blob: 16c829ac25ce5ce3e6085a47410deb2218e1e63b [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Michael W. Hudson9ef852c2005-04-06 13:05:18 +000056#include "longintrepr.h" /* just for SHIFT */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Christian Heimes969fe572008-01-25 11:23:10 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Tim Peters1d120612000-10-12 06:10:25 +000063/* Call is_error when errno != 0, and where x is the result libm
64 * returned. is_error will usually set up an exception and return
65 * true (1), but may return false (0) without setting up an exception.
66 */
67static int
68is_error(double x)
Guido van Rossum8832b621991-12-16 15:44:24 +000069{
Tim Peters1d120612000-10-12 06:10:25 +000070 int result = 1; /* presumption of guilt */
Tim Peters2bf405a2000-10-12 19:42:00 +000071 assert(errno); /* non-zero errno is a precondition for calling */
Guido van Rossum8832b621991-12-16 15:44:24 +000072 if (errno == EDOM)
Barry Warsaw8b43b191996-12-09 22:32:36 +000073 PyErr_SetString(PyExc_ValueError, "math domain error");
Tim Petersa40c7932001-09-05 22:36:56 +000074
Tim Peters1d120612000-10-12 06:10:25 +000075 else if (errno == ERANGE) {
76 /* ANSI C generally requires libm functions to set ERANGE
77 * on overflow, but also generally *allows* them to set
78 * ERANGE on underflow too. There's no consistency about
Tim Petersa40c7932001-09-05 22:36:56 +000079 * the latter across platforms.
80 * Alas, C99 never requires that errno be set.
81 * Here we suppress the underflow errors (libm functions
82 * should return a zero on underflow, and +- HUGE_VAL on
83 * overflow, so testing the result for zero suffices to
84 * distinguish the cases).
Tim Peters1d120612000-10-12 06:10:25 +000085 */
86 if (x)
Tim Petersfe71f812001-08-07 22:10:00 +000087 PyErr_SetString(PyExc_OverflowError,
Tim Peters1d120612000-10-12 06:10:25 +000088 "math range error");
89 else
90 result = 0;
91 }
Guido van Rossum8832b621991-12-16 15:44:24 +000092 else
Barry Warsaw8b43b191996-12-09 22:32:36 +000093 /* Unexpected math error */
94 PyErr_SetFromErrno(PyExc_ValueError);
Tim Peters1d120612000-10-12 06:10:25 +000095 return result;
Guido van Rossum8832b621991-12-16 15:44:24 +000096}
97
Christian Heimes53876d92008-04-19 00:31:39 +000098/*
Christian Heimese57950f2008-04-21 13:08:03 +000099 wrapper for atan2 that deals directly with special cases before
100 delegating to the platform libm for the remaining cases. This
101 is necessary to get consistent behaviour across platforms.
102 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
103 always follow C99.
104*/
105
106static double
107m_atan2(double y, double x)
108{
109 if (Py_IS_NAN(x) || Py_IS_NAN(y))
110 return Py_NAN;
111 if (Py_IS_INFINITY(y)) {
112 if (Py_IS_INFINITY(x)) {
113 if (copysign(1., x) == 1.)
114 /* atan2(+-inf, +inf) == +-pi/4 */
115 return copysign(0.25*Py_MATH_PI, y);
116 else
117 /* atan2(+-inf, -inf) == +-pi*3/4 */
118 return copysign(0.75*Py_MATH_PI, y);
119 }
120 /* atan2(+-inf, x) == +-pi/2 for finite x */
121 return copysign(0.5*Py_MATH_PI, y);
122 }
123 if (Py_IS_INFINITY(x) || y == 0.) {
124 if (copysign(1., x) == 1.)
125 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
126 return copysign(0., y);
127 else
128 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
129 return copysign(Py_MATH_PI, y);
130 }
131 return atan2(y, x);
132}
133
134/*
Christian Heimes53876d92008-04-19 00:31:39 +0000135 math_1 is used to wrap a libm function f that takes a double
136 arguments and returns a double.
137
138 The error reporting follows these rules, which are designed to do
139 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
140 platforms.
141
142 - a NaN result from non-NaN inputs causes ValueError to be raised
143 - an infinite result from finite inputs causes OverflowError to be
144 raised if can_overflow is 1, or raises ValueError if can_overflow
145 is 0.
146 - if the result is finite and errno == EDOM then ValueError is
147 raised
148 - if the result is finite and nonzero and errno == ERANGE then
149 OverflowError is raised
150
151 The last rule is used to catch overflow on platforms which follow
152 C89 but for which HUGE_VAL is not an infinity.
153
154 For the majority of one-argument functions these rules are enough
155 to ensure that Python's functions behave as specified in 'Annex F'
156 of the C99 standard, with the 'invalid' and 'divide-by-zero'
157 floating-point exceptions mapping to Python's ValueError and the
158 'overflow' floating-point exception mapping to OverflowError.
