Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 1 | |
| 2 | :mod:`collections` --- High-performance container datatypes |
| 3 | =========================================================== |
| 4 | |
| 5 | .. module:: collections |
| 6 | :synopsis: High-performance datatypes |
| 7 | .. moduleauthor:: Raymond Hettinger <python@rcn.com> |
| 8 | .. sectionauthor:: Raymond Hettinger <python@rcn.com> |
| 9 | |
| 10 | |
| 11 | .. versionadded:: 2.4 |
| 12 | |
| 13 | This module implements high-performance container datatypes. Currently, |
| 14 | there are two datatypes, :class:`deque` and :class:`defaultdict`, and |
| 15 | one datatype factory function, :func:`NamedTuple`. Python already |
| 16 | includes built-in containers, :class:`dict`, :class:`list`, |
| 17 | :class:`set`, and :class:`tuple`. In addition, the optional :mod:`bsddb` |
| 18 | module has a :meth:`bsddb.btopen` method that can be used to create in-memory |
| 19 | or file based ordered dictionaries with string keys. |
| 20 | |
| 21 | Future editions of the standard library may include balanced trees and |
| 22 | ordered dictionaries. |
| 23 | |
| 24 | .. versionchanged:: 2.5 |
| 25 | Added :class:`defaultdict`. |
| 26 | |
| 27 | .. versionchanged:: 2.6 |
| 28 | Added :class:`NamedTuple`. |
| 29 | |
| 30 | |
| 31 | .. _deque-objects: |
| 32 | |
| 33 | :class:`deque` objects |
| 34 | ---------------------- |
| 35 | |
| 36 | |
| 37 | .. class:: deque([iterable]) |
| 38 | |
| 39 | Returns a new deque object initialized left-to-right (using :meth:`append`) with |
| 40 | data from *iterable*. If *iterable* is not specified, the new deque is empty. |
| 41 | |
| 42 | Deques are a generalization of stacks and queues (the name is pronounced "deck" |
| 43 | and is short for "double-ended queue"). Deques support thread-safe, memory |
| 44 | efficient appends and pops from either side of the deque with approximately the |
| 45 | same O(1) performance in either direction. |
| 46 | |
| 47 | Though :class:`list` objects support similar operations, they are optimized for |
| 48 | fast fixed-length operations and incur O(n) memory movement costs for |
| 49 | ``pop(0)`` and ``insert(0, v)`` operations which change both the size and |
| 50 | position of the underlying data representation. |
| 51 | |
| 52 | .. versionadded:: 2.4 |
| 53 | |
| 54 | Deque objects support the following methods: |
| 55 | |
| 56 | |
| 57 | .. method:: deque.append(x) |
| 58 | |
| 59 | Add *x* to the right side of the deque. |
| 60 | |
| 61 | |
| 62 | .. method:: deque.appendleft(x) |
| 63 | |
| 64 | Add *x* to the left side of the deque. |
| 65 | |
| 66 | |
| 67 | .. method:: deque.clear() |
| 68 | |
| 69 | Remove all elements from the deque leaving it with length 0. |
| 70 | |
| 71 | |
| 72 | .. method:: deque.extend(iterable) |
| 73 | |
| 74 | Extend the right side of the deque by appending elements from the iterable |
| 75 | argument. |
| 76 | |
| 77 | |
| 78 | .. method:: deque.extendleft(iterable) |
| 79 | |
| 80 | Extend the left side of the deque by appending elements from *iterable*. Note, |
| 81 | the series of left appends results in reversing the order of elements in the |
| 82 | iterable argument. |
| 83 | |
| 84 | |
| 85 | .. method:: deque.pop() |
| 86 | |
| 87 | Remove and return an element from the right side of the deque. If no elements |
| 88 | are present, raises an :exc:`IndexError`. |
| 89 | |
| 90 | |
| 91 | .. method:: deque.popleft() |
| 92 | |
| 93 | Remove and return an element from the left side of the deque. If no elements are |
| 94 | present, raises an :exc:`IndexError`. |
| 95 | |
| 96 | |
| 97 | .. method:: deque.remove(value) |
| 98 | |
| 99 | Removed the first occurrence of *value*. If not found, raises a |
| 100 | :exc:`ValueError`. |
| 101 | |
| 102 | .. versionadded:: 2.5 |
| 103 | |
| 104 | |
| 105 | .. method:: deque.rotate(n) |
| 106 | |
| 107 | Rotate the deque *n* steps to the right. If *n* is negative, rotate to the |
| 108 | left. Rotating one step to the right is equivalent to: |
| 109 | ``d.appendleft(d.pop())``. |
| 110 | |
| 111 | In addition to the above, deques support iteration, pickling, ``len(d)``, |
| 112 | ``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with |
| 113 | the :keyword:`in` operator, and subscript references such as ``d[-1]``. |
