blob: 8c6b7401271ea5231645ed673878791a3060d9ae [file] [log] [blame]
Skip Montanaro04ae7052003-04-24 20:21:31 +00001
2"""
3csv.py - read/write/investigate CSV files
4"""
5
6import re
7from _csv import Error, __version__, writer, reader, register_dialect, \
8 unregister_dialect, get_dialect, list_dialects, \
Andrew McNamara31d88962005-01-12 03:45:10 +00009 field_size_limit, \
Skip Montanaro04ae7052003-04-24 20:21:31 +000010 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
11 __doc__
Andrew McNamara7130ff52005-01-11 02:22:47 +000012from _csv import Dialect as _Dialect
Skip Montanaro04ae7052003-04-24 20:21:31 +000013
Skip Montanaro1448d472003-04-25 14:47:16 +000014try:
15 from cStringIO import StringIO
16except ImportError:
17 from StringIO import StringIO
18
Skip Montanaro04ae7052003-04-24 20:21:31 +000019__all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
20 "Error", "Dialect", "excel", "excel_tab", "reader", "writer",
21 "register_dialect", "get_dialect", "list_dialects", "Sniffer",
22 "unregister_dialect", "__version__", "DictReader", "DictWriter" ]
23
24class Dialect:
Skip Montanarof26285c2005-01-05 06:54:58 +000025 """Describe an Excel dialect.
26
27 This must be subclassed (see csv.excel). Valid attributes are:
28 delimiter, quotechar, escapechar, doublequote, skipinitialspace,
29 lineterminator, quoting.
30
31 """
Skip Montanaro04ae7052003-04-24 20:21:31 +000032 _name = ""
33 _valid = False
34 # placeholders
35 delimiter = None
36 quotechar = None
37 escapechar = None
38 doublequote = None
39 skipinitialspace = None
40 lineterminator = None
41 quoting = None
42
43 def __init__(self):
44 if self.__class__ != Dialect:
45 self._valid = True
Andrew McNamara7130ff52005-01-11 02:22:47 +000046 self._validate()
Skip Montanaro04ae7052003-04-24 20:21:31 +000047
48 def _validate(self):
Andrew McNamara7130ff52005-01-11 02:22:47 +000049 try:
50 _Dialect(self)
51 except TypeError, e:
52 # We do this for compatibility with py2.3
53 raise Error(str(e))
Skip Montanaro04ae7052003-04-24 20:21:31 +000054
55class excel(Dialect):
Skip Montanarof26285c2005-01-05 06:54:58 +000056 """Describe the usual properties of Excel-generated CSV files."""
Skip Montanaro04ae7052003-04-24 20:21:31 +000057 delimiter = ','
58 quotechar = '"'
59 doublequote = True
60 skipinitialspace = False
61 lineterminator = '\r\n'
62 quoting = QUOTE_MINIMAL
63register_dialect("excel", excel)
64
65class excel_tab(excel):
Skip Montanarof26285c2005-01-05 06:54:58 +000066 """Describe the usual properties of Excel-generated TAB-delimited files."""
Skip Montanaro04ae7052003-04-24 20:21:31 +000067 delimiter = '\t'
68register_dialect("excel-tab", excel_tab)
69
70
71class DictReader:
Skip Montanarodffeed32003-10-03 14:03:01 +000072 def __init__(self, f, fieldnames=None, restkey=None, restval=None,
Skip Montanaro3f7a9482003-09-06 19:52:12 +000073 dialect="excel", *args, **kwds):
Skip Montanaro04ae7052003-04-24 20:21:31 +000074 self.fieldnames = fieldnames # list of keys for the dict
75 self.restkey = restkey # key to catch long rows
76 self.restval = restval # default value for short rows
Skip Montanaro3f7a9482003-09-06 19:52:12 +000077 self.reader = reader(f, dialect, *args, **kwds)
Skip Montanaro04ae7052003-04-24 20:21:31 +000078
79 def __iter__(self):
80 return self
81
82 def next(self):
83 row = self.reader.next()
Skip Montanarodffeed32003-10-03 14:03:01 +000084 if self.fieldnames is None:
85 self.fieldnames = row
86 row = self.reader.next()
87
Skip Montanaro04ae7052003-04-24 20:21:31 +000088 # unlike the basic reader, we prefer not to return blanks,
89 # because we will typically wind up with a dict full of None
90 # values
91 while row == []:
92 row = self.reader.next()
93 d = dict(zip(self.fieldnames, row))
94 lf = len(self.fieldnames)
95 lr = len(row)
96 if lf < lr:
97 d[self.restkey] = row[lf:]
98 elif lf > lr:
99 for key in self.fieldnames[lr:]:
100 d[key] = self.restval
101 return d
102
103
104class DictWriter:
