blob: 330f139f673a55baec1c6bfcf298449e74ffee51 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
38 :const:`1.1` do not have an exact representation in binary floating point. End
39 users typically would not expect :const:`1.1` to display as
40 :const:`1.1000000000000001` as it does with binary floating point.
41
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
111 Specification <http://www2.hursley.ibm.com/decimal/decarith.html>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
196 1.3400000000000001
197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
331 numeric-string ::= [sign] numeric-value | [sign] nan
332
333 If *value* is a :class:`tuple`, it should have three components, a sign
334 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
335 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000336 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000337
338 The *context* precision does not affect how many digits are stored. That is
339 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000340 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 only three.
342
343 The purpose of the *context* argument is determining what to do if *value* is a
344 malformed string. If the context traps :const:`InvalidOperation`, an exception
345 is raised; otherwise, the constructor returns a new Decimal with the value of
346 :const:`NaN`.
347
348 Once constructed, :class:`Decimal` objects are immutable.
349
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000350 .. versionchanged:: 2.6
351 leading and trailing whitespace characters are permitted when
352 creating a Decimal instance from a string.
353
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000354 Decimal floating point objects share many properties with the other built-in
355 numeric types such as :class:`float` and :class:`int`. All of the usual math
356 operations and special methods apply. Likewise, decimal objects can be
357 copied, pickled, printed, used as dictionary keys, used as set elements,
358 compared, sorted, and coerced to another type (such as :class:`float` or
359 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000360
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000361 In addition to the standard numeric properties, decimal floating point
362 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363
364
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000365 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 Return the adjusted exponent after shifting out the coefficient's
368 rightmost digits until only the lead digit remains:
369 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
370 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000371
372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000374
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000375 Return a :term:`named tuple` representation of the number:
376 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000377
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000378 .. versionchanged:: 2.6
379 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
381
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000382 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 Return the canonical encoding of the argument. Currently, the encoding of
385 a :class:`Decimal` instance is always canonical, so this operation returns
386 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000391
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000392 Compare the values of two Decimal instances. This operation behaves in
393 the same way as the usual comparison method :meth:`__cmp__`, except that
394 :meth:`compare` returns a Decimal instance rather than an integer, and if
395 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000396
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000397 a or b is a NaN ==> Decimal('NaN')
398 a < b ==> Decimal('-1')
399 a == b ==> Decimal('0')
400 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000403
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000404 This operation is identical to the :meth:`compare` method, except that all
405 NaNs signal. That is, if neither operand is a signaling NaN then any
406 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000411
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000412 Compare two operands using their abstract representation rather than their
413 numerical value. Similar to the :meth:`compare` method, but the result
414 gives a total ordering on :class:`Decimal` instances. Two
415 :class:`Decimal` instances with the same numeric value but different
416 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 >>> Decimal('12.0').compare_total(Decimal('12'))
419 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000420
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000421 Quiet and signaling NaNs are also included in the total ordering. The
422 result of this function is ``Decimal('0')`` if both operands have the same
423 representation, ``Decimal('-1')`` if the first operand is lower in the
424 total order than the second, and ``Decimal('1')`` if the first operand is
425 higher in the total order than the second operand. See the specification
426 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000427
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000428 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000429
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000430 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 Compare two operands using their abstract representation rather than their
433 value as in :meth:`compare_total`, but ignoring the sign of each operand.
434 ``x.compare_total_mag(y)`` is equivalent to
435 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000439 .. method:: conjugate()
