviation sigma.
420 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000421
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000422 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000423 return _exp(self.normalvariate(mu, sigma))
424
Tim Peterscd804102001-01-25 20:25:57 +0000425## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000426
427 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000428 """Exponential distribution.
429
Mark Dickinsone6dc5312009-01-07 17:48:33 +0000430 lambd is 1.0 divided by the desired mean. It should be
431 nonzero. (The parameter would be called "lambda", but that is
432 a reserved word in Python.) Returned values range from 0 to
433 positive infinity if lambd is positive, and from negative
434 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000435
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000436 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000437 # lambd: rate lambd = 1/mean
438 # ('lambda' is a Python reserved word)
439
Raymond Hettingercba87312011-06-25 11:24:35 +0200440 # we use 1-random() instead of random() to preclude the
441 # possibility of taking the log of zero.
442 return -_log(1.0 - self.random())/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000443
Tim Peterscd804102001-01-25 20:25:57 +0000444## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000445
Tim Petersd7b5e882001-01-25 03:36:26 +0000446 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000447 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000448
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000449 mu is the mean angle, expressed in radians between 0 and 2*pi, and
450 kappa is the concentration parameter, which must be greater than or
451 equal to zero. If kappa is equal to zero, this distribution reduces
452 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000453
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000454 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000455 # mu: mean angle (in radians between 0 and 2*pi)
456 # kappa: concentration parameter kappa (>= 0)
457 # if kappa = 0 generate uniform random angle
458
459 # Based upon an algorithm published in: Fisher, N.I.,
460 # "Statistical Analysis of Circular Data", Cambridge
461 # University Press, 1993.
462
463 # Thanks to Magnus Kessler for a correction to the
464 # implementation of step 4.
465
466 random = self.random
467 if kappa <= 1e-6:
468 return TWOPI * random()
469
Serhiy Storchaka65d56392013-02-10 19:27:37 +0200470 s = 0.5 / kappa
471 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000472
Raymond Hettinger42406e62005-04-30 09:02:51 +0000473 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000474 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000475 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000476
Serhiy Storchaka65d56392013-02-10 19:27:37 +0200477 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000478 u2 = random()
Serhiy Storchaka65d56392013-02-10 19:27:37 +0200479 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000480 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000481
Serhiy Storchaka65d56392013-02-10 19:27:37 +0200482 q = 1.0 / r
483 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000484 u3 = random()
485 if u3 > 0.5:
Mark Dickinson9aaeb5e2013-02-10 14:13:40 +0000486 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000487 else:
Mark Dickinson9aaeb5e2013-02-10 14:13:40 +0000488 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000489
490 return theta
491
Tim Peterscd804102001-01-25 20:25:57 +0000492## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000493
494 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000495 """Gamma distribution. Not the gamma function!
496
497 Conditions on the parameters are alpha > 0 and beta > 0.
498
Raymond Hettinger405a4712011-03-22 15:52:46 -0700499 The probability distribution function is:
500
501 x ** (alpha - 1) * math.exp(-x / beta)
502 pdf(x) = --------------------------------------
503 math.gamma(alpha) * beta ** alpha
504
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000505 """
Tim Peters8ac14952002-05-23 15:15:30 +0000506
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000507 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000508
Guido van Rossum570764d2002-05-14 14:08:12 +0000509 # Warning: a few older sources define the gamma distribution in terms
510 # of alpha > -1.0
511 if alpha <= 0.0 or beta <= 0.0:
512 raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
Tim Peters8ac14952002-05-23 15:15:30 +0000513
Tim Petersd7b5e882001-01-25 03:36:26 +0000514 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000515 if alpha > 1.0:
516
517 # Uses R.C.H. Cheng, "The generation of Gamma
518 # variables with non-integral shape parameters",
519 # Applied Statistics, (1977), 26, No. 1, p71-74
520
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000521 ainv = _sqrt(2.0 * alpha - 1.0)
522 bbb = alpha - LOG4
523 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000524
Raymond Hettinger42406e62005-04-30 09:02:51 +0000525 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000526 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000527 if not 1e-7 < u1 < .9999999:
528 continue
529 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000530 v = _log(u1/(1.0-u1))/ainv
531 x = alpha*_exp(v)
532 z = u1*u1*u2
533 r = bbb+ccc*v-x
534 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000535 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000536
537 elif alpha == 1.0:
538 # expovariate(1)
539 u = random()
540 while u <= 1e-7:
541 u = random()
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000542 return -_log(u) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000543
544 else: # alpha is between 0 and 1 (exclusive)
545
546 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
547
Raymond Hettinger42406e62005-04-30 09:02:51 +0000548 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000549 u = random()
550 b = (_e + alpha)/_e
551 p = b*u
552 if p <= 1.0:
Raymond Hettinger42406e62005-04-30 09:02:51 +0000553 x = p ** (1.0/alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000554 else:
Tim Petersd7b5e882001-01-25 03:36:26 +0000555 x = -_log((b-p)/alpha)
556 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000557 if p > 1.0:
558 if u1 <= x ** (alpha - 1.0):
559 break
560 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000561 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000562 return x * beta
563
Tim Peterscd804102001-01-25 20:25:57 +0000564## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000565
Tim Petersd7b5e882001-01-25 03:36:26 +0000566 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000567 """Gaussian distribution.
