blob: 7c6f0b45dfc70cbb854af76f31f50b6ff1e5d339 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
Łukasz Langaa670fcc2013-01-18 13:31:53 +01008.. testsetup::
9
10 from math import fsum
Georg Brandl8ec7f652007-08-15 14:28:01 +000011
12This module is always available. It provides access to the mathematical
13functions defined by the C standard.
14
15These functions cannot be used with complex numbers; use the functions of the
16same name from the :mod:`cmath` module if you require support for complex
17numbers. The distinction between functions which support complex numbers and
18those which don't is made since most users do not want to learn quite as much
19mathematics as required to understand complex numbers. Receiving an exception
20instead of a complex result allows earlier detection of the unexpected complex
21number used as a parameter, so that the programmer can determine how and why it
22was generated in the first place.
23
24The following functions are provided by this module. Except when explicitly
25noted otherwise, all return values are floats.
26
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +000028Number-theoretic and representation functions
29---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000030
31.. function:: ceil(x)
32
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000033 Return the ceiling of *x* as a float, the smallest integer value greater than or
34 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000035
36
Christian Heimeseebb79c2008-01-03 22:32:26 +000037.. function:: copysign(x, y)
38
Mark Dickinson99e73f92010-04-06 19:50:03 +000039 Return *x* with the sign of *y*. On a platform that supports
40 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimeseebb79c2008-01-03 22:32:26 +000041
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000042 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000043
44
Georg Brandl8ec7f652007-08-15 14:28:01 +000045.. function:: fabs(x)
46
47 Return the absolute value of *x*.
48
Georg Brandl5da652e2008-06-18 09:28:22 +000049
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050.. function:: factorial(x)
51
Mark Dickinsonf88f7392008-06-18 09:20:17 +000052 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000053 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000054
Georg Brandl5da652e2008-06-18 09:28:22 +000055 .. versionadded:: 2.6
56
57
Georg Brandl8ec7f652007-08-15 14:28:01 +000058.. function:: floor(x)
59
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000060 Return the floor of *x* as a float, the largest integer value less than or equal
61 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000062
63
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonfef6b132008-07-30 16:20:10 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7d854952009-02-19 05:51:41 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000091
Raymond Hettinger7d854952009-02-19 05:51:41 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson6b87f112009-11-24 14:27:02 +000093 0.9999999999999999
Raymond Hettinger7d854952009-02-19 05:51:41 +000094 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000096
Raymond Hettinger7d854952009-02-19 05:51:41 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +0000102
Raymond Hettinger749e6d02009-02-19 06:55:03 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
105 <http://code.activestate.com/recipes/393090/>`_\.
106
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000107 .. versionadded:: 2.6
108
109
Christian Heimese2ca4242008-01-03 20:23:15 +0000110.. function:: isinf(x)
111
Mark Dickinson99e73f92010-04-06 19:50:03 +0000112 Check if the float *x* is positive or negative infinity.
Christian Heimese2ca4242008-01-03 20:23:15 +0000113
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000114 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000115
116
117.. function:: isnan(x)
118
Mark Dickinson99e73f92010-04-06 19:50:03 +0000119 Check if the float *x* is a NaN (not a number). For more information
120 on NaNs, see the IEEE 754 standards.
Christian Heimese2ca4242008-01-03 20:23:15 +0000121
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000122 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000123
124
Georg Brandl8ec7f652007-08-15 14:28:01 +0000125.. function:: ldexp(x, i)
126
127 Return ``x * (2**i)``. This is essentially the inverse of function
128 :func:`frexp`.
129
130
131.. function:: modf(x)
132
Benjamin Peterson2d54e722008-12-20 02:48:02 +0000133 Return the fractional and integer parts of *x*. Both results carry the sign
Benjamin Peterson9de72982008-12-20 22:49:24 +0000134 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000135
Georg Brandl5da652e2008-06-18 09:28:22 +0000136
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000137.. function:: trunc(x)
138
139 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Benjamin Peterson8a08ce22010-07-01 23:35:37 +0000140 a long integer). Uses the ``__trunc__`` method.