| 114 | |
| 115 | Example:: |
| 116 | |
| 117 | >>> from collections import deque |
| 118 | >>> d = deque('ghi') # make a new deque with three items |
| 119 | >>> for elem in d: # iterate over the deque's elements |
| 120 | ... print elem.upper() |
| 121 | G |
| 122 | H |
| 123 | I |
| 124 | |
| 125 | >>> d.append('j') # add a new entry to the right side |
| 126 | >>> d.appendleft('f') # add a new entry to the left side |
| 127 | >>> d # show the representation of the deque |
| 128 | deque(['f', 'g', 'h', 'i', 'j']) |
| 129 | |
| 130 | >>> d.pop() # return and remove the rightmost item |
| 131 | 'j' |
| 132 | >>> d.popleft() # return and remove the leftmost item |
| 133 | 'f' |
| 134 | >>> list(d) # list the contents of the deque |
| 135 | ['g', 'h', 'i'] |
| 136 | >>> d[0] # peek at leftmost item |
| 137 | 'g' |
| 138 | >>> d[-1] # peek at rightmost item |
| 139 | 'i' |
| 140 | |
| 141 | >>> list(reversed(d)) # list the contents of a deque in reverse |
| 142 | ['i', 'h', 'g'] |
| 143 | >>> 'h' in d # search the deque |
| 144 | True |
| 145 | >>> d.extend('jkl') # add multiple elements at once |
| 146 | >>> d |
| 147 | deque(['g', 'h', 'i', 'j', 'k', 'l']) |
| 148 | >>> d.rotate(1) # right rotation |
| 149 | >>> d |
| 150 | deque(['l', 'g', 'h', 'i', 'j', 'k']) |
| 151 | >>> d.rotate(-1) # left rotation |
| 152 | >>> d |
| 153 | deque(['g', 'h', 'i', 'j', 'k', 'l']) |
| 154 | |
| 155 | >>> deque(reversed(d)) # make a new deque in reverse order |
| 156 | deque(['l', 'k', 'j', 'i', 'h', 'g']) |
| 157 | >>> d.clear() # empty the deque |
| 158 | >>> d.pop() # cannot pop from an empty deque |
| 159 | Traceback (most recent call last): |
| 160 | File "<pyshell#6>", line 1, in -toplevel- |
| 161 | d.pop() |
| 162 | IndexError: pop from an empty deque |
| 163 | |
| 164 | >>> d.extendleft('abc') # extendleft() reverses the input order |
| 165 | >>> d |
| 166 | deque(['c', 'b', 'a']) |
| 167 | |
| 168 | |
| 169 | .. _deque-recipes: |
| 170 | |
| 171 | Recipes |
| 172 | ^^^^^^^ |
| 173 | |
| 174 | This section shows various approaches to working with deques. |
| 175 | |
| 176 | The :meth:`rotate` method provides a way to implement :class:`deque` slicing and |
| 177 | deletion. For example, a pure python implementation of ``del d[n]`` relies on |
| 178 | the :meth:`rotate` method to position elements to be popped:: |
| 179 | |
| 180 | def delete_nth(d, n): |
| 181 | d.rotate(-n) |
| 182 | d.popleft() |
| 183 | d.rotate(n) |
| 184 | |
| 185 | To implement :class:`deque` slicing, use a similar approach applying |
| 186 | :meth:`rotate` to bring a target element to the left side of the deque. Remove |
| 187 | old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then |
| 188 | reverse the rotation. |
| 189 | |
| 190 | With minor variations on that approach, it is easy to implement Forth style |
| 191 | stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``, |
| 192 | ``rot``, and ``roll``. |
| 193 | |
| 194 | A roundrobin task server can be built from a :class:`deque` using |
| 195 | :meth:`popleft` to select the current task and :meth:`append` to add it back to |
| 196 | the tasklist if the input stream is not exhausted:: |
| 197 | |
| 198 | >>> def roundrobin(*iterables): |
| 199 | ... pending = deque(iter(i) for i in iterables) |
| 200 | ... while pending: |
| 201 | ... task = pending.popleft() |
| 202 | ... try: |
| 203 | ... yield task.next() |
| 204 | ... except StopIteration: |
| 205 | ... continue |
| 206 | ... pending.append(task) |
| 207 | ... |
| 208 | >>> for value in roundrobin('abc', 'd', 'efgh'): |
| 209 | ... print value |
| 210 | |
| 211 | a |
| 212 | d |
| 213 | e |
| 214 | b |
| 215 | f |
| 216 | c |
| 217 | g |
| 218 | h |
| 219 | |
| 220 | |
| 221 | Multi-pass data reduction algorithms can be succinctly expressed and efficiently |
| 222 | coded by extracting elements with multiple calls to :meth:`popleft`, applying |
| 223 | the reduction function, and calling :meth:`append` to add the result back to the |
| 224 | queue. |
| 225 | |
| 226 | For example, building a balanced binary tree of nested lists entails reducing |
| 227 | two adjacent nodes into one by grouping them in a list:: |
| 228 | |
| 229 | >>> def maketree(iterable): |
| 230 | ... d = deque(iterable) |
