blob: b50a3b9f2522f02042615d660a3760b1d0e9e169 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001.. _tut-brieftourtwo:
2
3*********************************************
4Brief Tour of the Standard Library -- Part II
5*********************************************
6
7This second tour covers more advanced modules that support professional
8programming needs. These modules rarely occur in small scripts.
9
10
11.. _tut-output-formatting:
12
13Output Formatting
14=================
15
Brett Cannon2ee0e8e2008-05-23 05:03:59 +000016The :mod:`repr` module provides a version of :func:`repr` customized for
Georg Brandl8ec7f652007-08-15 14:28:01 +000017abbreviated displays of large or deeply nested containers::
18
Georg Brandla6168f92008-05-25 07:20:14 +000019 >>> import repr
Brett Cannon2ee0e8e2008-05-23 05:03:59 +000020 >>> repr.repr(set('supercalifragilisticexpialidocious'))
Georg Brandl8ec7f652007-08-15 14:28:01 +000021 "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
22
23The :mod:`pprint` module offers more sophisticated control over printing both
24built-in and user defined objects in a way that is readable by the interpreter.
25When the result is longer than one line, the "pretty printer" adds line breaks
26and indentation to more clearly reveal data structure::
27
28 >>> import pprint
29 >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
30 ... 'yellow'], 'blue']]]
31 ...
32 >>> pprint.pprint(t, width=30)
33 [[[['black', 'cyan'],
34 'white',
35 ['green', 'red']],
36 [['magenta', 'yellow'],
37 'blue']]]
38
39The :mod:`textwrap` module formats paragraphs of text to fit a given screen
40width::
41
42 >>> import textwrap
43 >>> doc = """The wrap() method is just like fill() except that it returns
44 ... a list of strings instead of one big string with newlines to separate
45 ... the wrapped lines."""
46 ...
47 >>> print textwrap.fill(doc, width=40)
48 The wrap() method is just like fill()
49 except that it returns a list of strings
50 instead of one big string with newlines
51 to separate the wrapped lines.
52
53The :mod:`locale` module accesses a database of culture specific data formats.
54The grouping attribute of locale's format function provides a direct way of
55formatting numbers with group separators::
56
57 >>> import locale
58 >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
59 'English_United States.1252'
60 >>> conv = locale.localeconv() # get a mapping of conventions
61 >>> x = 1234567.8
62 >>> locale.format("%d", x, grouping=True)
63 '1,234,567'
64 >>> locale.format("%s%.*f", (conv['currency_symbol'],
Georg Brandl7044b112009-01-03 21:04:55 +000065 ... conv['frac_digits'], x), grouping=True)
Georg Brandl8ec7f652007-08-15 14:28:01 +000066 '$1,234,567.80'
67
68
69.. _tut-templating:
70
71Templating
72==========
73
74The :mod:`string` module includes a versatile :class:`Template` class with a
75simplified syntax suitable for editing by end-users. This allows users to
76customize their applications without having to alter the application.
77
78The format uses placeholder names formed by ``$`` with valid Python identifiers
79(alphanumeric characters and underscores). Surrounding the placeholder with
80braces allows it to be followed by more alphanumeric letters with no intervening
81spaces. Writing ``$$`` creates a single escaped ``$``::
82
83 >>> from string import Template
84 >>> t = Template('${village}folk send $$10 to $cause.')
85 >>> t.substitute(village='Nottingham', cause='the ditch fund')
86 'Nottinghamfolk send $10 to the ditch fund.'
87
88The :meth:`substitute` method raises a :exc:`KeyError` when a placeholder is not
89supplied in a dictionary or a keyword argument. For mail-merge style
90applications, user supplied data may be incomplete and the
91:meth:`safe_substitute` method may be more appropriate --- it will leave
92placeholders unchanged if data is missing::
93
94 >>> t = Template('Return the $item to $owner.')
95 >>> d = dict(item='unladen swallow')
96 >>> t.substitute(d)
97 Traceback (most recent call last):
98 . . .
99 KeyError: 'owner'
100 >>> t.safe_substitute(d)
101 'Return the unladen swallow to $owner.'
102
103Template subclasses can specify a custom delimiter. For example, a batch
104renaming utility for a photo browser may elect to use percent signs for
105placeholders such as the current date, image sequence number, or file format::
106
107 >>> import time, os.path
108 >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
109 >>> class BatchRename(Template):
110 ... delimiter = '%'
111 >>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
112 Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f
113
114 >>> t = BatchRename(fmt)
115 >>> date = time.strftime('%d%b%y')
116 >>> for i, filename in enumerate(photofiles):
117 ... base, ext = os.path.splitext(filename)
118 ... newname = t.substitute(d=date, n=i, f=ext)
Benjamin Petersonf9ef9882008-05-26 00:54:22 +0000119 ... print '{0} --> {1}'.format(filename, newname)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000120
121 img_1074.jpg --> Ashley_0.jpg
122 img_1076.jpg --> Ashley_1.jpg
123 img_1077.jpg --> Ashley_2.jpg
124
125Another application for templating is separating program logic from the details
126of multiple output formats. This makes it possible to substitute custom
127templates for XML files, plain text reports, and HTML web reports.
