blob: 4259973a4ade8f5d9d6319ab6faf53c54dde0b73 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
10 generate random permutation
11
Guido van Rossume7b146f2000-02-04 15:28:42 +000012 distributions on the real line:
13 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000014 uniform
Guido van Rossume7b146f2000-02-04 15:28:42 +000015 normal (Gaussian)
16 lognormal
17 negative exponential
18 gamma
19 beta
Guido van Rossumff03b1a1994-03-09 12:55:02 +000020
Guido van Rossume7b146f2000-02-04 15:28:42 +000021 distributions on the circle (angles 0 to 2pi)
22 ---------------------------------------------
23 circular uniform
24 von Mises
25
26Translated from anonymously contributed C/C++ source.
27
Tim Peterse360d952001-01-26 10:00:39 +000028Multi-threading note: the random number generator used here is not thread-
29safe; it is possible that two calls return the same random value. However,
30you can instantiate a different instance of Random() in each thread to get
31generators that don't share state, then use .setstate() and .jumpahead() to
32move the generators to disjoint segments of the full period. For example,
33
34def create_generators(num, delta, firstseed=None):
35 ""\"Return list of num distinct generators.
36 Each generator has its own unique segment of delta elements from
37 Random.random()'s full period.
38 Seed the first generator with optional arg firstseed (default is
39 None, to seed from current time).
40 ""\"
41
42 from random import Random
43 g = Random(firstseed)
44 result = [g]
45 for i in range(num - 1):
46 laststate = g.getstate()
47 g = Random()
48 g.setstate(laststate)
49 g.jumpahead(delta)
50 result.append(g)
51 return result
52
53gens = create_generators(10, 1000000)
54
55That creates 10 distinct generators, which can be passed out to 10 distinct
56threads. The generators don't share state so can be called safely in
57parallel. So long as no thread calls its g.random() more than a million
58times (the second argument to create_generators), the sequences seen by
59each thread will not overlap.
60
61The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
62and that limits how far this technique can be pushed.
63
64Just for fun, note that since we know the period, .jumpahead() can also be
65used to "move backward in time":
66
67>>> g = Random(42) # arbitrary
68>>> g.random()
Tim Peters0de88fc2001-02-01 04:59:18 +0000690.25420336316883324
Tim Peterse360d952001-01-26 10:00:39 +000070>>> g.jumpahead(6953607871644L - 1) # move *back* one
71>>> g.random()
Tim Peters0de88fc2001-02-01 04:59:18 +0000720.25420336316883324
Guido van Rossume7b146f2000-02-04 15:28:42 +000073"""
Tim Petersd7b5e882001-01-25 03:36:26 +000074# XXX The docstring sucks.
Guido van Rossumd03e1191998-05-29 17:51:31 +000075
Tim Petersd7b5e882001-01-25 03:36:26 +000076from math import log as _log, exp as _exp, pi as _pi, e as _e
77from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Guido van Rossumff03b1a1994-03-09 12:55:02 +000078
Skip Montanaro0de65802001-02-15 22:15:14 +000079__all__ = ["Random","seed","random","uniform","randint","choice",
80 "randrange","shuffle","normalvariate","lognormvariate",
81 "cunifvariate","expovariate","vonmisesvariate","gammavariate",
82 "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
83 "getstate","setstate","jumpahead","whseed"]
Tim Peters0e6d2132001-02-15 23:56:39 +000084
Tim Petersdc47a892001-11-25 21:12:43 +000085def _verify(name, computed, expected):
Tim Peters0c9886d2001-01-15 01:18:21 +000086 if abs(computed - expected) > 1e-7:
Tim Petersd7b5e882001-01-25 03:36:26 +000087 raise ValueError(
88 "computed value for %s deviates too much "
89 "(computed %g, expected %g)" % (name, computed, expected))
90
91NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersdc47a892001-11-25 21:12:43 +000092_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
Tim Petersd7b5e882001-01-25 03:36:26 +000093
94TWOPI = 2.0*_pi
Tim Petersdc47a892001-11-25 21:12:43 +000095_verify('TWOPI', TWOPI, 6.28318530718)
Tim Petersd7b5e882001-01-25 03:36:26 +000096
97LOG4 = _log(4.0)
Tim Petersdc47a892001-11-25 21:12:43 +000098_verify('LOG4', LOG4, 1.38629436111989)
Tim Petersd7b5e882001-01-25 03:36:26 +000099
100SG_MAGICCONST = 1.0 + _log(4.5)
Tim Petersdc47a892001-11-25 21:12:43 +0000101_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
Tim Petersd7b5e882001-01-25 03:36:26 +0000102
103del _verify
104
105# Translated by Guido van Rossum from C source provided by
106# Adrian Baddeley.