| 231 | ... while len(d) > 1: |
| 232 | ... pair = [d.popleft(), d.popleft()] |
| 233 | ... d.append(pair) |
| 234 | ... return list(d) |
| 235 | ... |
| 236 | >>> print maketree('abcdefgh') |
| 237 | [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]] |
| 238 | |
| 239 | |
| 240 | |
| 241 | .. _defaultdict-objects: |
| 242 | |
| 243 | :class:`defaultdict` objects |
| 244 | ---------------------------- |
| 245 | |
| 246 | |
| 247 | .. class:: defaultdict([default_factory[, ...]]) |
| 248 | |
| 249 | Returns a new dictionary-like object. :class:`defaultdict` is a subclass of the |
| 250 | builtin :class:`dict` class. It overrides one method and adds one writable |
| 251 | instance variable. The remaining functionality is the same as for the |
| 252 | :class:`dict` class and is not documented here. |
| 253 | |
| 254 | The first argument provides the initial value for the :attr:`default_factory` |
| 255 | attribute; it defaults to ``None``. All remaining arguments are treated the same |
| 256 | as if they were passed to the :class:`dict` constructor, including keyword |
| 257 | arguments. |
| 258 | |
| 259 | .. versionadded:: 2.5 |
| 260 | |
| 261 | :class:`defaultdict` objects support the following method in addition to the |
| 262 | standard :class:`dict` operations: |
| 263 | |
| 264 | |
| 265 | .. method:: defaultdict.__missing__(key) |
| 266 | |
| 267 | If the :attr:`default_factory` attribute is ``None``, this raises an |
| 268 | :exc:`KeyError` exception with the *key* as argument. |
| 269 | |
| 270 | If :attr:`default_factory` is not ``None``, it is called without arguments to |
| 271 | provide a default value for the given *key*, this value is inserted in the |
| 272 | dictionary for the *key*, and returned. |
| 273 | |
| 274 | If calling :attr:`default_factory` raises an exception this exception is |
| 275 | propagated unchanged. |
| 276 | |
| 277 | This method is called by the :meth:`__getitem__` method of the :class:`dict` |
| 278 | class when the requested key is not found; whatever it returns or raises is then |
| 279 | returned or raised by :meth:`__getitem__`. |
| 280 | |
| 281 | :class:`defaultdict` objects support the following instance variable: |
| 282 | |
| 283 | |
| 284 | .. attribute:: defaultdict.default_factory |
| 285 | |
| 286 | This attribute is used by the :meth:`__missing__` method; it is initialized from |
| 287 | the first argument to the constructor, if present, or to ``None``, if absent. |
| 288 | |
| 289 | |
| 290 | .. _defaultdict-examples: |
| 291 | |
| 292 | :class:`defaultdict` Examples |
| 293 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 294 | |
| 295 | Using :class:`list` as the :attr:`default_factory`, it is easy to group a |
| 296 | sequence of key-value pairs into a dictionary of lists:: |
| 297 | |
| 298 | >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] |
| 299 | >>> d = defaultdict(list) |
| 300 | >>> for k, v in s: |
| 301 | ... d[k].append(v) |
| 302 | ... |
| 303 | >>> d.items() |
| 304 | [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])] |
| 305 | |
| 306 | When each key is encountered for the first time, it is not already in the |
| 307 | mapping; so an entry is automatically created using the :attr:`default_factory` |
| 308 | function which returns an empty :class:`list`. The :meth:`list.append` |
| 309 | operation then attaches the value to the new list. When keys are encountered |
| 310 | again, the look-up proceeds normally (returning the list for that key) and the |
| 311 | :meth:`list.append` operation adds another value to the list. This technique is |
| 312 | simpler and faster than an equivalent technique using :meth:`dict.setdefault`:: |
| 313 | |
| 314 | >>> d = {} |
| 315 | >>> for k, v in s: |
| 316 | ... d.setdefault(k, []).append(v) |
| 317 | ... |
| 318 | >>> d.items() |
| 319 | [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])] |
| 320 | |
| 321 | Setting the :attr:`default_factory` to :class:`int` makes the |
| 322 | :class:`defaultdict` useful for counting (like a bag or multiset in other |
| 323 | languages):: |
| 324 | |
| 325 | >>> s = 'mississippi' |
| 326 | >>> d = defaultdict(int) |
| 327 | >>> for k in s: |
| 328 | ... d[k] += 1 |
| 329 | ... |
| 330 | >>> d.items() |