128
129
130.. _tut-binary-formats:
131
132Working with Binary Data Record Layouts
133=======================================
134
135The :mod:`struct` module provides :func:`pack` and :func:`unpack` functions for
136working with variable length binary record formats. The following example shows
Gregory P. Smith7b7ce782008-01-24 09:38:26 +0000137how to loop through header information in a ZIP file without using the
138:mod:`zipfile` module. Pack codes ``"H"`` and ``"I"`` represent two and four
139byte unsigned numbers respectively. The ``"<"`` indicates that they are
140standard size and in little-endian byte order::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000141
142 import struct
143
144 data = open('myfile.zip', 'rb').read()
145 start = 0
146 for i in range(3): # show the first 3 file headers
147 start += 14
Gregory P. Smith7b7ce782008-01-24 09:38:26 +0000148 fields = struct.unpack('<IIIHH', data[start:start+16])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000149 crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
150
151 start += 16
152 filename = data[start:start+filenamesize]
153 start += filenamesize
154 extra = data[start:start+extra_size]
155 print filename, hex(crc32), comp_size, uncomp_size
156
157 start += extra_size + comp_size # skip to the next header
158
159
160.. _tut-multi-threading:
161
162Multi-threading
163===============
164
165Threading is a technique for decoupling tasks which are not sequentially
166dependent. Threads can be used to improve the responsiveness of applications
167that accept user input while other tasks run in the background. A related use
168case is running I/O in parallel with computations in another thread.
169
170The following code shows how the high level :mod:`threading` module can run
171tasks in background while the main program continues to run::
172
Jeroen Ruigrok van der Werven51497422009-02-19 18:52:21 +0000173 import threading
174 import zipfile
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176 class AsyncZip(threading.Thread):
177 def __init__(self, infile, outfile):
Georg Brandla6168f92008-05-25 07:20:14 +0000178 threading.Thread.__init__(self)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000179 self.infile = infile
180 self.outfile = outfile
181 def run(self):
182 f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
183 f.write(self.infile)
184 f.close()
185 print 'Finished background zip of: ', self.infile
186
187 background = AsyncZip('mydata.txt', 'myarchive.zip')
188 background.start()
189 print 'The main program continues to run in foreground.'
190
191 background.join() # Wait for the background task to finish
192 print 'Main program waited until background was done.'
193
194The principal challenge of multi-threaded applications is coordinating threads
195that share data or other resources. To that end, the threading module provides
196a number of synchronization primitives including locks, events, condition
197variables, and semaphores.
198
199While those tools are powerful, minor design errors can result in problems that
200are difficult to reproduce. So, the preferred approach to task coordination is
201to concentrate all access to a resource in a single thread and then use the
Georg Brandla6168f92008-05-25 07:20:14 +0000202:mod:`Queue` module to feed that thread with requests from other threads.
203Applications using :class:`Queue.Queue` objects for inter-thread communication
204and coordination are easier to design, more readable, and more reliable.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205
206
207.. _tut-logging:
208
209Logging
210=======
211
212The :mod:`logging` module offers a full featured and flexible logging system.
213At its simplest, log messages are sent to a file or to ``sys.stderr``::
214
215 import logging
216 logging.debug('Debugging information')
217 logging.info('Informational message')
218 logging.warning('Warning:config file %s not found', 'server.conf')
219 logging.error('Error occurred')
220 logging.critical('Critical error -- shutting down')
221
222This produces the following output::
223
224 WARNING:root:Warning:config file server.conf not found
225 ERROR:root:Error occurred
226 CRITICAL:root:Critical error -- shutting down
227
228By default, informational and debugging messages are suppressed and the output
229is sent to standard error. Other output options include routing messages
230through email, datagrams, sockets, or to an HTTP Server. New filters can select
231different routing based on message priority: :const:`DEBUG`, :const:`INFO`,
232:const:`WARNING`, :const:`ERROR`, and :const:`CRITICAL`.
233
234The logging system can be configured directly from Python or can be loaded from
235a user editable configuration file for customized logging without altering the
236application.
237
238
239.. _tut-weak-references:
240
241Weak References
242===============
243
244Python does automatic memory management (reference counting for most objects and
Georg Brandl584265b2007-12-02 14:58:50 +0000245:term:`garbage collection` to eliminate cycles). The memory is freed shortly
246after the last reference to it has been eliminated.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000247
248This approach works fine for most applications but occasionally there is a need
249to track objects only as long as they are being used by something else.
250Unfortunately, just tracking them creates a reference that makes them permanent.
251The :mod:`weakref` module provides tools for tracking objects without creating a
252reference. When the object is no longer needed, it is automatically removed
253from a weakref table and a callback is triggered for weakref objects. Typical
254applications include caching objects that are expensive to create::
255
256 >>> import weakref, gc
257 >>> class A:
258 ... def __init__(self, value):
259 ... self.value = value
260 ... def __repr__(self):
261 ... return str(self.value)
262 ...