440
441 Just returns self, this method is only to comply with the Decimal
442 Specification.
443
444 .. versionadded:: 2.6
445
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000446 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000447
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000448 Return the absolute value of the argument. This operation is unaffected
449 by the context and is quiet: no flags are changed and no rounding is
450 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Return the negation of the argument. This operation is unaffected by the
457 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000458
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000459 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000460
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000461 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 Return a copy of the first operand with the sign set to be the same as the
464 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000465
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000466 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
467 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 This operation is unaffected by the context and is quiet: no flags are
470 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000474 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000475
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000476 Return the value of the (natural) exponential function ``e**x`` at the
477 given number. The result is correctly rounded using the
478 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 >>> Decimal(1).exp()
481 Decimal('2.718281828459045235360287471')
482 >>> Decimal(321).exp()
483 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000484
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000485 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000487 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000488
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000489 Fused multiply-add. Return self*other+third with no rounding of the
490 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000491
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000492 >>> Decimal(2).fma(3, 5)
493 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000494
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000495 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000496
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000497 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000498
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000499 Return :const:`True` if the argument is canonical and :const:`False`
500 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
501 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000502
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000503 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000504
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000505 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000506
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000507 Return :const:`True` if the argument is a finite number, and
508 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000509
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000510 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000511
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000512 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000513
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000514 Return :const:`True` if the argument is either positive or negative
515 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000516
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000517 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000518
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000519 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000520
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000521 Return :const:`True` if the argument is a (quiet or signaling) NaN and
522 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000523
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000524 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000525
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000526 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000527
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000528 Return :const:`True` if the argument is a *normal* finite number. Return
529 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000530
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000531 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000532
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000533 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000534
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000535 Return :const:`True` if the argument is a quiet NaN, and
536 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000537
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000538 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000539
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000540 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000541
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000542 Return :const:`True` if the argument has a negative sign and
543 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000544
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000545 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000546
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000547 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000548
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000549 Return :const:`True` if the argument is a signaling NaN and :const:`False`
550 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000551
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000552 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000553
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000554 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000555
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000556 Return :const:`True` if the argument is subnormal, and :const:`False`
557 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000558
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000559 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000560
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000561 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000562
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000563 Return :const:`True` if the argument is a (positive or negative) zero and
564 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000569
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000570 Return the natural (base e) logarithm of the operand. The result is
571 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000576
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000577 Return the base ten logarithm of the operand. The result is correctly
578 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000583
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000584 For a nonzero number, return the adjusted exponent of its operand as a
585 :class:`Decimal` instance. If the operand is a zero then
586 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
587 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
588 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000589
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000590 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000591
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000592 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000593
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000594 :meth:`logical_and` is a logical operation which takes two *logical
595 operands* (see :ref:`logical_operands_label`). The result is the
596 digit-wise ``and`` of the two operands.
597
598 .. versionadded:: 2.6
599
600 .. method:: logical_invert(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 :meth:`logical_invert` is a logical operation. The argument must
603 be a *logical operand* (see :ref:`logical_operands_label`). The
604 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000605
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000606 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000607
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000608 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000609
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000610 :meth:`logical_or` is a logical operation which takes two *logical
611 operands* (see :ref:`logical_operands_label`). The result is the
612 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000613
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000614 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000615
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000616 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000617
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000618 :meth:`logical_xor` is a logical operation which takes two *logical
619 operands* (see :ref:`logical_operands_label`). The result is the
620 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000621
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000622 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000625
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000626 Like ``max(self, other)`` except that the context rounding rule is applied
627 before returning and that :const:`NaN` values are either signaled or
628 ignored (depending on the context and whether they are signaling or
629 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 Similar to the :meth:`max` method, but the comparison is done using the
634 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000635
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000636 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 Like ``min(self, other)`` except that the context rounding rule is applied
641 before returning and that :const:`NaN` values are either signaled or
642 ignored (depending on the context and whether they are signaling or
643 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000646
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000647 Similar to the :meth:`min` method, but the comparison is done using the
648 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000649
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000650 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000651
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000652 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000653
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000654 Return the largest number representable in the given context (or in the
655 current thread's context if no context is given) that is smaller than the
656 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000657
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000658 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000659
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000660 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000661
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000662 Return the smallest number representable in the given context (or in the
663 current thread's context if no context is given) that is larger than the
664 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000665
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000666 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000667
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 If the two operands are unequal, return the number closest to the first
671 operand in the direction of the second operand. If both operands are
672 numerically equal, return a copy of the first operand with the sign set to
673 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000674
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000675 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000678
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000679 Normalize the number by stripping the rightmost trailing zeros and
680 converting any result equal to :const:`Decimal('0')` to
681 :const:`Decimal('0e0')`. Used for producing canonical values for members
682 of an equivalence class. For example, ``Decimal('32.100')`` and
683 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
684 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000687
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 Return a string describing the *class* of the operand. The returned value
689 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000690
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000691 * ``"-Infinity"``, indicating that the operand is negative infinity.