105 def __init__(self, f, fieldnames, restval="", extrasaction="raise",
Skip Montanaro3f7a9482003-09-06 19:52:12 +0000106 dialect="excel", *args, **kwds):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000107 self.fieldnames = fieldnames # list of keys for the dict
108 self.restval = restval # for writing short dicts
109 if extrasaction.lower() not in ("raise", "ignore"):
110 raise ValueError, \
111 ("extrasaction (%s) must be 'raise' or 'ignore'" %
112 extrasaction)
113 self.extrasaction = extrasaction
Skip Montanaro3f7a9482003-09-06 19:52:12 +0000114 self.writer = writer(f, dialect, *args, **kwds)
Skip Montanaro04ae7052003-04-24 20:21:31 +0000115
116 def _dict_to_list(self, rowdict):
117 if self.extrasaction == "raise":
Georg Brandl94fe3f52007-03-13 09:32:11 +0000118 wrong_fields = [k for k in rowdict if k not in self.fieldnames]
119 if wrong_fields:
120 raise ValueError("dict contains fields not in fieldnames: " +
121 ", ".join(wrong_fields))
Skip Montanaro04ae7052003-04-24 20:21:31 +0000122 return [rowdict.get(key, self.restval) for key in self.fieldnames]
123
124 def writerow(self, rowdict):
125 return self.writer.writerow(self._dict_to_list(rowdict))
126
127 def writerows(self, rowdicts):
128 rows = []
129 for rowdict in rowdicts:
130 rows.append(self._dict_to_list(rowdict))
131 return self.writer.writerows(rows)
132
Raymond Hettinger39a55922003-06-12 03:01:55 +0000133# Guard Sniffer's type checking against builds that exclude complex()
134try:
135 complex
136except NameError:
137 complex = float
Skip Montanaro04ae7052003-04-24 20:21:31 +0000138
139class Sniffer:
140 '''
141 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
Skip Montanaro1448d472003-04-25 14:47:16 +0000142 Returns a Dialect object.
Skip Montanaro04ae7052003-04-24 20:21:31 +0000143 '''
Skip Montanaro1448d472003-04-25 14:47:16 +0000144 def __init__(self):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000145 # in case there is more than one possible delimiter
146 self.preferred = [',', '\t', ';', ' ', ':']
147
Skip Montanaro04ae7052003-04-24 20:21:31 +0000148
Skip Montanaro77892372003-05-19 15:33:36 +0000149 def sniff(self, sample, delimiters=None):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000150 """
Skip Montanaro1448d472003-04-25 14:47:16 +0000151 Returns a dialect (or None) corresponding to the sample
Skip Montanaro04ae7052003-04-24 20:21:31 +0000152 """
Skip Montanaro04ae7052003-04-24 20:21:31 +0000153
154 quotechar, delimiter, skipinitialspace = \
Skip Montanaro77892372003-05-19 15:33:36 +0000155 self._guess_quote_and_delimiter(sample, delimiters)
Skip Montanaro39b29be2005-12-30 05:09:48 +0000156 if not delimiter:
Skip Montanaro77892372003-05-19 15:33:36 +0000157 delimiter, skipinitialspace = self._guess_delimiter(sample,
158 delimiters)
Skip Montanaro04ae7052003-04-24 20:21:31 +0000159
Skip Montanaro39b29be2005-12-30 05:09:48 +0000160 if not delimiter:
161 raise Error, "Could not determine delimiter"
162
Skip Montanaro1448d472003-04-25 14:47:16 +0000163 class dialect(Dialect):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000164 _name = "sniffed"
165 lineterminator = '\r\n'
Fred Drake7c852f32003-04-25 14:27:00 +0000166 quoting = QUOTE_MINIMAL
Skip Montanaro04ae7052003-04-24 20:21:31 +0000167 # escapechar = ''
168 doublequote = False
Skip Montanaro04ae7052003-04-24 20:21:31 +0000169
Skip Montanaro1448d472003-04-25 14:47:16 +0000170 dialect.delimiter = delimiter
171 # _csv.reader won't accept a quotechar of ''
172 dialect.quotechar = quotechar or '"'
173 dialect.skipinitialspace = skipinitialspace
174
175 return dialect
Skip Montanaro04ae7052003-04-24 20:21:31 +0000176
177
Skip Montanaro77892372003-05-19 15:33:36 +0000178 def _guess_quote_and_delimiter(self, data, delimiters):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000179 """
180 Looks for text enclosed between two identical quotes
181 (the probable quotechar) which are preceded and followed
182 by the same character (the probable delimiter).