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000141
142 .. versionadded:: 2.6
143
Georg Brandl5da652e2008-06-18 09:28:22 +0000144
Georg Brandl8ec7f652007-08-15 14:28:01 +0000145Note that :func:`frexp` and :func:`modf` have a different call/return pattern
146than their C equivalents: they take a single argument and return a pair of
147values, rather than returning their second return value through an 'output
148parameter' (there is no such thing in Python).
149
150For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
151floating-point numbers of sufficiently large magnitude are exact integers.
152Python floats typically carry no more than 53 bits of precision (the same as the
153platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
154necessarily has no fractional bits.
155
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000156
157Power and logarithmic functions
158-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000159
Georg Brandl8ec7f652007-08-15 14:28:01 +0000160.. function:: exp(x)
161
162 Return ``e**x``.
163
164
Mark Dickinson9cae1782009-12-16 20:13:40 +0000165.. function:: expm1(x)
166
167 Return ``e**x - 1``. For small floats *x*, the subtraction in
168 ``exp(x) - 1`` can result in a significant loss of precision; the
169 :func:`expm1` function provides a way to compute this quantity to
170 full precision::
171
172 >>> from math import exp, expm1
173 >>> exp(1e-5) - 1 # gives result accurate to 11 places
174 1.0000050000069649e-05
175 >>> expm1(1e-5) # result accurate to full precision
176 1.0000050000166668e-05
177
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000178 .. versionadded:: 2.7
179
Mark Dickinson9cae1782009-12-16 20:13:40 +0000180
Georg Brandl8ec7f652007-08-15 14:28:01 +0000181.. function:: log(x[, base])
182
Georg Brandl018ad1c2009-09-01 07:53:37 +0000183 With one argument, return the natural logarithm of *x* (to base *e*).
184
185 With two arguments, return the logarithm of *x* to the given *base*,
186 calculated as ``log(x)/log(base)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000187
188 .. versionchanged:: 2.3
189 *base* argument added.
190
191
Christian Heimes6f341092008-04-18 23:13:07 +0000192.. function:: log1p(x)
193
194 Return the natural logarithm of *1+x* (base *e*). The
195 result is calculated in a way which is accurate for *x* near zero.
196
197 .. versionadded:: 2.6
198
199
Georg Brandl8ec7f652007-08-15 14:28:01 +0000200.. function:: log10(x)
201
Georg Brandl018ad1c2009-09-01 07:53:37 +0000202 Return the base-10 logarithm of *x*. This is usually more accurate
203 than ``log(x, 10)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000204
205
206.. function:: pow(x, y)
207
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000208 Return ``x`` raised to the power ``y``. Exceptional cases follow
209 Annex 'F' of the C99 standard as far as possible. In particular,
210 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
211 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
212 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
213 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000214
Ezio Melotti6a959a12013-02-23 04:53:44 +0200215 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
216 its arguments to type :class:`float`. Use ``**`` or the built-in
217 :func:`pow` function for computing exact integer powers.
218
Christian Heimes6f341092008-04-18 23:13:07 +0000219 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000220 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000221
222
223.. function:: sqrt(x)
224
225 Return the square root of *x*.
226
Georg Brandl8ec7f652007-08-15 14:28:01 +0000227
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000228Trigonometric functions
229-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000230
231.. function:: acos(x)
232
233 Return the arc cosine of *x*, in radians.
234
235
236.. function:: asin(x)
237
238 Return the arc sine of *x*, in radians.
239
240
241.. function:: atan(x)
242
243 Return the arc tangent of *x*, in radians.
244
245
246.. function:: atan2(y, x)
247
248 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
249 The vector in the plane from the origin to point ``(x, y)`` makes this angle
250 with the positive X axis. The point of :func:`atan2` is that the signs of both
251 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson99e73f92010-04-06 19:50:03 +0000252 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl8ec7f652007-08-15 14:28:01 +0000253 -1)`` is ``-3*pi/4``.