| 331 | [('i', 4), ('p', 2), ('s', 4), ('m', 1)] |
| 332 | |
| 333 | When a letter is first encountered, it is missing from the mapping, so the |
| 334 | :attr:`default_factory` function calls :func:`int` to supply a default count of |
| 335 | zero. The increment operation then builds up the count for each letter. |
| 336 | |
| 337 | The function :func:`int` which always returns zero is just a special case of |
| 338 | constant functions. A faster and more flexible way to create constant functions |
| 339 | is to use :func:`itertools.repeat` which can supply any constant value (not just |
| 340 | zero):: |
| 341 | |
| 342 | >>> def constant_factory(value): |
| 343 | ... return itertools.repeat(value).next |
| 344 | >>> d = defaultdict(constant_factory('<missing>')) |
| 345 | >>> d.update(name='John', action='ran') |
| 346 | >>> '%(name)s %(action)s to %(object)s' % d |
| 347 | 'John ran to <missing>' |
| 348 | |
| 349 | Setting the :attr:`default_factory` to :class:`set` makes the |
| 350 | :class:`defaultdict` useful for building a dictionary of sets:: |
| 351 | |
| 352 | >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)] |
| 353 | >>> d = defaultdict(set) |
| 354 | >>> for k, v in s: |
| 355 | ... d[k].add(v) |
| 356 | ... |
| 357 | >>> d.items() |
| 358 | [('blue', set([2, 4])), ('red', set([1, 3]))] |
| 359 | |
| 360 | |
| 361 | .. _named-tuple-factory: |
| 362 | |
Raymond Hettinger | 7268e9d | 2007-09-20 03:03:43 +0000 | [diff] [blame] | 363 | :func:`NamedTuple` Factory Function for Tuples with Named Fields |
| 364 | ---------------------------------------------------------------- |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 365 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 366 | Named tuples assign meaning to each position in a tuple and allow for more readable, |
| 367 | self-documenting code. They can be used wherever regular tuples are used, and |
| 368 | they add the ability to access fields by name instead of position index. |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 369 | |
Raymond Hettinger | 2b03d45 | 2007-09-18 03:33:19 +0000 | [diff] [blame] | 370 | .. function:: NamedTuple(typename, fieldnames, [verbose]) |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 371 | |
| 372 | Returns a new tuple subclass named *typename*. The new subclass is used to |
| 373 | create tuple-like objects that have fields accessable by attribute lookup as |
| 374 | well as being indexable and iterable. Instances of the subclass also have a |
| 375 | helpful docstring (with typename and fieldnames) and a helpful :meth:`__repr__` |
| 376 | method which lists the tuple contents in a ``name=value`` format. |
| 377 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 378 | The *fieldnames* are specified in a single string with each fieldname separated by |
Raymond Hettinger | 7268e9d | 2007-09-20 03:03:43 +0000 | [diff] [blame] | 379 | a space and/or comma. Any valid Python identifier may be used for a fieldname. |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 380 | |
Raymond Hettinger | 7268e9d | 2007-09-20 03:03:43 +0000 | [diff] [blame] | 381 | If *verbose* is true, will print the class definition. |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 382 | |
| 383 | *NamedTuple* instances do not have per-instance dictionaries, so they are |
Raymond Hettinger | 7268e9d | 2007-09-20 03:03:43 +0000 | [diff] [blame] | 384 | lightweight and require no more memory than regular tuples. |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 385 | |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 386 | .. versionadded:: 2.6 |
| 387 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 388 | Example:: |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 389 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 390 | >>> Point = NamedTuple('Point', 'x y', True) |
| 391 | class Point(tuple): |
| 392 | 'Point(x, y)' |
| 393 | __slots__ = () |
| 394 | __fields__ = ('x', 'y') |
| 395 | def __new__(cls, x, y): |
| 396 | return tuple.__new__(cls, (x, y)) |
| 397 | def __repr__(self): |
| 398 | return 'Point(x=%r, y=%r)' % self |
| 399 | def __replace__(self, field, value): |
| 400 | 'Return a new Point object replacing one field with a new value' |
| 401 | return Point(**dict(zip(('x', 'y'), self) + [(field, value)])) |