183 For example:
184 ,'some text',
185 The quote with the most wins, same with the delimiter.
186 If there is no quotechar the delimiter can't be determined
187 this way.
188 """
189
190 matches = []
191 for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
192 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
193 '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
194 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
Fred Drake6f7b2132003-09-02 16:01:07 +0000195 regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
Skip Montanaro04ae7052003-04-24 20:21:31 +0000196 matches = regexp.findall(data)
197 if matches:
198 break
199
200 if not matches:
201 return ('', None, 0) # (quotechar, delimiter, skipinitialspace)
202
203 quotes = {}
204 delims = {}
205 spaces = 0
206 for m in matches:
207 n = regexp.groupindex['quote'] - 1
208 key = m[n]
209 if key:
210 quotes[key] = quotes.get(key, 0) + 1
211 try:
212 n = regexp.groupindex['delim'] - 1
213 key = m[n]
214 except KeyError:
215 continue
Skip Montanaro77892372003-05-19 15:33:36 +0000216 if key and (delimiters is None or key in delimiters):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000217 delims[key] = delims.get(key, 0) + 1
218 try:
219 n = regexp.groupindex['space'] - 1
220 except KeyError:
221 continue
222 if m[n]:
223 spaces += 1
224
225 quotechar = reduce(lambda a, b, quotes = quotes:
226 (quotes[a] > quotes[b]) and a or b, quotes.keys())
227
228 if delims:
229 delim = reduce(lambda a, b, delims = delims:
230 (delims[a] > delims[b]) and a or b, delims.keys())
231 skipinitialspace = delims[delim] == spaces
232 if delim == '\n': # most likely a file with a single column
233 delim = ''
234 else:
235 # there is *no* delimiter, it's a single column of quoted data
236 delim = ''
237 skipinitialspace = 0
238
239 return (quotechar, delim, skipinitialspace)
240
241
Skip Montanaro77892372003-05-19 15:33:36 +0000242 def _guess_delimiter(self, data, delimiters):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000243 """
244 The delimiter /should/ occur the same number of times on
245 each row. However, due to malformed data, it may not. We don't want
246 an all or nothing approach, so we allow for small variations in this
247 number.
248 1) build a table of the frequency of each character on every line.
249 2) build a table of freqencies of this frequency (meta-frequency?),
250 e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
251 7 times in 2 rows'
252 3) use the mode of the meta-frequency to determine the /expected/
253 frequency for that character
254 4) find out how often the character actually meets that goal
255 5) the character that best meets its goal is the delimiter
256 For performance reasons, the data is evaluated in chunks, so it can
257 try and evaluate the smallest portion of the data possible, evaluating
258 additional chunks as necessary.
259 """
260
261 data = filter(None, data.split('\n'))
262
263 ascii = [chr(c) for c in range(127)] # 7-bit ASCII
264
265 # build frequency tables
266 chunkLength = min(10, len(data))
267 iteration = 0
268 charFrequency = {}
269 modes = {}
270 delims = {}
271 start, end = 0, min(chunkLength, len(data))
272 while start < len(data):
273 iteration += 1
274 for line in data[start:end]:
275 for char in ascii:
Skip Montanaro1448d472003-04-25 14:47:16 +0000276 metaFrequency = charFrequency.get(char, {})
Skip Montanaro04ae7052003-04-24 20:21:31 +0000277 # must count even if frequency is 0
Skip Montanaro91bb70c2005-12-28 15:37:25 +0000278 freq = line.count(char)
Skip Montanaro04ae7052003-04-24 20:21:31 +0000279 # value is the mode
Skip Montanaro1448d472003-04-25 14:47:16 +0000280 metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
281 charFrequency[char] = metaFrequency
Skip Montanaro04ae7052003-04-24 20:21:31 +0000282
283 for char in charFrequency.keys():
284 items = charFrequency[char].items()
285 if len(items) == 1 and items[0][0] == 0:
286 continue
287 # get the mode of the frequencies
288 if len(items) > 1:
289 modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b,
290 items)
291 # adjust the mode - subtract the sum of all
292 # other frequencies
293 items.remove(modes[char])
294 modes[char] = (modes[char][0], modes[char][1]
295 - reduce(lambda a, b: (0, a[1] + b[1]),
296 items)[1])
297 else:
298 modes[char] = items[0]
299
300 # build a list of possible delimiters
301 modeList = modes.items()
302 total = float(chunkLength * iteration)
303 # (rows of consistent data) / (number of rows) = 100%
304 consistency = 1.0
305 # minimum consistency threshold
306 threshold = 0.9
307 while len(delims) == 0 and consistency >= threshold:
308 for k, v in modeList:
309 if v[0] > 0 and v[1] > 0:
Skip Montanaro77892372003-05-19 15:33:36 +0000310 if ((v[1]/total) >= consistency and
311 (delimiters is None or k in delimiters)):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000312 delims[k] = v
313 consistency -= 0.01
314
315 if len(delims) == 1:
316 delim = delims.keys()[0]
317 skipinitialspace = (data[0].count(delim) ==
318 data[0].count("%c " % delim))
319 return (delim, skipinitialspace)
320
321 # analyze another chunkLength lines
322 start = end
323 end += chunkLength
324
325 if not delims:
326 return ('', 0)
327
328 # if there's more than one, fall back to a 'preferred' list
329 if len(delims) > 1:
330 for d in self.preferred:
331 if d in delims.keys():
332 skipinitialspace = (data[0].count(d) ==
333 data[0].count("%c " % d))
334 return (d, skipinitialspace)
335
Skip Montanaro39b29be2005-12-30 05:09:48 +0000336 # nothing else indicates a preference, pick the character that
337 # dominates(?)