568
569 mu is the mean, and sigma is the standard deviation. This is
570 slightly faster than the normalvariate() function.
571
572 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000573
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000574 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000575
Tim Petersd7b5e882001-01-25 03:36:26 +0000576 # When x and y are two variables from [0, 1), uniformly
577 # distributed, then
578 #
579 # cos(2*pi*x)*sqrt(-2*log(1-y))
580 # sin(2*pi*x)*sqrt(-2*log(1-y))
581 #
582 # are two *independent* variables with normal distribution
583 # (mu = 0, sigma = 1).
584 # (Lambert Meertens)
585 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000586
Tim Petersd7b5e882001-01-25 03:36:26 +0000587 # Multithreading note: When two threads call this function
588 # simultaneously, it is possible that they will receive the
589 # same return value. The window is very small though. To
590 # avoid this, you have to use a lock around all calls. (I
591 # didn't want to slow this down in the serial case by using a
592 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000593
Tim Petersd7b5e882001-01-25 03:36:26 +0000594 random = self.random
595 z = self.gauss_next
596 self.gauss_next = None
597 if z is None:
598 x2pi = random() * TWOPI
599 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
600 z = _cos(x2pi) * g2rad
601 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000602
Tim Petersd7b5e882001-01-25 03:36:26 +0000603 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000604
Tim Peterscd804102001-01-25 20:25:57 +0000605## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000606## See
Ezio Melotti1bb18cc2011-04-15 08:25:16 +0300607## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
Tim Peters85e2e472001-01-26 06:49:56 +0000608## for Ivan Frohne's insightful analysis of why the original implementation:
609##
610## def betavariate(self, alpha, beta):
611## # Discrete Event Simulation in C, pp 87-88.
612##
613## y = self.expovariate(alpha)
614## z = self.expovariate(1.0/beta)
615## return z/(y+z)
616##
617## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000618
Tim Petersd7b5e882001-01-25 03:36:26 +0000619 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000620 """Beta distribution.
621
Raymond Hettinger1b0ce852007-01-19 18:07:18 +0000622 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000623 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000624
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000625 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000626
Tim Peters85e2e472001-01-26 06:49:56 +0000627 # This version due to Janne Sinkkonen, and matches all the std
628 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
629 y = self.gammavariate(alpha, 1.)
630 if y == 0:
631 return 0.0
632 else:
633 return y / (y + self.gammavariate(beta, 1.))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000634
Tim Peterscd804102001-01-25 20:25:57 +0000635## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000636
Tim Petersd7b5e882001-01-25 03:36:26 +0000637 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000638 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000639 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000640
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000641 u = 1.0 - self.random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000642 return 1.0 / pow(u, 1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000643
Tim Peterscd804102001-01-25 20:25:57 +0000644## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000645
Tim Petersd7b5e882001-01-25 03:36:26 +0000646 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000647 """Weibull distribution.
648
649 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000650
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000651 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000652 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000653
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000654 u = 1.0 - self.random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000655 return alpha * pow(-_log(u), 1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000656
Raymond Hettinger40f62172002-12-29 23:03:38 +0000657## -------------------- Wichmann-Hill -------------------
658
659class WichmannHill(Random):
660
661 VERSION = 1 # used by getstate/setstate
662
663 def seed(self, a=None):
664 """Initialize internal state from hashable object.
665
Raymond Hettinger23f12412004-09-13 22:23:21 +0000666 None or no argument seeds from current time or from an operating
667 system specific randomness source if available.
