blob: b153f21abdd3d587548344f32f5ca8d82a84bef3 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
44
45.. function:: floor(x)
46
Georg Brandl2a033732008-04-05 17:37:09 +000047 Return the floor of *x*, the largest integer less than or equal to *x*.
48 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
49 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000050
51
52.. function:: fmod(x, y)
53
54 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
55 Python expression ``x % y`` may not return the same result. The intent of the C
56 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
57 precision) equal to ``x - n*y`` for some integer *n* such that the result has
58 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
59 returns a result with the sign of *y* instead, and may not be exactly computable
60 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
61 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
62 represented exactly as a float, and rounds to the surprising ``1e100``. For
63 this reason, function :func:`fmod` is generally preferred when working with
64 floats, while Python's ``x % y`` is preferred when working with integers.
65
66
67.. function:: frexp(x)
68
69 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
70 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
71 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
72 apart" the internal representation of a float in a portable way.
73
74
Christian Heimes072c0f12008-01-03 23:01:04 +000075.. function:: isinf(x)
76
77 Checks if the float *x* is positive or negative infinite.
78
Christian Heimes072c0f12008-01-03 23:01:04 +000079
80.. function:: isnan(x)
81
82 Checks if the float *x* is a NaN (not a number). NaNs are part of the
83 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
84 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
85 a NaN.
86
Christian Heimes072c0f12008-01-03 23:01:04 +000087
Georg Brandl116aa622007-08-15 14:28:22 +000088.. function:: ldexp(x, i)
89
90 Return ``x * (2**i)``. This is essentially the inverse of function
91 :func:`frexp`.
92
93
94.. function:: modf(x)
95
96 Return the fractional and integer parts of *x*. Both results carry the sign of
97 *x*, and both are floats.
98
Christian Heimes400adb02008-02-01 08:12:03 +000099
100.. function:: trunc(x)
101
102 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
103 a long integer). Delegates to ``x.__trunc__()``.
104
Christian Heimes400adb02008-02-01 08:12:03 +0000105
Georg Brandl116aa622007-08-15 14:28:22 +0000106Note that :func:`frexp` and :func:`modf` have a different call/return pattern
107than their C equivalents: they take a single argument and return a pair of
108values, rather than returning their second return value through an 'output
109parameter' (there is no such thing in Python).
110
111For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
112floating-point numbers of sufficiently large magnitude are exact integers.
113Python floats typically carry no more than 53 bits of precision (the same as the
114platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
115necessarily has no fractional bits.
116
117Power and logarithmic functions:
118
Georg Brandl116aa622007-08-15 14:28:22 +0000119.. function:: exp(x)
120
121 Return ``e**x``.
122
123
124.. function:: log(x[, base])
125
126 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
127 return the natural logarithm of *x* (that is, the logarithm to base *e*).
128
Georg Brandl116aa622007-08-15 14:28:22 +0000129
Christian Heimes53876d92008-04-19 00:31:39 +0000130.. function:: log1p(x)
131
132 Return the natural logarithm of *1+x* (base *e*). The
133 result is calculated in a way which is accurate for *x* near zero.
134
Christian Heimes53876d92008-04-19 00:31:39 +0000135
Georg Brandl116aa622007-08-15 14:28:22 +0000136.. function:: log10(x)
137
138 Return the base-10 logarithm of *x*.
139
140
141.. function:: pow(x, y)
142
Christian Heimesa342c012008-04-20 21:01:16 +0000143 Return ``x`` raised to the power ``y``. Exceptional cases follow
144 Annex 'F' of the C99 standard as far as possible. In particular,
145 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
146 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
147 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
148 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000149
Georg Brandl116aa622007-08-15 14:28:22 +0000150
151.. function:: sqrt(x)
152
153 Return the square root of *x*.
154
155Trigonometric functions:
156
157
158.. function:: acos(x)
159
160 Return the arc cosine of *x*, in radians.
161
162
163.. function:: asin(x)
164
165 Return the arc sine of *x*, in radians.
166
167
168.. function:: atan(x)
169
170 Return the arc tangent of *x*, in radians.
171
172
173.. function:: atan2(y, x)
174
175 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
176 The vector in the plane from the origin to point ``(x, y)`` makes this angle
177 with the positive X axis. The point of :func:`atan2` is that the signs of both
178 inputs are known to it, so it can compute the correct quadrant for the angle.
179 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
180 -1)`` is ``-3*pi/4``.
181
182
183.. function:: cos(x)
184
185 Return the cosine of *x* radians.
186
187
188.. function:: hypot(x, y)
189
190 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
191 from the origin to point ``(x, y)``.
192
193
194.. function:: sin(x)
195
196 Return the sine of *x* radians.
197
198
199.. function:: tan(x)
200
201 Return the tangent of *x* radians.
202
203Angular conversion:
204
205
206.. function:: degrees(x)
207
208 Converts angle *x* from radians to degrees.
209
210
211.. function:: radians(x)
212
213 Converts angle *x* from degrees to radians.
214
215Hyperbolic functions:
216
217
Christian Heimesa342c012008-04-20 21:01:16 +0000218.. function:: acosh(x)
219
220 Return the inverse hyperbolic cosine of *x*.
221
Christian Heimesa342c012008-04-20 21:01:16 +0000222
223.. function:: asinh(x)
224
225 Return the inverse hyperbolic sine of *x*.
226
Christian Heimesa342c012008-04-20 21:01:16 +0000227
228.. function:: atanh(x)
229
230 Return the inverse hyperbolic tangent of *x*.
231
Christian Heimesa342c012008-04-20 21:01:16 +0000232
Georg Brandl116aa622007-08-15 14:28:22 +0000233.. function:: cosh(x)
234
235 Return the hyperbolic cosine of *x*.
236
237
238.. function:: sinh(x)
239
240 Return the hyperbolic sine of *x*.
241
242
243.. function:: tanh(x)
244
245 Return the hyperbolic tangent of *x*.
246
Christian Heimes53876d92008-04-19 00:31:39 +0000247
Christian Heimes53876d92008-04-19 00:31:39 +0000248
Georg Brandl116aa622007-08-15 14:28:22 +0000249The module also defines two mathematical constants:
250
251
252.. data:: pi
253
254 The mathematical constant *pi*.
255
256
257.. data:: e
258
259 The mathematical constant *e*.
260
Christian Heimes53876d92008-04-19 00:31:39 +0000261
Georg Brandl116aa622007-08-15 14:28:22 +0000262.. note::
263
264 The :mod:`math` module consists mostly of thin wrappers around the platform C
265 math library functions. Behavior in exceptional cases is loosely specified
266 by the C standards, and Python inherits much of its math-function
267 error-reporting behavior from the platform C implementation. As a result,
268 the specific exceptions raised in error cases (and even whether some
269 arguments are considered to be exceptional at all) are not defined in any
270 useful cross-platform or cross-release way. For example, whether
271 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
272 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
273 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
274
Christian Heimesa342c012008-04-20 21:01:16 +0000275 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Christian Heimes53876d92008-04-19 00:31:39 +0000276 Signaling *NaN*s raise an exception. The exception type still depends on the
277 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
278 and :exc:`OverflowError` for errno *ERANGE*.
279
Georg Brandl116aa622007-08-15 14:28:22 +0000280
281.. seealso::
282
283 Module :mod:`cmath`
284 Complex number versions of many of these functions.