263 >>> a = A(10) # create a reference
264 >>> d = weakref.WeakValueDictionary()
265 >>> d['primary'] = a # does not create a reference
266 >>> d['primary'] # fetch the object if it is still alive
267 10
268 >>> del a # remove the one reference
269 >>> gc.collect() # run garbage collection right away
270 0
271 >>> d['primary'] # entry was automatically removed
272 Traceback (most recent call last):
Georg Brandl4e37c662008-02-22 12:56:34 +0000273 File "<stdin>", line 1, in <module>
Georg Brandl8ec7f652007-08-15 14:28:01 +0000274 d['primary'] # entry was automatically removed
275 File "C:/python26/lib/weakref.py", line 46, in __getitem__
276 o = self.data[key]()
277 KeyError: 'primary'
278
279
280.. _tut-list-tools:
281
282Tools for Working with Lists
283============================
284
285Many data structure needs can be met with the built-in list type. However,
286sometimes there is a need for alternative implementations with different
287performance trade-offs.
288
289The :mod:`array` module provides an :class:`array()` object that is like a list
Benjamin Peterson90f36732008-07-12 20:16:19 +0000290that stores only homogeneous data and stores it more compactly. The following
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291example shows an array of numbers stored as two byte unsigned binary numbers
292(typecode ``"H"``) rather than the usual 16 bytes per entry for regular lists of
293python int objects::
294
295 >>> from array import array
296 >>> a = array('H', [4000, 10, 700, 22222])
297 >>> sum(a)
298 26932
299 >>> a[1:3]
300 array('H', [10, 700])
301
302The :mod:`collections` module provides a :class:`deque()` object that is like a
303list with faster appends and pops from the left side but slower lookups in the
304middle. These objects are well suited for implementing queues and breadth first
305tree searches::
306
307 >>> from collections import deque
308 >>> d = deque(["task1", "task2", "task3"])
309 >>> d.append("task4")
310 >>> print "Handling", d.popleft()
311 Handling task1
312
313 unsearched = deque([starting_node])
314 def breadth_first_search(unsearched):
315 node = unsearched.popleft()
316 for m in gen_moves(node):
317 if is_goal(m):
318 return m
319 unsearched.append(m)
320
321In addition to alternative list implementations, the library also offers other
322tools such as the :mod:`bisect` module with functions for manipulating sorted
323lists::
324
325 >>> import bisect
326 >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
327 >>> bisect.insort(scores, (300, 'ruby'))
328 >>> scores
329 [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
330
331The :mod:`heapq` module provides functions for implementing heaps based on
332regular lists. The lowest valued entry is always kept at position zero. This
333is useful for applications which repeatedly access the smallest element but do
334not want to run a full list sort::
335
336 >>> from heapq import heapify, heappop, heappush
337 >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
338 >>> heapify(data) # rearrange the list into heap order
339 >>> heappush(data, -5) # add a new entry
340 >>> [heappop(data) for i in range(3)] # fetch the three smallest entries
341 [-5, 0, 1]
342
343
344.. _tut-decimal-fp:
345
346Decimal Floating Point Arithmetic
347=================================
348
349The :mod:`decimal` module offers a :class:`Decimal` datatype for decimal
350floating point arithmetic. Compared to the built-in :class:`float`
351implementation of binary floating point, the new class is especially helpful for
352financial applications and other uses which require exact decimal
353representation, control over precision, control over rounding to meet legal or
354regulatory requirements, tracking of significant decimal places, or for
355applications where the user expects the results to match calculations done by
356hand.
357
358For example, calculating a 5% tax on a 70 cent phone charge gives different
359results in decimal floating point and binary floating point. The difference
360becomes significant if the results are rounded to the nearest cent::
361
Georg Brandla6168f92008-05-25 07:20:14 +0000362 >>> from decimal import *
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363 >>> Decimal('0.70') * Decimal('1.05')
364 Decimal("0.7350")
365 >>> .70 * 1.05
Georg Brandla6168f92008-05-25 07:20:14 +0000366 0.73499999999999999
Georg Brandl8ec7f652007-08-15 14:28:01 +0000367
368The :class:`Decimal` result keeps a trailing zero, automatically inferring four
369place significance from multiplicands with two place significance. Decimal
370reproduces mathematics as done by hand and avoids issues that can arise when
371binary floating point cannot exactly represent decimal quantities.
372
373Exact representation enables the :class:`Decimal` class to perform modulo
374calculations and equality tests that are unsuitable for binary floating point::
375
376 >>> Decimal('1.00') % Decimal('.10')
377 Decimal("0.00")
378 >>> 1.00 % 0.10
379 0.09999999999999995
380
381 >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
382 True
383 >>> sum([0.1]*10) == 1.0
Georg Brandla6168f92008-05-25 07:20:14 +0000384 False
Georg Brandl8ec7f652007-08-15 14:28:01 +0000385
386The :mod:`decimal` module provides arithmetic with as much precision as needed::
387
388 >>> getcontext().prec = 36
389 >>> Decimal(1) / Decimal(7)
390 Decimal("0.142857142857142857142857142857142857")
391
392