107
108class Random:
109
110 VERSION = 1 # used by getstate/setstate
111
112 def __init__(self, x=None):
113 """Initialize an instance.
114
115 Optional argument x controls seeding, as for Random.seed().
116 """
117
118 self.seed(x)
119 self.gauss_next = None
120
Tim Peterscd804102001-01-25 20:25:57 +0000121## -------------------- core generator -------------------
122
Tim Petersd7b5e882001-01-25 03:36:26 +0000123 # Specific to Wichmann-Hill generator. Subclasses wishing to use a
Tim Petersd52269b2001-01-25 06:23:18 +0000124 # different core generator should override the seed(), random(),
Tim Peterscd804102001-01-25 20:25:57 +0000125 # getstate(), setstate() and jumpahead() methods.
Tim Petersd7b5e882001-01-25 03:36:26 +0000126
Tim Peters0de88fc2001-02-01 04:59:18 +0000127 def seed(self, a=None):
128 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +0000129
Tim Peters0de88fc2001-02-01 04:59:18 +0000130 None or no argument seeds from current time.
131
Tim Petersbcd725f2001-02-01 10:06:53 +0000132 If a is not None or an int or long, hash(a) is used instead.
Tim Peters0de88fc2001-02-01 04:59:18 +0000133
134 If a is an int or long, a is used directly. Distinct values between
135 0 and 27814431486575L inclusive are guaranteed to yield distinct
136 internal states (this guarantee is specific to the default
137 Wichmann-Hill generator).
Tim Petersd7b5e882001-01-25 03:36:26 +0000138 """
139
Tim Peters0de88fc2001-02-01 04:59:18 +0000140 if a is None:
Tim Petersd7b5e882001-01-25 03:36:26 +0000141 # Initialize from current time
142 import time
Tim Peters0de88fc2001-02-01 04:59:18 +0000143 a = long(time.time() * 256)
144
145 if type(a) not in (type(3), type(3L)):
146 a = hash(a)
147
148 a, x = divmod(a, 30268)
149 a, y = divmod(a, 30306)
150 a, z = divmod(a, 30322)
151 self._seed = int(x)+1, int(y)+1, int(z)+1
Tim Petersd7b5e882001-01-25 03:36:26 +0000152
Tim Petersd7b5e882001-01-25 03:36:26 +0000153 def random(self):
154 """Get the next random number in the range [0.0, 1.0)."""
155
156 # Wichman-Hill random number generator.
157 #
158 # Wichmann, B. A. & Hill, I. D. (1982)
159 # Algorithm AS 183:
160 # An efficient and portable pseudo-random number generator
161 # Applied Statistics 31 (1982) 188-190
162 #
163 # see also:
164 # Correction to Algorithm AS 183
165 # Applied Statistics 33 (1984) 123
166 #
167 # McLeod, A. I. (1985)
168 # A remark on Algorithm AS 183
169 # Applied Statistics 34 (1985),198-200
170
171 # This part is thread-unsafe:
172 # BEGIN CRITICAL SECTION
173 x, y, z = self._seed
174 x = (171 * x) % 30269
175 y = (172 * y) % 30307
176 z = (170 * z) % 30323
177 self._seed = x, y, z
178 # END CRITICAL SECTION
179
180 # Note: on a platform using IEEE-754 double arithmetic, this can
181 # never return 0.0 (asserted by Tim; proof too long for a comment).
182 return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
183
Tim Peterscd804102001-01-25 20:25:57 +0000184 def getstate(self):
185 """Return internal state; can be passed to setstate() later."""
186 return self.VERSION, self._seed, self.gauss_next
187
188 def setstate(self, state):
189 """Restore internal state from object returned by getstate()."""
190 version = state[0]
191 if version == 1:
192 version, self._seed, self.gauss_next = state
193 else:
194 raise ValueError("state with version %s passed to "
195 "Random.setstate() of version %s" %
196 (version, self.VERSION))
197
198 def jumpahead(self, n):
199 """Act as if n calls to random() were made, but quickly.
200
201 n is an int, greater than or equal to 0.