159 math_1 only works for functions that don't have singularities *and*
160 the possibility of overflow; fortunately, that covers everything we
161 care about right now.
162*/
163
Barry Warsaw8b43b191996-12-09 22:32:36 +0000164static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000165math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000166 PyObject *(*from_double_func) (double),
167 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000168{
Christian Heimes53876d92008-04-19 00:31:39 +0000169 double x, r;
170 x = PyFloat_AsDouble(arg);
Thomas Wouters89f507f2006-12-13 04:49:30 +0000171 if (x == -1.0 && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000172 return NULL;
173 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000174 PyFPE_START_PROTECT("in math_1", return 0);
175 r = (*func)(x);
176 PyFPE_END_PROTECT(r);
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000177 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
178 PyErr_SetString(PyExc_ValueError,
179 "math domain error (invalid argument)");
180 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000181 }
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000182 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
183 if (can_overflow)
184 PyErr_SetString(PyExc_OverflowError,
185 "math range error (overflow)");
Mark Dickinsonb63aff12008-05-09 14:10:27 +0000186 else
187 PyErr_SetString(PyExc_ValueError,
188 "math domain error (singularity)");
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000189 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000190 }
Mark Dickinsonde429622008-05-01 00:19:23 +0000191 if (Py_IS_FINITE(r) && errno && is_error(r))
192 /* this branch unnecessary on most platforms */
Tim Peters1d120612000-10-12 06:10:25 +0000193 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000194
195 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000196}
197
198/*
199 math_2 is used to wrap a libm function f that takes two double
200 arguments and returns a double.
201
202 The error reporting follows these rules, which are designed to do
203 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
204 platforms.
205
206 - a NaN result from non-NaN inputs causes ValueError to be raised
207 - an infinite result from finite inputs causes OverflowError to be
208 raised.
209 - if the result is finite and errno == EDOM then ValueError is
210 raised
211 - if the result is finite and nonzero and errno == ERANGE then
212 OverflowError is raised
213
214 The last rule is used to catch overflow on platforms which follow
215 C89 but for which HUGE_VAL is not an infinity.
216
217 For most two-argument functions (copysign, fmod, hypot, atan2)
218 these rules are enough to ensure that Python's functions behave as
219 specified in 'Annex F' of the C99 standard, with the 'invalid' and
220 'divide-by-zero' floating-point exceptions mapping to Python's
221 ValueError and the 'overflow' floating-point exception mapping to
222 OverflowError.
223*/
224
225static PyObject *
226math_1(PyObject *arg, double (*func) (double), int can_overflow)
227{
228 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000229}
230
231static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +0000232math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000233{
Christian Heimes53876d92008-04-19 00:31:39 +0000234 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000235}
236
Barry Warsaw8b43b191996-12-09 22:32:36 +0000237static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000238math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000239{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000240 PyObject *ox, *oy;
Christian Heimes53876d92008-04-19 00:31:39 +0000241 double x, y, r;
Thomas Wouters89f507f2006-12-13 04:49:30 +0000242 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
243 return NULL;
244 x = PyFloat_AsDouble(ox);
245 y = PyFloat_AsDouble(oy);
246 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000247 return NULL;
248 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000249 PyFPE_START_PROTECT("in math_2", return 0);
250 r = (*func)(x, y);
251 PyFPE_END_PROTECT(r);
252 if (Py_IS_NAN(r)) {
253 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
254 errno = EDOM;
255 else
256 errno = 0;
257 }
258 else if (Py_IS_INFINITY(r)) {
259 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
260 errno = ERANGE;
261 else
262 errno = 0;
263 }
264 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000265 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000266 else
Christian Heimes53876d92008-04-19 00:31:39 +0000267 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000268}
269
Christian Heimes53876d92008-04-19 00:31:39 +0000270#define FUNC1(funcname, func, can_overflow, docstring) \
Fred Drake40c48682000-07-03 18:11:56 +0000271 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Christian Heimes53876d92008-04-19 00:31:39 +0000272 return math_1(args, func, can_overflow); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000273 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000274 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000275
Fred Drake40c48682000-07-03 18:11:56 +0000276#define FUNC2(funcname, func, docstring) \
277 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Thomas Wouters89f507f2006-12-13 04:49:30 +0000278 return math_2(args, func, #funcname); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000279 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000280 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000281
Christian Heimes53876d92008-04-19 00:31:39 +0000282FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000283 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000284FUNC1(acosh, acosh, 0,
285 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
286FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000287 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000288FUNC1(asinh, asinh, 0,
289 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
290FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000291 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +0000292FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000293 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
294 "Unlike atan(y/x), the signs of both x and y are considered.")