| 402 | x = property(itemgetter(0)) |
| 403 | y = property(itemgetter(1)) |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 404 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 405 | >>> p = Point(11, y=22) # instantiate with positional or keyword arguments |
| 406 | >>> p[0] + p[1] # indexable like the regular tuple (11, 22) |
| 407 | 33 |
| 408 | >>> x, y = p # unpack like a regular tuple |
| 409 | >>> x, y |
| 410 | (11, 22) |
| 411 | >>> p.x + p.y # fields also accessable by name |
| 412 | 33 |
| 413 | >>> p # readable __repr__ with a name=value style |
| 414 | Point(x=11, y=22) |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 415 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 416 | Named tuples are especially useful for assigning field names to result tuples returned |
| 417 | by the :mod:`csv` or :mod:`sqlite3` modules:: |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 418 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 419 | from itertools import starmap |
| 420 | import csv |
| 421 | EmployeeRecord = NamedTuple('EmployeeRecord', 'name age title department paygrade') |
| 422 | for emp in starmap(EmployeeRecord, csv.reader(open("employees.csv", "rb"))): |
| 423 | print emp.name, emp.title |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 424 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 425 | When casting a single record to a *NamedTuple*, use the star-operator [#]_ to unpack |
| 426 | the values:: |
Georg Brandl | 8ec7f65 | 2007-08-15 14:28:01 +0000 | [diff] [blame] | 427 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 428 | >>> t = [11, 22] |
| 429 | >>> Point(*t) # the star-operator unpacks any iterable object |
| 430 | Point(x=11, y=22) |
Raymond Hettinger | 2b03d45 | 2007-09-18 03:33:19 +0000 | [diff] [blame] | 431 | |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 432 | In addition to the methods inherited from tuples, named tuples support |
| 433 | an additonal method and an informational read-only attribute. |
| 434 | |
| 435 | .. method:: somenamedtuple.replace(field, value) |
| 436 | |
Raymond Hettinger | 7268e9d | 2007-09-20 03:03:43 +0000 | [diff] [blame] | 437 | Return a new instance of the named tuple replacing the named *field* with a new *value*: |
| 438 | |
| 439 | :: |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 440 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 441 | >>> p = Point(x=11, y=22) |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 442 | >>> p.__replace__('x', 33) |
| 443 | Point(x=33, y=22) |
| 444 | |
| 445 | >>> for recordnum, record in inventory: |
| 446 | ... inventory[recordnum] = record.replace('total', record.price * record.quantity) |
| 447 | |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 448 | .. attribute:: somenamedtuple.__fields__ |
| 449 | |
| 450 | Return a tuple of strings listing the field names. This is useful for introspection, |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 451 | for converting a named tuple instance to a dictionary, and for combining named tuple |
Raymond Hettinger | 7268e9d | 2007-09-20 03:03:43 +0000 | [diff] [blame] | 452 | types to create new named tuple types: |
| 453 | |
| 454 | :: |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 455 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 456 | >>> p.__fields__ # view the field names |
| 457 | ('x', 'y') |
| 458 | >>> dict(zip(p.__fields__, p)) # convert to a dictionary |
| 459 | {'y': 22, 'x': 11} |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 460 | |
Raymond Hettinger | cbab594 | 2007-09-18 22:18:02 +0000 | [diff] [blame] | 461 | >>> Color = NamedTuple('Color', 'red green blue') |
| 462 | >>> pixel_fields = ' '.join(Point.__fields__ + Color.__fields__) # combine fields |
| 463 | >>> Pixel = NamedTuple('Pixel', pixel_fields) |
| 464 | >>> Pixel(11, 22, 128, 255, 0) |
| 465 | Pixel(x=11, y=22, red=128, green=255, blue=0)' |
Raymond Hettinger | d36a60e | 2007-09-17 00:55:00 +0000 | [diff] [blame] | 466 | |
Mark Summerfield | 7f626f4 | 2007-08-30 15:03:03 +0000 | [diff] [blame] | 467 | .. rubric:: Footnotes |
| 468 | |
| 469 | .. [#] For information on the star-operator see |
| 470 | :ref:`tut-unpacking-arguments` and :ref:`calls`. |