202
203 Example use: If you have 2 threads and know that each will
204 consume no more than a million random numbers, create two Random
205 objects r1 and r2, then do
206 r2.setstate(r1.getstate())
207 r2.jumpahead(1000000)
208 Then r1 and r2 will use guaranteed-disjoint segments of the full
209 period.
210 """
211
212 if not n >= 0:
213 raise ValueError("n must be >= 0")
214 x, y, z = self._seed
215 x = int(x * pow(171, n, 30269)) % 30269
216 y = int(y * pow(172, n, 30307)) % 30307
217 z = int(z * pow(170, n, 30323)) % 30323
218 self._seed = x, y, z
219
Tim Peters0de88fc2001-02-01 04:59:18 +0000220 def __whseed(self, x=0, y=0, z=0):
221 """Set the Wichmann-Hill seed from (x, y, z).
222
223 These must be integers in the range [0, 256).
224 """
225
226 if not type(x) == type(y) == type(z) == type(0):
227 raise TypeError('seeds must be integers')
228 if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
229 raise ValueError('seeds must be in range(0, 256)')
230 if 0 == x == y == z:
231 # Initialize from current time
232 import time
233 t = long(time.time() * 256)
234 t = int((t&0xffffff) ^ (t>>24))
235 t, x = divmod(t, 256)
236 t, y = divmod(t, 256)
237 t, z = divmod(t, 256)
238 # Zero is a poor seed, so substitute 1
239 self._seed = (x or 1, y or 1, z or 1)
240
241 def whseed(self, a=None):
242 """Seed from hashable object's hash code.
243
244 None or no argument seeds from current time. It is not guaranteed
245 that objects with distinct hash codes lead to distinct internal
246 states.
247
248 This is obsolete, provided for compatibility with the seed routine
249 used prior to Python 2.1. Use the .seed() method instead.
250 """
251
252 if a is None:
253 self.__whseed()
254 return
255 a = hash(a)
256 a, x = divmod(a, 256)
257 a, y = divmod(a, 256)
258 a, z = divmod(a, 256)
259 x = (x + a) % 256 or 1
260 y = (y + a) % 256 or 1
261 z = (z + a) % 256 or 1
262 self.__whseed(x, y, z)
263
Tim Peterscd804102001-01-25 20:25:57 +0000264## ---- Methods below this point do not need to be overridden when
265## ---- subclassing for the purpose of using a different core generator.
266
267## -------------------- pickle support -------------------
268
269 def __getstate__(self): # for pickle
270 return self.getstate()
271
272 def __setstate__(self, state): # for pickle
273 self.setstate(state)
274
275## -------------------- integer methods -------------------
276
Tim Petersd7b5e882001-01-25 03:36:26 +0000277 def randrange(self, start, stop=None, step=1, int=int, default=None):
278 """Choose a random item from range(start, stop[, step]).
279
280 This fixes the problem with randint() which includes the
281 endpoint; in Python this is usually not what you want.
282 Do not supply the 'int' and 'default' arguments.
283 """
284
285 # This code is a bit messy to make it fast for the
286 # common case while still doing adequate error checking
287 istart = int(start)
288 if istart != start:
289 raise ValueError, "non-integer arg 1 for randrange()"
290 if stop is default:
291 if istart > 0:
292 return int(self.random() * istart)
293 raise ValueError, "empty range for randrange()"
294 istop = int(stop)
295 if istop != stop:
296 raise ValueError, "non-integer stop for randrange()"
297 if step == 1:
298 if istart < istop:
299 return istart + int(self.random() *
300 (istop - istart))
301 raise ValueError, "empty range for randrange()"
302 istep = int(step)
303 if istep != step:
304 raise ValueError, "non-integer step for randrange()"
305 if istep > 0:
306 n = (istop - istart + istep - 1) / istep
307 elif istep < 0:
308 n = (istop - istart + istep + 1) / istep
309 else:
310 raise ValueError, "zero step for randrange()"
311
312 if n <= 0:
313 raise ValueError, "empty range for randrange()"
314 return istart + istep*int(self.random() * n)
315
316 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000317 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000318
Tim Peterscd804102001-01-25 20:25:57 +0000319 (Deprecated; use randrange(a, b+1).)