Christian Heimes53876d92008-04-19 00:31:39 +0000295FUNC1(atanh, atanh, 0,
296 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000297
298static PyObject * math_ceil(PyObject *self, PyObject *number) {
299 static PyObject *ceil_str = NULL;
300 PyObject *method;
301
302 if (ceil_str == NULL) {
Christian Heimesfe82e772008-01-28 02:38:20 +0000303 ceil_str = PyUnicode_InternFromString("__ceil__");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000304 if (ceil_str == NULL)
305 return NULL;
306 }
307
Christian Heimes90aa7642007-12-19 02:45:37 +0000308 method = _PyType_Lookup(Py_TYPE(number), ceil_str);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000309 if (method == NULL)
Christian Heimes53876d92008-04-19 00:31:39 +0000310 return math_1_to_int(number, ceil, 0);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000311 else
312 return PyObject_CallFunction(method, "O", number);
313}
314
315PyDoc_STRVAR(math_ceil_doc,
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000316 "ceil(x)\n\nReturn the ceiling of x as an int.\n"
Guido van Rossum13e05de2007-08-23 22:56:55 +0000317 "This is the smallest integral value >= x.");
318
Christian Heimes072c0f12008-01-03 23:01:04 +0000319FUNC2(copysign, copysign,
Christian Heimes53876d92008-04-19 00:31:39 +0000320 "copysign(x,y)\n\nReturn x with the sign of y.")
321FUNC1(cos, cos, 0,
322 "cos(x)\n\nReturn the cosine of x (measured in radians).")
323FUNC1(cosh, cosh, 1,
324 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
325FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000326 "exp(x)\n\nReturn e raised to the power of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000327FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000328 "fabs(x)\n\nReturn the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000329
330static PyObject * math_floor(PyObject *self, PyObject *number) {
331 static PyObject *floor_str = NULL;
332 PyObject *method;
333
334 if (floor_str == NULL) {
Christian Heimesfe82e772008-01-28 02:38:20 +0000335 floor_str = PyUnicode_InternFromString("__floor__");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000336 if (floor_str == NULL)
337 return NULL;
338 }
339
Christian Heimes90aa7642007-12-19 02:45:37 +0000340 method = _PyType_Lookup(Py_TYPE(number), floor_str);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000341 if (method == NULL)
Christian Heimes53876d92008-04-19 00:31:39 +0000342 return math_1_to_int(number, floor, 0);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000343 else
344 return PyObject_CallFunction(method, "O", number);
345}
346
347PyDoc_STRVAR(math_floor_doc,
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000348 "floor(x)\n\nReturn the floor of x as an int.\n"
Guido van Rossum13e05de2007-08-23 22:56:55 +0000349 "This is the largest integral value <= x.");
350
Christian Heimes53876d92008-04-19 00:31:39 +0000351FUNC1(log1p, log1p, 1,
352 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
353 The result is computed in a way which is accurate for x near zero.")
354FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000355 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000356FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000357 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000358FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000359 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000360FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000361 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000362FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000363 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000364
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000365/* Precision summation function as msum() by Raymond Hettinger in
366 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
367 enhanced with the exact partials sum and roundoff from Mark
368 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
369 See those links for more details, proofs and other references.
370
371 Note 1: IEEE 754R floating point semantics are assumed,
372 but the current implementation does not re-establish special
373 value semantics across iterations (i.e. handling -Inf + Inf).
374
375 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000376 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000377 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
378 overflow of the first partial sum.
379
Georg Brandlf78e02b2008-06-10 17:40:04 +0000380 Note 3: The itermediate values lo, yr, and hi are declared volatile so
381 aggressive compilers won't algebraicly reduce lo to always be exactly 0.0.
382 Also, the volatile declaration forces the values to be stored in memory as
383 regular doubles instead of extended long precision (80-bit) values. This
384 prevents double rounding because any addition or substraction of two doubles
385 can be resolved exactly into double-sized hi and lo values. As long as the
386 hi value gets forced into a double before yr and lo are computed, the extra
387 bits in downstream extended precision operations (x87 for example) will be
388 exactly zero and therefore can be losslessly stored back into a double,
389 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000390
391 Note 4: A similar implementation is in Modules/cmathmodule.c.
392 Be sure to update both when making changes.
393
394 Note 5: The signature of math.sum() differs from __builtin__.sum()
395 because the start argument doesn't make sense in the context of
396 accurate summation. Since the partials table is collapsed before
397 returning a result, sum(seq2, start=sum(seq1)) may not equal the
398 accurate result returned by sum(itertools.chain(seq1, seq2)).