Raymond Hettinger40f62172002-12-29 23:03:38 +0000668
669 If a is not None or an int or long, hash(a) is used instead.
670
671 If a is an int or long, a is used directly. Distinct values between
672 0 and 27814431486575L inclusive are guaranteed to yield distinct
673 internal states (this guarantee is specific to the default
674 Wichmann-Hill generator).
675 """
676
677 if a is None:
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000678 try:
679 a = long(_hexlify(_urandom(16)), 16)
680 except NotImplementedError:
Raymond Hettinger356a4592004-08-30 06:14:31 +0000681 import time
682 a = long(time.time() * 256) # use fractional seconds
Raymond Hettinger40f62172002-12-29 23:03:38 +0000683
684 if not isinstance(a, (int, long)):
685 a = hash(a)
686
687 a, x = divmod(a, 30268)
688 a, y = divmod(a, 30306)
689 a, z = divmod(a, 30322)
690 self._seed = int(x)+1, int(y)+1, int(z)+1
691
692 self.gauss_next = None
693
694 def random(self):
695 """Get the next random number in the range [0.0, 1.0)."""
696
697 # Wichman-Hill random number generator.
698 #
699 # Wichmann, B. A. & Hill, I. D. (1982)
700 # Algorithm AS 183:
701 # An efficient and portable pseudo-random number generator
702 # Applied Statistics 31 (1982) 188-190
703 #
704 # see also:
705 # Correction to Algorithm AS 183
706 # Applied Statistics 33 (1984) 123
707 #
708 # McLeod, A. I. (1985)
709 # A remark on Algorithm AS 183
710 # Applied Statistics 34 (1985),198-200
711
712 # This part is thread-unsafe:
713 # BEGIN CRITICAL SECTION
714 x, y, z = self._seed
715 x = (171 * x) % 30269
716 y = (172 * y) % 30307
717 z = (170 * z) % 30323
718 self._seed = x, y, z
719 # END CRITICAL SECTION
720
721 # Note: on a platform using IEEE-754 double arithmetic, this can
722 # never return 0.0 (asserted by Tim; proof too long for a comment).
723 return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
724
725 def getstate(self):
726 """Return internal state; can be passed to setstate() later."""
727 return self.VERSION, self._seed, self.gauss_next
728
729 def setstate(self, state):
730 """Restore internal state from object returned by getstate()."""
731 version = state[0]
732 if version == 1:
733 version, self._seed, self.gauss_next = state
734 else:
735 raise ValueError("state with version %s passed to "
736 "Random.setstate() of version %s" %
737 (version, self.VERSION))
738
739 def jumpahead(self, n):
740 """Act as if n calls to random() were made, but quickly.
741
742 n is an int, greater than or equal to 0.
743
744 Example use: If you have 2 threads and know that each will
745 consume no more than a million random numbers, create two Random
746 objects r1 and r2, then do
747 r2.setstate(r1.getstate())
748 r2.jumpahead(1000000)
749 Then r1 and r2 will use guaranteed-disjoint segments of the full
750 period.
751 """
752
753 if not n >= 0:
754 raise ValueError("n must be >= 0")
755 x, y, z = self._seed
756 x = int(x * pow(171, n, 30269)) % 30269
757 y = int(y * pow(172, n, 30307)) % 30307
758 z = int(z * pow(170, n, 30323)) % 30323
759 self._seed = x, y, z
760
761 def __whseed(self, x=0, y=0, z=0):
762 """Set the Wichmann-Hill seed from (x, y, z).
763
764 These must be integers in the range [0, 256).
765 """
766
767 if not type(x) == type(y) == type(z) == int:
768 raise TypeError('seeds must be integers')
769 if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
770 raise ValueError('seeds must be in range(0, 256)')
771 if 0 == x == y == z:
772 # Initialize from current time
773 import time
774 t = long(time.time() * 256)
775 t = int((t&0xffffff) ^ (t>>24))
776 t, x = divmod(t, 256)
777 t, y = divmod(t, 256)
778 t, z = divmod(t, 256)
779 # Zero is a poor seed, so substitute 1
780 self._seed = (x or 1, y or 1, z or 1)
781
782 self.gauss_next = None
783
784 def whseed(self, a=None):
785 """Seed from hashable object's hash code.
786
787 None or no argument seeds from current time. It is not guaranteed
788 that objects with distinct hash codes lead to distinct internal
789 states.
790
791 This is obsolete, provided for compatibility with the seed routine
792 used prior to Python 2.1. Use the .seed() method instead.
793 """
794
795 if a is None:
796 self.__whseed()
797 return
798 a = hash(a)
799 a, x = divmod(a, 256)
800 a, y = divmod(a, 256)
801 a, z = divmod(a, 256)
802 x = (x + a) % 256 or 1
803 y = (y + a) % 256 or 1
804 z = (z + a) % 256 or 1
805 self.__whseed(x, y, z)
806
Raymond Hettinger23f12412004-09-13 22:23:21 +0000807## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000808
Raymond Hettinger23f12412004-09-13 22:23:21 +0000809class SystemRandom(Random):
810 """Alternate random number generator using sources provided
811 by the operating system (such as /dev/urandom on Unix or
812 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000813
814 Not available on all systems (see os.urandom() for details).
815 """
816
817 def random(self):
818 """Get the next random number in the range [0.0, 1.0)."""