Tim Petersd7b5e882001-01-25 03:36:26 +0000320 """
321
322 return self.randrange(a, b+1)
323
Tim Peterscd804102001-01-25 20:25:57 +0000324## -------------------- sequence methods -------------------
325
Tim Petersd7b5e882001-01-25 03:36:26 +0000326 def choice(self, seq):
327 """Choose a random element from a non-empty sequence."""
328 return seq[int(self.random() * len(seq))]
329
330 def shuffle(self, x, random=None, int=int):
331 """x, random=random.random -> shuffle list x in place; return None.
332
333 Optional arg random is a 0-argument function returning a random
334 float in [0.0, 1.0); by default, the standard random.random.
335
336 Note that for even rather small len(x), the total number of
337 permutations of x is larger than the period of most random number
338 generators; this implies that "most" permutations of a long
339 sequence can never be generated.
340 """
341
342 if random is None:
343 random = self.random
344 for i in xrange(len(x)-1, 0, -1):
Tim Peterscd804102001-01-25 20:25:57 +0000345 # pick an element in x[:i+1] with which to exchange x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000346 j = int(random() * (i+1))
347 x[i], x[j] = x[j], x[i]
348
Tim Peterscd804102001-01-25 20:25:57 +0000349## -------------------- real-valued distributions -------------------
350
351## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000352
353 def uniform(self, a, b):
354 """Get a random number in the range [a, b)."""
355 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000356
Tim Peterscd804102001-01-25 20:25:57 +0000357## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000358
Tim Petersd7b5e882001-01-25 03:36:26 +0000359 def normalvariate(self, mu, sigma):
360 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000361
Tim Petersd7b5e882001-01-25 03:36:26 +0000362 # Uses Kinderman and Monahan method. Reference: Kinderman,
363 # A.J. and Monahan, J.F., "Computer generation of random
364 # variables using the ratio of uniform deviates", ACM Trans
365 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000366
Tim Petersd7b5e882001-01-25 03:36:26 +0000367 random = self.random
Tim Peters0c9886d2001-01-15 01:18:21 +0000368 while 1:
369 u1 = random()
370 u2 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000371 z = NV_MAGICCONST*(u1-0.5)/u2
372 zz = z*z/4.0
373 if zz <= -_log(u2):
374 break
375 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000376
Tim Peterscd804102001-01-25 20:25:57 +0000377## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000378
379 def lognormvariate(self, mu, sigma):
380 return _exp(self.normalvariate(mu, sigma))
381
Tim Peterscd804102001-01-25 20:25:57 +0000382## -------------------- circular uniform --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000383
384 def cunifvariate(self, mean, arc):
385 # mean: mean angle (in radians between 0 and pi)
386 # arc: range of distribution (in radians between 0 and pi)
387
388 return (mean + arc * (self.random() - 0.5)) % _pi
389
Tim Peterscd804102001-01-25 20:25:57 +0000390## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000391
392 def expovariate(self, lambd):
393 # lambd: rate lambd = 1/mean
394 # ('lambda' is a Python reserved word)
395
396 random = self.random
Tim Peters0c9886d2001-01-15 01:18:21 +0000397 u = random()
398 while u <= 1e-7:
399 u = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000400 return -_log(u)/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000401
Tim Peterscd804102001-01-25 20:25:57 +0000402## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000403
Tim Petersd7b5e882001-01-25 03:36:26 +0000404 def vonmisesvariate(self, mu, kappa):
405 # mu: mean angle (in radians between 0 and 2*pi)
406 # kappa: concentration parameter kappa (>= 0)
407 # if kappa = 0 generate uniform random angle
408
409 # Based upon an algorithm published in: Fisher, N.I.,
410 # "Statistical Analysis of Circular Data", Cambridge
411 # University Press, 1993.
412
413 # Thanks to Magnus Kessler for a correction to the
414 # implementation of step 4.