399*/
400
401#define NUM_PARTIALS 32 /* initial partials array size, on stack */
402
403/* Extend the partials array p[] by doubling its size. */
404static int /* non-zero on error */
405_sum_realloc(double **p_ptr, Py_ssize_t n,
406 double *ps, Py_ssize_t *m_ptr)
407{
408 void *v = NULL;
409 Py_ssize_t m = *m_ptr;
410
411 m += m; /* double */
412 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
413 double *p = *p_ptr;
414 if (p == ps) {
415 v = PyMem_Malloc(sizeof(double) * m);
416 if (v != NULL)
417 memcpy(v, ps, sizeof(double) * n);
418 }
419 else
420 v = PyMem_Realloc(p, sizeof(double) * m);
421 }
422 if (v == NULL) { /* size overflow or no memory */
423 PyErr_SetString(PyExc_MemoryError, "math sum partials");
424 return 1;
425 }
426 *p_ptr = (double*) v;
427 *m_ptr = m;
428 return 0;
429}
430
431/* Full precision summation of a sequence of floats.
432
433 def msum(iterable):
434 partials = [] # sorted, non-overlapping partial sums
435 for x in iterable:
436 i = 0
437 for y in partials:
438 if abs(x) < abs(y):
439 x, y = y, x
440 hi = x + y
441 lo = y - (hi - x)
442 if lo:
443 partials[i] = lo
444 i += 1
445 x = hi
446 partials[i:] = [x]
447 return sum_exact(partials)
448
449 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
450 are exactly equal to x+y. The inner loop applies hi/lo summation to each
451 partial so that the list of partial sums remains exact.
452
453 Sum_exact() adds the partial sums exactly and correctly rounds the final
454 result (using the round-half-to-even rule). The items in partials remain
455 non-zero, non-special, non-overlapping and strictly increasing in
456 magnitude, but possibly not all having the same sign.
457
458 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
459*/
460
461static PyObject*
462math_sum(PyObject *self, PyObject *seq)
463{
464 PyObject *item, *iter, *sum = NULL;
465 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000466 double x, y, t, ps[NUM_PARTIALS], *p = ps;
467 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000468
469 iter = PyObject_GetIter(seq);
470 if (iter == NULL)
471 return NULL;
472
473 PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
474
475 for(;;) { /* for x in iterable */
476 assert(0 <= n && n <= m);
477 assert((m == NUM_PARTIALS && p == ps) ||
478 (m > NUM_PARTIALS && p != NULL));
479
480 item = PyIter_Next(iter);
481 if (item == NULL) {
482 if (PyErr_Occurred())
483 goto _sum_error;
484 break;
485 }
486 x = PyFloat_AsDouble(item);
487 Py_DECREF(item);
488 if (PyErr_Occurred())
489 goto _sum_error;
490
491 for (i = j = 0; j < n; j++) { /* for y in partials */
492 y = p[j];
Georg Brandlf78e02b2008-06-10 17:40:04 +0000493 if (fabs(x) < fabs(y)) {
494 t = x; x = y; y = t;
495 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000496 hi = x + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000497 yr = hi - x;
498 lo = y - yr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000499 if (lo != 0.0)
500 p[i++] = lo;
501 x = hi;
502 }
503
504 n = i; /* ps[i:] = [x] */
505 if (x != 0.0) {
506 /* If non-finite, reset partials, effectively
507 adding subsequent items without roundoff
508 and yielding correct non-finite results,
509 provided IEEE 754 rules are observed */
510 if (! Py_IS_FINITE(x))
511 n = 0;
512 else if (n >= m && _sum_realloc(&p, n, ps, &m))
513 goto _sum_error;
514 p[n++] = x;
515 }
516 }
517
Georg Brandlf78e02b2008-06-10 17:40:04 +0000518 hi = 0.0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000519 if (n > 0) {
520 hi = p[--n];
521 if (Py_IS_FINITE(hi)) {
522 /* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
523 while (n > 0) {
Georg Brandlf78e02b2008-06-10 17:40:04 +0000524 x = hi;
525 y = p[--n];
526 assert(fabs(y) < fabs(x));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000527 hi = x + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000528 yr = hi - x;
529 lo = y - yr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000530 if (lo != 0.0)
531 break;
532 }
Georg Brandlf78e02b2008-06-10 17:40:04 +0000533 /* Make half-even rounding work across multiple partials. Needed
534 so that sum([1e-16, 1, 1e16]) will round-up the last digit to
535 two instead of down to zero (the 1e-16 makes the 1 slightly
536 closer to two). With a potential 1 ULP rounding error fixed-up,
537 math.sum() can guarantee commutativity. */
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000538 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
539 (lo > 0.0 && p[n-1] > 0.0))) {
540 y = lo * 2.0;
541 x = hi + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000542 yr = x - hi;
543 if (y == yr)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000544 hi = x;
545 }
546 }
Georg Brandlf78e02b2008-06-10 17:40:04 +0000547 else { /* raise exception corresponding to a special value */
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000548 errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
549 if (is_error(hi))
550 goto _sum_error;
551 }
552 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000553 sum = PyFloat_FromDouble(hi);
554
555_sum_error:
556 PyFPE_END_PROTECT(hi)
557 Py_DECREF(iter);
558 if (p != ps)
559 PyMem_Free(p);
560 return sum;
561}
562
563#undef NUM_PARTIALS
564
565PyDoc_STRVAR(math_sum_doc,
566"sum(iterable)\n\n\
567Return an accurate floating point sum of values in the iterable.\n\
568Assumes IEEE-754 floating point arithmetic.");
569
Barry Warsaw8b43b191996-12-09 22:32:36 +0000570static PyObject *
Christian Heimes400adb02008-02-01 08:12:03 +0000571math_trunc(PyObject *self, PyObject *number)
572{
573 static PyObject *trunc_str = NULL;
574 PyObject *trunc;
575
576 if (Py_TYPE(number)->tp_dict == NULL) {
577 if (PyType_Ready(Py_TYPE(number)) < 0)
578 return NULL;
579 }
580
581 if (trunc_str == NULL) {
582 trunc_str = PyUnicode_InternFromString("__trunc__");
583 if (trunc_str == NULL)