Tim Peters7c2a85b2004-08-31 02:19:55 +0000819 return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000820
821 def getrandbits(self, k):
822 """getrandbits(k) -> x. Generates a long int with k random bits."""
Raymond Hettinger356a4592004-08-30 06:14:31 +0000823 if k <= 0:
824 raise ValueError('number of bits must be greater than zero')
825 if k != int(k):
826 raise TypeError('number of bits should be an integer')
827 bytes = (k + 7) // 8 # bits / 8 and rounded up
828 x = long(_hexlify(_urandom(bytes)), 16)
829 return x >> (bytes * 8 - k) # trim excess bits
830
831 def _stub(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000832 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000833 return None
834 seed = jumpahead = _stub
835
836 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000837 "Method should not be called for a system random number generator."
838 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000839 getstate = setstate = _notimplemented
840
Tim Peterscd804102001-01-25 20:25:57 +0000841## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000842
Raymond Hettinger62297132003-08-30 01:24:19 +0000843def _test_generator(n, func, args):
Tim Peters0c9886d2001-01-15 01:18:21 +0000844 import time
Raymond Hettinger62297132003-08-30 01:24:19 +0000845 print n, 'times', func.__name__
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000846 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000847 sqsum = 0.0
848 smallest = 1e10
849 largest = -1e10
850 t0 = time.time()
851 for i in range(n):
Raymond Hettinger62297132003-08-30 01:24:19 +0000852 x = func(*args)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000853 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000854 sqsum = sqsum + x*x
855 smallest = min(x, smallest)
856 largest = max(x, largest)
857 t1 = time.time()
858 print round(t1-t0, 3), 'sec,',
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000859 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000860 stddev = _sqrt(sqsum/n - avg*avg)
Tim Peters0c9886d2001-01-15 01:18:21 +0000861 print 'avg %g, stddev %g, min %g, max %g' % \
862 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000863
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000864
865def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000866 _test_generator(N, random, ())
867 _test_generator(N, normalvariate, (0.0, 1.0))
868 _test_generator(N, lognormvariate, (0.0, 1.0))
869 _test_generator(N, vonmisesvariate, (0.0, 1.0))
870 _test_generator(N, gammavariate, (0.01, 1.0))
871 _test_generator(N, gammavariate, (0.1, 1.0))
872 _test_generator(N, gammavariate, (0.1, 2.0))
873 _test_generator(N, gammavariate, (0.5, 1.0))
874 _test_generator(N, gammavariate, (0.9, 1.0))
875 _test_generator(N, gammavariate, (1.0, 1.0))
876 _test_generator(N, gammavariate, (2.0, 1.0))
877 _test_generator(N, gammavariate, (20.0, 1.0))
878 _test_generator(N, gammavariate, (200.0, 1.0))
879 _test_generator(N, gauss, (0.0, 1.0))
880 _test_generator(N, betavariate, (3.0, 3.0))
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000881 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000882
Tim Peters715c4c42001-01-26 22:56:56 +0000883# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000884# as module-level functions. The functions share state across all uses
885#(both in the user's code and in the Python libraries), but that's fine
886# for most programs and is easier for the casual user than making them
887# instantiate their own Random() instance.
888
Tim Petersd7b5e882001-01-25 03:36:26 +0000889_inst = Random()
890seed = _inst.seed
891random = _inst.random
892uniform = _inst.uniform
Raymond Hettingerbbc50ea2008-03-23 13:32:32 +0000893triangular = _inst.triangular
Tim Petersd7b5e882001-01-25 03:36:26 +0000894randint = _inst.randint
895choice = _inst.choice
896randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000897sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000898shuffle = _inst.shuffle
899normalvariate = _inst.normalvariate
900lognormvariate = _inst.lognormvariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000901expovariate = _inst.expovariate
902vonmisesvariate = _inst.vonmisesvariate
903gammavariate = _inst.gammavariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000904gauss = _inst.gauss
905betavariate = _inst.betavariate
906paretovariate = _inst.paretovariate
907weibullvariate = _inst.weibullvariate
908getstate = _inst.getstate
909setstate = _inst.setstate
Tim Petersd52269b2001-01-25 06:23:18 +0000910jumpahead = _inst.jumpahead
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000911getrandbits = _inst.getrandbits
Tim Petersd7b5e882001-01-25 03:36:26 +0000912
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000913if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000914 _test()