415
416 random = self.random
417 if kappa <= 1e-6:
418 return TWOPI * random()
419
420 a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
421 b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
422 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000423
Tim Peters0c9886d2001-01-15 01:18:21 +0000424 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000425 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000426
427 z = _cos(_pi * u1)
428 f = (1.0 + r * z)/(r + z)
429 c = kappa * (r - f)
430
431 u2 = random()
432
433 if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
Tim Peters0c9886d2001-01-15 01:18:21 +0000434 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000435
436 u3 = random()
437 if u3 > 0.5:
438 theta = (mu % TWOPI) + _acos(f)
439 else:
440 theta = (mu % TWOPI) - _acos(f)
441
442 return theta
443
Tim Peterscd804102001-01-25 20:25:57 +0000444## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000445
446 def gammavariate(self, alpha, beta):
447 # beta times standard gamma
448 ainv = _sqrt(2.0 * alpha - 1.0)
449 return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
450
451 def stdgamma(self, alpha, ainv, bbb, ccc):
452 # ainv = sqrt(2 * alpha - 1)
453 # bbb = alpha - log(4)
454 # ccc = alpha + ainv
455
456 random = self.random
457 if alpha <= 0.0:
458 raise ValueError, 'stdgamma: alpha must be > 0.0'
459
460 if alpha > 1.0:
461
462 # Uses R.C.H. Cheng, "The generation of Gamma
463 # variables with non-integral shape parameters",
464 # Applied Statistics, (1977), 26, No. 1, p71-74
465
466 while 1:
467 u1 = random()
468 u2 = random()
469 v = _log(u1/(1.0-u1))/ainv
470 x = alpha*_exp(v)
471 z = u1*u1*u2
472 r = bbb+ccc*v-x
473 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
474 return x
475
476 elif alpha == 1.0:
477 # expovariate(1)
478 u = random()
479 while u <= 1e-7:
480 u = random()
481 return -_log(u)
482
483 else: # alpha is between 0 and 1 (exclusive)
484
485 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
486
487 while 1:
488 u = random()
489 b = (_e + alpha)/_e
490 p = b*u
491 if p <= 1.0:
492 x = pow(p, 1.0/alpha)
493 else:
494 # p > 1
495 x = -_log((b-p)/alpha)
496 u1 = random()
497 if not (((p <= 1.0) and (u1 > _exp(-x))) or
498 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
499 break
500 return x
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000501
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000502
Tim Peterscd804102001-01-25 20:25:57 +0000503## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000504
Tim Petersd7b5e882001-01-25 03:36:26 +0000505 def gauss(self, mu, sigma):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000506
Tim Petersd7b5e882001-01-25 03:36:26 +0000507 # When x and y are two variables from [0, 1), uniformly
508 # distributed, then
509 #
510 # cos(2*pi*x)*sqrt(-2*log(1-y))
511 # sin(2*pi*x)*sqrt(-2*log(1-y))
512 #
513 # are two *independent* variables with normal distribution
514 # (mu = 0, sigma = 1).
515 # (Lambert Meertens)
516 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000517
Tim Petersd7b5e882001-01-25 03:36:26 +0000518 # Multithreading note: When two threads call this function
519 # simultaneously, it is possible that they will receive the
520 # same return value. The window is very small though. To
521 # avoid this, you have to use a lock around all calls. (I
522 # didn't want to slow this down in the serial case by using a
523 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000524
Tim Petersd7b5e882001-01-25 03:36:26 +0000525 random = self.random
526 z = self.gauss_next
527 self.gauss_next = None
528 if z is None:
529 x2pi = random() * TWOPI
530 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
531 z = _cos(x2pi) * g2rad
532 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000533
Tim Petersd7b5e882001-01-25 03:36:26 +0000534 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000535
Tim Peterscd804102001-01-25 20:25:57 +0000536## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000537## See
538## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
539## for Ivan Frohne's insightful analysis of why the original implementation:
540##
541## def betavariate(self, alpha, beta):
542## # Discrete Event Simulation in C, pp 87-88.
543##
544## y = self.expovariate(alpha)
545## z = self.expovariate(1.0/beta)
546## return z/(y+z)
547##
548## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000549
Tim Petersd7b5e882001-01-25 03:36:26 +0000550 def betavariate(self, alpha, beta):
Tim Peters85e2e472001-01-26 06:49:56 +0000551 # This version due to Janne Sinkkonen, and matches all the std
552 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
553 y = self.gammavariate(alpha, 1.)