584 return NULL;
585 }
586
587 trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
588 if (trunc == NULL) {
589 PyErr_Format(PyExc_TypeError,
590 "type %.100s doesn't define __trunc__ method",
591 Py_TYPE(number)->tp_name);
592 return NULL;
593 }
594 return PyObject_CallFunctionObjArgs(trunc, number, NULL);
595}
596
597PyDoc_STRVAR(math_trunc_doc,
598"trunc(x:Real) -> Integral\n"
599"\n"
Christian Heimes292d3512008-02-03 16:51:08 +0000600"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Christian Heimes400adb02008-02-01 08:12:03 +0000601
602static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000603math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000604{
Guido van Rossumd18ad581991-10-24 14:57:21 +0000605 int i;
Thomas Wouters89f507f2006-12-13 04:49:30 +0000606 double x = PyFloat_AsDouble(arg);
607 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +0000608 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000609 /* deal with special cases directly, to sidestep platform
610 differences */
611 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
612 i = 0;
613 }
614 else {
615 PyFPE_START_PROTECT("in math_frexp", return 0);
616 x = frexp(x, &i);
617 PyFPE_END_PROTECT(x);
618 }
619 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000620}
621
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000622PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000623"frexp(x)\n"
624"\n"
625"Return the mantissa and exponent of x, as pair (m, e).\n"
626"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000627"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000628
Barry Warsaw8b43b191996-12-09 22:32:36 +0000629static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +0000630math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000631{
Christian Heimes53876d92008-04-19 00:31:39 +0000632 double x, r;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000633 PyObject *oexp;
634 long exp;
635 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
Guido van Rossumd18ad581991-10-24 14:57:21 +0000636 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000637
638 if (PyLong_Check(oexp)) {
639 /* on overflow, replace exponent with either LONG_MAX
640 or LONG_MIN, depending on the sign. */
641 exp = PyLong_AsLong(oexp);
642 if (exp == -1 && PyErr_Occurred()) {
643 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
644 if (Py_SIZE(oexp) < 0) {
645 exp = LONG_MIN;
646 }
647 else {
648 exp = LONG_MAX;
649 }
650 PyErr_Clear();
651 }
652 else {
653 /* propagate any unexpected exception */
654 return NULL;
655 }
656 }
657 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000658 else {
659 PyErr_SetString(PyExc_TypeError,
660 "Expected an int or long as second argument "
661 "to ldexp.");
662 return NULL;
663 }
664
665 if (x == 0. || !Py_IS_FINITE(x)) {
666 /* NaNs, zeros and infinities are returned unchanged */
667 r = x;
Christian Heimes53876d92008-04-19 00:31:39 +0000668 errno = 0;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000669 } else if (exp > INT_MAX) {
670 /* overflow */
671 r = copysign(Py_HUGE_VAL, x);
672 errno = ERANGE;
673 } else if (exp < INT_MIN) {
674 /* underflow to +-0 */
675 r = copysign(0., x);
676 errno = 0;
677 } else {
678 errno = 0;
679 PyFPE_START_PROTECT("in math_ldexp", return 0);
680 r = ldexp(x, (int)exp);
681 PyFPE_END_PROTECT(r);
682 if (Py_IS_INFINITY(r))
683 errno = ERANGE;
684 }
685
Christian Heimes53876d92008-04-19 00:31:39 +0000686 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000687 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000688 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000689}
690
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000691PyDoc_STRVAR(math_ldexp_doc,
692"ldexp(x, i) -> x * (2**i)");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000693
Barry Warsaw8b43b191996-12-09 22:32:36 +0000694static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000695math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000696{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000697 double y, x = PyFloat_AsDouble(arg);
698 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +0000699 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +0000700 /* some platforms don't do the right thing for NaNs and
701 infinities, so we take care of special cases directly. */
702 if (!Py_IS_FINITE(x)) {
703 if (Py_IS_INFINITY(x))
704 return Py_BuildValue("(dd)", copysign(0., x), x);
705 else if (Py_IS_NAN(x))
706 return Py_BuildValue("(dd)", x, x);
707 }
708
Guido van Rossumd18ad581991-10-24 14:57:21 +0000709 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000710 PyFPE_START_PROTECT("in math_modf", return 0);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000711 x = modf(x, &y);
Christian Heimes53876d92008-04-19 00:31:39 +0000712 PyFPE_END_PROTECT(x);
713 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000714}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000715
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000716PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000717"modf(x)\n"
718"\n"
719"Return the fractional and integer parts of x. Both results carry the sign\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000720"of x. The integer part is returned as a real.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000721
Tim Peters78526162001-09-05 00:53:45 +0000722/* A decent logarithm is easy to compute even for huge longs, but libm can't
723 do that by itself -- loghelper can. func is log or log10, and name is
724 "log" or "log10". Note that overflow isn't possible: a long can contain
725 no more than INT_MAX * SHIFT bits, so has value certainly less than
726 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
727 small enough to fit in an IEEE single. log and log10 are even smaller.