338 items = [(v,k) for (k,v) in delims.items()]
339 items.sort()
340 delim = items[-1][1]
341
Skip Montanaro04ae7052003-04-24 20:21:31 +0000342 skipinitialspace = (data[0].count(delim) ==
343 data[0].count("%c " % delim))
344 return (delim, skipinitialspace)
345
346
Skip Montanaro1448d472003-04-25 14:47:16 +0000347 def has_header(self, sample):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000348 # Creates a dictionary of types of data in each column. If any
349 # column is of a single type (say, integers), *except* for the first
350 # row, then the first row is presumed to be labels. If the type
351 # can't be determined, it is assumed to be a string in which case
352 # the length of the string is the determining factor: if all of the
353 # rows except for the first are the same length, it's a header.
354 # Finally, a 'vote' is taken at the end for each column, adding or
355 # subtracting from the likelihood of the first row being a header.
356
Skip Montanaro1448d472003-04-25 14:47:16 +0000357 rdr = reader(StringIO(sample), self.sniff(sample))
Skip Montanaro04ae7052003-04-24 20:21:31 +0000358
Skip Montanaro1448d472003-04-25 14:47:16 +0000359 header = rdr.next() # assume first row is header
Skip Montanaro04ae7052003-04-24 20:21:31 +0000360
361 columns = len(header)
362 columnTypes = {}
363 for i in range(columns): columnTypes[i] = None
364
365 checked = 0
Skip Montanaro1448d472003-04-25 14:47:16 +0000366 for row in rdr:
Skip Montanaro04ae7052003-04-24 20:21:31 +0000367 # arbitrary number of rows to check, to keep it sane
368 if checked > 20:
369 break
370 checked += 1
371
372 if len(row) != columns:
373 continue # skip rows that have irregular number of columns
374
375 for col in columnTypes.keys():
Raymond Hettinger39a55922003-06-12 03:01:55 +0000376
377 for thisType in [int, long, float, complex]:
Skip Montanaro04ae7052003-04-24 20:21:31 +0000378 try:
Raymond Hettinger39a55922003-06-12 03:01:55 +0000379 thisType(row[col])
380 break
Raymond Hettingerabe14e62003-06-12 03:59:17 +0000381 except (ValueError, OverflowError):
Raymond Hettinger39a55922003-06-12 03:01:55 +0000382 pass
383 else:
Skip Montanaro04ae7052003-04-24 20:21:31 +0000384 # fallback to length of string
385 thisType = len(row[col])
386
Raymond Hettinger39a55922003-06-12 03:01:55 +0000387 # treat longs as ints
388 if thisType == long:
389 thisType = int
390
Skip Montanaro04ae7052003-04-24 20:21:31 +0000391 if thisType != columnTypes[col]:
392 if columnTypes[col] is None: # add new column type
393 columnTypes[col] = thisType
394 else:
395 # type is inconsistent, remove column from
396 # consideration
397 del columnTypes[col]
398
399 # finally, compare results against first row and "vote"
400 # on whether it's a header
401 hasHeader = 0
402 for col, colType in columnTypes.items():
403 if type(colType) == type(0): # it's a length
404 if len(header[col]) != colType:
405 hasHeader += 1
406 else:
407 hasHeader -= 1
408 else: # attempt typecast
409 try:
Raymond Hettinger39a55922003-06-12 03:01:55 +0000410 colType(header[col])
Raymond Hettingerf31cb0c2003-06-12 04:05:00 +0000411 except (ValueError, TypeError):
Skip Montanaro04ae7052003-04-24 20:21:31 +0000412 hasHeader += 1
413 else:
414 hasHeader -= 1
415
416 return hasHeader > 0