554 if y == 0:
555 return 0.0
556 else:
557 return y / (y + self.gammavariate(beta, 1.))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000558
Tim Peterscd804102001-01-25 20:25:57 +0000559## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000560
Tim Petersd7b5e882001-01-25 03:36:26 +0000561 def paretovariate(self, alpha):
562 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000563
Tim Petersd7b5e882001-01-25 03:36:26 +0000564 u = self.random()
565 return 1.0 / pow(u, 1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000566
Tim Peterscd804102001-01-25 20:25:57 +0000567## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000568
Tim Petersd7b5e882001-01-25 03:36:26 +0000569 def weibullvariate(self, alpha, beta):
570 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000571
Tim Petersd7b5e882001-01-25 03:36:26 +0000572 u = self.random()
573 return alpha * pow(-_log(u), 1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000574
Tim Peterscd804102001-01-25 20:25:57 +0000575## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000576
Tim Petersd7b5e882001-01-25 03:36:26 +0000577def _test_generator(n, funccall):
Tim Peters0c9886d2001-01-15 01:18:21 +0000578 import time
579 print n, 'times', funccall
580 code = compile(funccall, funccall, 'eval')
581 sum = 0.0
582 sqsum = 0.0
583 smallest = 1e10
584 largest = -1e10
585 t0 = time.time()
586 for i in range(n):
587 x = eval(code)
588 sum = sum + x
589 sqsum = sqsum + x*x
590 smallest = min(x, smallest)
591 largest = max(x, largest)
592 t1 = time.time()
593 print round(t1-t0, 3), 'sec,',
594 avg = sum/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000595 stddev = _sqrt(sqsum/n - avg*avg)
Tim Peters0c9886d2001-01-15 01:18:21 +0000596 print 'avg %g, stddev %g, min %g, max %g' % \
597 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000598
Tim Petersd7b5e882001-01-25 03:36:26 +0000599def _test(N=200):
600 print 'TWOPI =', TWOPI
601 print 'LOG4 =', LOG4
602 print 'NV_MAGICCONST =', NV_MAGICCONST
603 print 'SG_MAGICCONST =', SG_MAGICCONST
604 _test_generator(N, 'random()')
605 _test_generator(N, 'normalvariate(0.0, 1.0)')
606 _test_generator(N, 'lognormvariate(0.0, 1.0)')
607 _test_generator(N, 'cunifvariate(0.0, 1.0)')
608 _test_generator(N, 'expovariate(1.0)')
609 _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
610 _test_generator(N, 'gammavariate(0.5, 1.0)')
611 _test_generator(N, 'gammavariate(0.9, 1.0)')
612 _test_generator(N, 'gammavariate(1.0, 1.0)')
613 _test_generator(N, 'gammavariate(2.0, 1.0)')
614 _test_generator(N, 'gammavariate(20.0, 1.0)')
615 _test_generator(N, 'gammavariate(200.0, 1.0)')
616 _test_generator(N, 'gauss(0.0, 1.0)')
617 _test_generator(N, 'betavariate(3.0, 3.0)')
618 _test_generator(N, 'paretovariate(1.0)')
619 _test_generator(N, 'weibullvariate(1.0, 1.0)')
620
Tim Peterscd804102001-01-25 20:25:57 +0000621 # Test jumpahead.
622 s = getstate()
623 jumpahead(N)
624 r1 = random()
625 # now do it the slow way
626 setstate(s)
627 for i in range(N):
628 random()
629 r2 = random()
630 if r1 != r2:
631 raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
632
Tim Peters715c4c42001-01-26 22:56:56 +0000633# Create one instance, seeded from current time, and export its methods
634# as module-level functions. The functions are not threadsafe, and state
635# is shared across all uses (both in the user's code and in the Python
636# libraries), but that's fine for most programs and is easier for the
637# casual user than making them instantiate their own Random() instance.
Tim Petersd7b5e882001-01-25 03:36:26 +0000638_inst = Random()
639seed = _inst.seed
640random = _inst.random
641uniform = _inst.uniform
642randint = _inst.randint
643choice = _inst.choice
644randrange = _inst.randrange
645shuffle = _inst.shuffle
646normalvariate = _inst.normalvariate
647lognormvariate = _inst.lognormvariate
648cunifvariate = _inst.cunifvariate
649expovariate = _inst.expovariate
650vonmisesvariate = _inst.vonmisesvariate
651gammavariate = _inst.gammavariate
652stdgamma = _inst.stdgamma
653gauss = _inst.gauss
654betavariate = _inst.betavariate
655paretovariate = _inst.paretovariate
656weibullvariate = _inst.weibullvariate
657getstate = _inst.getstate
658setstate = _inst.setstate
Tim Petersd52269b2001-01-25 06:23:18 +0000659jumpahead = _inst.jumpahead
Tim Peters0de88fc2001-02-01 04:59:18 +0000660whseed = _inst.whseed
Tim Petersd7b5e882001-01-25 03:36:26 +0000661
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000662if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000663 _test()