728*/
729
730static PyObject*
Thomas Wouters89f507f2006-12-13 04:49:30 +0000731loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +0000732{
Tim Peters78526162001-09-05 00:53:45 +0000733 /* If it is long, do it ourselves. */
734 if (PyLong_Check(arg)) {
735 double x;
736 int e;
737 x = _PyLong_AsScaledDouble(arg, &e);
738 if (x <= 0.0) {
739 PyErr_SetString(PyExc_ValueError,
740 "math domain error");
741 return NULL;
742 }
Christian Heimesaf98da12008-01-27 15:18:18 +0000743 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
744 log(x) + log(2) * e * PyLong_SHIFT.
745 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
Tim Peters78526162001-09-05 00:53:45 +0000746 so force use of double. */
Martin v. Löwis9f2e3462007-07-21 17:22:18 +0000747 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
Tim Peters78526162001-09-05 00:53:45 +0000748 return PyFloat_FromDouble(x);
749 }
750
751 /* Else let libm handle it by itself. */
Christian Heimes53876d92008-04-19 00:31:39 +0000752 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +0000753}
754
755static PyObject *
756math_log(PyObject *self, PyObject *args)
757{
Raymond Hettinger866964c2002-12-14 19:51:34 +0000758 PyObject *arg;
759 PyObject *base = NULL;
760 PyObject *num, *den;
761 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000762
Raymond Hettingerea3fdf42002-12-29 16:33:45 +0000763 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
Raymond Hettinger866964c2002-12-14 19:51:34 +0000764 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000765
Thomas Wouters89f507f2006-12-13 04:49:30 +0000766 num = loghelper(arg, log, "log");
767 if (num == NULL || base == NULL)
768 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000769
Thomas Wouters89f507f2006-12-13 04:49:30 +0000770 den = loghelper(base, log, "log");
Raymond Hettinger866964c2002-12-14 19:51:34 +0000771 if (den == NULL) {
772 Py_DECREF(num);
773 return NULL;
774 }
775
Neal Norwitzbcc0db82006-03-24 08:14:36 +0000776 ans = PyNumber_TrueDivide(num, den);
Raymond Hettinger866964c2002-12-14 19:51:34 +0000777 Py_DECREF(num);
778 Py_DECREF(den);
779 return ans;
Tim Peters78526162001-09-05 00:53:45 +0000780}
781
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000782PyDoc_STRVAR(math_log_doc,
Raymond Hettinger866964c2002-12-14 19:51:34 +0000783"log(x[, base]) -> the logarithm of x to the given base.\n\
784If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +0000785
786static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000787math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +0000788{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000789 return loghelper(arg, log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +0000790}
791
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000792PyDoc_STRVAR(math_log10_doc,
793"log10(x) -> the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +0000794
Christian Heimes53876d92008-04-19 00:31:39 +0000795static PyObject *
796math_fmod(PyObject *self, PyObject *args)
797{
798 PyObject *ox, *oy;
799 double r, x, y;
800 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
801 return NULL;
802 x = PyFloat_AsDouble(ox);
803 y = PyFloat_AsDouble(oy);
804 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
805 return NULL;
806 /* fmod(x, +/-Inf) returns x for finite x. */
807 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
808 return PyFloat_FromDouble(x);
809 errno = 0;
810 PyFPE_START_PROTECT("in math_fmod", return 0);
811 r = fmod(x, y);
812 PyFPE_END_PROTECT(r);
813 if (Py_IS_NAN(r)) {
814 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
815 errno = EDOM;
816 else
817 errno = 0;
818 }
819 if (errno && is_error(r))
820 return NULL;
821 else