254
255
256.. function:: cos(x)
257
258 Return the cosine of *x* radians.
259
260
261.. function:: hypot(x, y)
262
263 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
264 from the origin to point ``(x, y)``.
265
266
267.. function:: sin(x)
268
269 Return the sine of *x* radians.
270
271
272.. function:: tan(x)
273
274 Return the tangent of *x* radians.
275
Georg Brandl8ec7f652007-08-15 14:28:01 +0000276
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000277Angular conversion
278------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000279
280.. function:: degrees(x)
281
282 Converts angle *x* from radians to degrees.
283
284
285.. function:: radians(x)
286
287 Converts angle *x* from degrees to radians.
288
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000290Hyperbolic functions
291--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000292
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000293.. function:: acosh(x)
294
295 Return the inverse hyperbolic cosine of *x*.
296
297 .. versionadded:: 2.6
298
299
300.. function:: asinh(x)
301
302 Return the inverse hyperbolic sine of *x*.
303
304 .. versionadded:: 2.6
305
306
307.. function:: atanh(x)
308
309 Return the inverse hyperbolic tangent of *x*.
310
311 .. versionadded:: 2.6
312
313
Georg Brandl8ec7f652007-08-15 14:28:01 +0000314.. function:: cosh(x)
315
316 Return the hyperbolic cosine of *x*.
317
318
319.. function:: sinh(x)
320
321 Return the hyperbolic sine of *x*.
322
323
324.. function:: tanh(x)
325
326 Return the hyperbolic tangent of *x*.
327
Christian Heimes6f341092008-04-18 23:13:07 +0000328
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000329Special functions
330-----------------
331
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000332.. function:: erf(x)
333
334 Return the error function at *x*.
335
336 .. versionadded:: 2.7
337
338
339.. function:: erfc(x)
340
341 Return the complementary error function at *x*.
342
343 .. versionadded:: 2.7
344
345
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000346.. function:: gamma(x)
347
348 Return the Gamma function at *x*.
349
350 .. versionadded:: 2.7
351
352
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000353.. function:: lgamma(x)
354
355 Return the natural logarithm of the absolute value of the Gamma
356 function at *x*.
357
358 .. versionadded:: 2.7
359
360
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000361Constants
362---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363
Georg Brandl8ec7f652007-08-15 14:28:01 +0000364.. data:: pi
365
Mark Dickinson99e73f92010-04-06 19:50:03 +0000366 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000367
368
369.. data:: e
370
Mark Dickinson99e73f92010-04-06 19:50:03 +0000371 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000372
Christian Heimes6f341092008-04-18 23:13:07 +0000373
Georg Brandl6c14e582009-10-22 11:48:10 +0000374.. impl-detail::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000375
376 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson99e73f92010-04-06 19:50:03 +0000377 math library functions. Behavior in exceptional cases follows Annex F of
378 the C99 standard where appropriate. The current implementation will raise
379 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
380 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
381 and :exc:`OverflowError` for results that overflow (for example,
Mark Dickinsonad971d62010-04-06 22:18:23 +0000382 ``exp(1000.0)``). A NaN will not be returned from any of the functions
383 above unless one or more of the input arguments was a NaN; in that case,
384 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson99e73f92010-04-06 19:50:03 +0000385 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
386 ``hypot(float('nan'), float('inf'))``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000387
Mark Dickinsone07acb52010-04-06 22:10:55 +0000388 Note that Python makes no effort to distinguish signaling NaNs from
389 quiet NaNs, and behavior for signaling NaNs remains unspecified.
390 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes6f341092008-04-18 23:13:07 +0000391
Georg Brandl173b7392008-05-12 17:43:13 +0000392 .. versionchanged:: 2.6
Mark Dickinson99e73f92010-04-06 19:50:03 +0000393 Behavior in special cases now aims to follow C99 Annex F. In earlier
394 versions of Python the behavior in special cases was loosely specified.
Christian Heimes6f341092008-04-18 23:13:07 +0000395
Georg Brandl8ec7f652007-08-15 14:28:01 +0000396
397.. seealso::
398
399 Module :mod:`cmath`
400 Complex number versions of many of these functions.