blob: 588aef33f0ea6701c79e37c3f693b4c1ea648607 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
82 loss of precision by tracking multiple intermediate partial sums. The
83 algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
84 typical case where the rounding mode is half-even.
85
86 .. note::
87
Mark Dickinson4aab7112008-08-01 09:14:03 +000088 The accuracy of fsum() may be impaired on builds that use
89 extended precision addition and then double-round the results.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000090
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000091
Christian Heimes072c0f12008-01-03 23:01:04 +000092.. function:: isinf(x)
93
94 Checks if the float *x* is positive or negative infinite.
95
Christian Heimes072c0f12008-01-03 23:01:04 +000096
97.. function:: isnan(x)
98
99 Checks if the float *x* is a NaN (not a number). NaNs are part of the
100 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
101 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
102 a NaN.
103
Christian Heimes072c0f12008-01-03 23:01:04 +0000104
Georg Brandl116aa622007-08-15 14:28:22 +0000105.. function:: ldexp(x, i)
106
107 Return ``x * (2**i)``. This is essentially the inverse of function
108 :func:`frexp`.
109
110
111.. function:: modf(x)
112
113 Return the fractional and integer parts of *x*. Both results carry the sign of
114 *x*, and both are floats.
115
Christian Heimes400adb02008-02-01 08:12:03 +0000116
117.. function:: trunc(x)
118
119 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
120 a long integer). Delegates to ``x.__trunc__()``.
121
Christian Heimes400adb02008-02-01 08:12:03 +0000122
Georg Brandl116aa622007-08-15 14:28:22 +0000123Note that :func:`frexp` and :func:`modf` have a different call/return pattern
124than their C equivalents: they take a single argument and return a pair of
125values, rather than returning their second return value through an 'output
126parameter' (there is no such thing in Python).
127
128For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
129floating-point numbers of sufficiently large magnitude are exact integers.
130Python floats typically carry no more than 53 bits of precision (the same as the
131platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
132necessarily has no fractional bits.
133
134Power and logarithmic functions:
135
Georg Brandl116aa622007-08-15 14:28:22 +0000136.. function:: exp(x)
137
138 Return ``e**x``.
139
140
141.. function:: log(x[, base])
142
143 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
144 return the natural logarithm of *x* (that is, the logarithm to base *e*).
145
Georg Brandl116aa622007-08-15 14:28:22 +0000146
Christian Heimes53876d92008-04-19 00:31:39 +0000147.. function:: log1p(x)
148
149 Return the natural logarithm of *1+x* (base *e*). The
150 result is calculated in a way which is accurate for *x* near zero.
151
Christian Heimes53876d92008-04-19 00:31:39 +0000152
Georg Brandl116aa622007-08-15 14:28:22 +0000153.. function:: log10(x)
154
155 Return the base-10 logarithm of *x*.
156
157
158.. function:: pow(x, y)
159
Christian Heimesa342c012008-04-20 21:01:16 +0000160 Return ``x`` raised to the power ``y``. Exceptional cases follow
161 Annex 'F' of the C99 standard as far as possible. In particular,
162 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
163 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
164 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
165 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000166
Georg Brandl116aa622007-08-15 14:28:22 +0000167
168.. function:: sqrt(x)
169
170 Return the square root of *x*.
171
172Trigonometric functions:
173
174
175.. function:: acos(x)
176
177 Return the arc cosine of *x*, in radians.
178
179
180.. function:: asin(x)
181
182 Return the arc sine of *x*, in radians.
183
184
185.. function:: atan(x)
186
187 Return the arc tangent of *x*, in radians.
188
189
190.. function:: atan2(y, x)
191
192 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
193 The vector in the plane from the origin to point ``(x, y)`` makes this angle
194 with the positive X axis. The point of :func:`atan2` is that the signs of both
195 inputs are known to it, so it can compute the correct quadrant for the angle.
196 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
197 -1)`` is ``-3*pi/4``.
198
199
200.. function:: cos(x)
201
202 Return the cosine of *x* radians.
203
204
205.. function:: hypot(x, y)
206
207 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
208 from the origin to point ``(x, y)``.
209
210
211.. function:: sin(x)
212
213 Return the sine of *x* radians.
214
215
216.. function:: tan(x)
217
218 Return the tangent of *x* radians.
219
220Angular conversion:
221
222
223.. function:: degrees(x)
224
225 Converts angle *x* from radians to degrees.
226
227
228.. function:: radians(x)
229
230 Converts angle *x* from degrees to radians.
231
232Hyperbolic functions:
233
234
Christian Heimesa342c012008-04-20 21:01:16 +0000235.. function:: acosh(x)
236
237 Return the inverse hyperbolic cosine of *x*.
238
Christian Heimesa342c012008-04-20 21:01:16 +0000239
240.. function:: asinh(x)
241
242 Return the inverse hyperbolic sine of *x*.
243
Christian Heimesa342c012008-04-20 21:01:16 +0000244
245.. function:: atanh(x)
246
247 Return the inverse hyperbolic tangent of *x*.
248
Christian Heimesa342c012008-04-20 21:01:16 +0000249
Georg Brandl116aa622007-08-15 14:28:22 +0000250.. function:: cosh(x)
251
252 Return the hyperbolic cosine of *x*.
253
254
255.. function:: sinh(x)
256
257 Return the hyperbolic sine of *x*.
258
259
260.. function:: tanh(x)
261
262 Return the hyperbolic tangent of *x*.
263
Christian Heimes53876d92008-04-19 00:31:39 +0000264
Christian Heimes53876d92008-04-19 00:31:39 +0000265
Georg Brandl116aa622007-08-15 14:28:22 +0000266The module also defines two mathematical constants:
267
268
269.. data:: pi
270
271 The mathematical constant *pi*.
272
273
274.. data:: e
275
276 The mathematical constant *e*.
277
Christian Heimes53876d92008-04-19 00:31:39 +0000278
Georg Brandl116aa622007-08-15 14:28:22 +0000279.. note::
280
281 The :mod:`math` module consists mostly of thin wrappers around the platform C
282 math library functions. Behavior in exceptional cases is loosely specified
283 by the C standards, and Python inherits much of its math-function
284 error-reporting behavior from the platform C implementation. As a result,
285 the specific exceptions raised in error cases (and even whether some
286 arguments are considered to be exceptional at all) are not defined in any
287 useful cross-platform or cross-release way. For example, whether
288 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
289 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
290 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
291
Christian Heimesa342c012008-04-20 21:01:16 +0000292 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Benjamin Peterson3e4f0552008-09-02 00:31:15 +0000293 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes53876d92008-04-19 00:31:39 +0000294 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
295 and :exc:`OverflowError` for errno *ERANGE*.
296
Georg Brandl116aa622007-08-15 14:28:22 +0000297
298.. seealso::
299
300 Module :mod:`cmath`
301 Complex number versions of many of these functions.