822 return PyFloat_FromDouble(r);
823}
824
825PyDoc_STRVAR(math_fmod_doc,
826"fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
827" x % y may differ.");
828
829static PyObject *
830math_hypot(PyObject *self, PyObject *args)
831{
832 PyObject *ox, *oy;
833 double r, x, y;
834 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
835 return NULL;
836 x = PyFloat_AsDouble(ox);
837 y = PyFloat_AsDouble(oy);
838 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
839 return NULL;
840 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
841 if (Py_IS_INFINITY(x))
842 return PyFloat_FromDouble(fabs(x));
843 if (Py_IS_INFINITY(y))
844 return PyFloat_FromDouble(fabs(y));
845 errno = 0;
846 PyFPE_START_PROTECT("in math_hypot", return 0);
847 r = hypot(x, y);
848 PyFPE_END_PROTECT(r);
849 if (Py_IS_NAN(r)) {
850 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
851 errno = EDOM;
852 else
853 errno = 0;
854 }
855 else if (Py_IS_INFINITY(r)) {
856 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
857 errno = ERANGE;
858 else
859 errno = 0;
860 }
861 if (errno && is_error(r))
862 return NULL;
863 else
864 return PyFloat_FromDouble(r);
865}
866
867PyDoc_STRVAR(math_hypot_doc,
868"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
869
870/* pow can't use math_2, but needs its own wrapper: the problem is
871 that an infinite result can arise either as a result of overflow
872 (in which case OverflowError should be raised) or as a result of
873 e.g. 0.**-5. (for which ValueError needs to be raised.)
874*/
875
876static PyObject *
877math_pow(PyObject *self, PyObject *args)
878{
879 PyObject *ox, *oy;
880 double r, x, y;
Christian Heimesa342c012008-04-20 21:01:16 +0000881 int odd_y;
Christian Heimes53876d92008-04-19 00:31:39 +0000882
883 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
884 return NULL;
885 x = PyFloat_AsDouble(ox);
886 y = PyFloat_AsDouble(oy);
887 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
888 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +0000889
890 /* deal directly with IEEE specials, to cope with problems on various
891 platforms whose semantics don't exactly match C99 */
Christian Heimes81ee3ef2008-05-04 22:42:01 +0000892 r = 0.; /* silence compiler warning */
Christian Heimesa342c012008-04-20 21:01:16 +0000893 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
894 errno = 0;
895 if (Py_IS_NAN(x))
896 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
897 else if (Py_IS_NAN(y))
898 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
899 else if (Py_IS_INFINITY(x)) {
900 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
901 if (y > 0.)
902 r = odd_y ? x : fabs(x);
903 else if (y == 0.)
904 r = 1.;
905 else /* y < 0. */
906 r = odd_y ? copysign(0., x) : 0.;
907 }
908 else if (Py_IS_INFINITY(y)) {
909 if (fabs(x) == 1.0)
910 r = 1.;
911 else if (y > 0. && fabs(x) > 1.0)
912 r = y;
913 else if (y < 0. && fabs(x) < 1.0) {
914 r = -y; /* result is +inf */
915 if (x == 0.) /* 0**-inf: divide-by-zero */
916 errno = EDOM;
917 }
918 else
919 r = 0.;
920 }
Christian Heimes53876d92008-04-19 00:31:39 +0000921 }
Christian Heimesa342c012008-04-20 21:01:16 +0000922 else {
923 /* let libm handle finite**finite */
924 errno = 0;
925 PyFPE_START_PROTECT("in math_pow", return 0);
926 r = pow(x, y);
927 PyFPE_END_PROTECT(r);
928 /* a NaN result should arise only from (-ve)**(finite
929 non-integer); in this case we want to raise ValueError. */
930 if (!Py_IS_FINITE(r)) {
931 if (Py_IS_NAN(r)) {
932 errno = EDOM;
933 }
934 /*
935 an infinite result here arises either from:
936 (A) (+/-0.)**negative (-> divide-by-zero)
937 (B) overflow of x**y with x and y finite
938 */
939 else if (Py_IS_INFINITY(r)) {
940 if (x == 0.)
941 errno = EDOM;
942 else
943 errno = ERANGE;
944 }
945 }
Christian Heimes53876d92008-04-19 00:31:39 +0000946 }
947
948 if (errno && is_error(r))
949 return NULL;
950 else
951 return PyFloat_FromDouble(r);
952}
953
954PyDoc_STRVAR(math_pow_doc,
955"pow(x,y)\n\nReturn x**y (x to the power of y).");
956
Christian Heimes072c0f12008-01-03 23:01:04 +0000957static const double degToRad = Py_MATH_PI / 180.0;
958static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000959
960static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000961math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000962{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000963 double x = PyFloat_AsDouble(arg);
964 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000965 return NULL;
Christian Heimes072c0f12008-01-03 23:01:04 +0000966 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000967}
968
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000969PyDoc_STRVAR(math_degrees_doc,
970"degrees(x) -> converts angle x from radians to degrees");
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000971
972static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000973math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000974{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000975 double x = PyFloat_AsDouble(arg);
976 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +0000977 return NULL;
978 return PyFloat_FromDouble(x * degToRad);
979}
980
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000981PyDoc_STRVAR(math_radians_doc,
982"radians(x) -> converts angle x from degrees to radians");
Tim Peters78526162001-09-05 00:53:45 +0000983
Christian Heimes072c0f12008-01-03 23:01:04 +0000984static PyObject *
985math_isnan(PyObject *self, PyObject *arg)
986{
987 double x = PyFloat_AsDouble(arg);
988 if (x == -1.0 && PyErr_Occurred())
989 return NULL;
990 return PyBool_FromLong((long)Py_IS_NAN(x));
991}
992
993PyDoc_STRVAR(math_isnan_doc,
994"isnan(x) -> bool\n\
995Checks if float x is not a number (NaN)");
996
997static PyObject *
998math_isinf(PyObject *self, PyObject *arg)
999{
1000 double x = PyFloat_AsDouble(arg);
1001 if (x == -1.0 && PyErr_Occurred())
1002 return NULL;
1003 return PyBool_FromLong((long)Py_IS_INFINITY(x));
1004}
1005
1006PyDoc_STRVAR(math_isinf_doc,
1007"isinf(x) -> bool\n\
1008Checks if float x is infinite (positive or negative)");
1009
Barry Warsaw8b43b191996-12-09 22:32:36 +00001010static PyMethodDef math_methods[] = {
Thomas Wouters89f507f2006-12-13 04:49:30 +00001011 {"acos", math_acos, METH_O, math_acos_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001012 {"acosh", math_acosh, METH_O, math_acosh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001013 {"asin", math_asin, METH_O, math_asin_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001014 {"asinh", math_asinh, METH_O, math_asinh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001015 {"atan", math_atan, METH_O, math_atan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001016 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001017 {"atanh", math_atanh, METH_O, math_atanh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001018 {"ceil", math_ceil, METH_O, math_ceil_doc},
Christian Heimes072c0f12008-01-03 23:01:04 +00001019 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001020 {"cos", math_cos, METH_O, math_cos_doc},
1021 {"cosh", math_cosh, METH_O, math_cosh_doc},
1022 {"degrees", math_degrees, METH_O, math_degrees_doc},
1023 {"exp", math_exp, METH_O, math_exp_doc},
1024 {"fabs", math_fabs, METH_O, math_fabs_doc},
1025 {"floor", math_floor, METH_O, math_floor_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001026 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001027 {"frexp", math_frexp, METH_O, math_frexp_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001028 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Christian Heimes072c0f12008-01-03 23:01:04 +00001029 {"isinf", math_isinf, METH_O, math_isinf_doc},
1030 {"isnan", math_isnan, METH_O, math_isnan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001031 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1032 {"log", math_log, METH_VARARGS, math_log_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001033 {"log1p", math_log1p, METH_O, math_log1p_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001034 {"log10", math_log10, METH_O, math_log10_doc},
1035 {"modf", math_modf, METH_O, math_modf_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001036 {"pow", math_pow, METH_VARARGS, math_pow_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001037 {"radians", math_radians, METH_O, math_radians_doc},
1038 {"sin", math_sin, METH_O, math_sin_doc},
1039 {"sinh", math_sinh, METH_O, math_sinh_doc},
1040 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001041 {"sum", math_sum, METH_O, math_sum_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001042 {"tan", math_tan, METH_O, math_tan_doc},
1043 {"tanh", math_tanh, METH_O, math_tanh_doc},
Christian Heimes400adb02008-02-01 08:12:03 +00001044 {"trunc", math_trunc, METH_O, math_trunc_doc},
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001045 {NULL, NULL} /* sentinel */
1046};
1047
Guido van Rossumc6e22901998-12-04 19:26:43 +00001048
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001049PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001050"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001051"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001052
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001053PyMODINIT_FUNC
Thomas Woutersf3f33dc2000-07-21 06:00:07 +00001054initmath(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001055{
Christian Heimes53876d92008-04-19 00:31:39 +00001056 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001057
Guido van Rossumc6e22901998-12-04 19:26:43 +00001058 m = Py_InitModule3("math", math_methods, module_doc);
Neal Norwitz1ac754f2006-01-19 06:09:39 +00001059 if (m == NULL)
1060 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001061
Christian Heimes53876d92008-04-19 00:31:39 +00001062 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1063 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001064
Christian Heimes53876d92008-04-19 00:31:39 +00001065 finally:
Barry Warsaw9bfd2bf2000-09-01 09:01:32 +00001066 return;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001067}