692 * ``"-Normal"``, indicating that the operand is a negative normal number.
693 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
694 * ``"-Zero"``, indicating that the operand is a negative zero.
695 * ``"+Zero"``, indicating that the operand is a positive zero.
696 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
697 * ``"+Normal"``, indicating that the operand is a positive normal number.
698 * ``"+Infinity"``, indicating that the operand is positive infinity.
699 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
700 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000703
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000704 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000705
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000706 Return a value equal to the first operand after rounding and having the
707 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
710 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000711
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000712 Unlike other operations, if the length of the coefficient after the
713 quantize operation would be greater than precision, then an
714 :const:`InvalidOperation` is signaled. This guarantees that, unless there
715 is an error condition, the quantized exponent is always equal to that of
716 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 Also unlike other operations, quantize never signals Underflow, even if
719 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000720
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000721 If the exponent of the second operand is larger than that of the first
722 then rounding may be necessary. In this case, the rounding mode is
723 determined by the ``rounding`` argument if given, else by the given
724 ``context`` argument; if neither argument is given the rounding mode of
725 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000726
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000727 If *watchexp* is set (default), then an error is returned whenever the
728 resulting exponent is greater than :attr:`Emax` or less than
729 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000730
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000731 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000732
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000733 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
734 class does all its arithmetic. Included for compatibility with the
735 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000736
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000737 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000738
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000739 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 Compute the modulo as either a positive or negative value depending on
742 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
743 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000744
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000745 If both are equally close, the one chosen will have the same sign as
746 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000747
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000748 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 Return the result of rotating the digits of the first operand by an amount
751 specified by the second operand. The second operand must be an integer in
752 the range -precision through precision. The absolute value of the second
753 operand gives the number of places to rotate. If the second operand is
754 positive then rotation is to the left; otherwise rotation is to the right.
755 The coefficient of the first operand is padded on the left with zeros to
756 length precision if necessary. The sign and exponent of the first operand
757 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000758
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000759 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000760
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000761 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000762
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000763 Test whether self and other have the same exponent or whether both are
764 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000765
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000766 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 Return the first operand with exponent adjusted by the second.
769 Equivalently, return the first operand multiplied by ``10**other``. The
770 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000771
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000772 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000773
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000774 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000775
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000776 Return the result of shifting the digits of the first operand by an amount
777 specified by the second operand. The second operand must be an integer in
778 the range -precision through precision. The absolute value of the second
779 operand gives the number of places to shift. If the second operand is
780 positive then the shift is to the left; otherwise the shift is to the
781 right. Digits shifted into the coefficient are zeros. The sign and
782 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000783
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000784 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000785
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000786 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000787
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000788 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000789
790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000792
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000793 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 Engineering notation has an exponent which is a multiple of 3, so there
796 are up to 3 digits left of the decimal place. For example, converts
797 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000798
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000799 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000800
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000801 Identical to the :meth:`to_integral_value` method. The ``to_integral``
802 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000803
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000804 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000805
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000806 Round to the nearest integer, signaling :const:`Inexact` or
807 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
808 determined by the ``rounding`` parameter if given, else by the given
809 ``context``. If neither parameter is given then the rounding mode of the
810 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000811
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000812 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000813
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000814 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000815
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000816 Round to the nearest integer without signaling :const:`Inexact` or
817 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
818 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000819
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000820 .. versionchanged:: 2.6
821 renamed from ``to_integral`` to ``to_integral_value``. The old name
822 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000823
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000824.. _logical_operands_label:
825
826Logical operands
827^^^^^^^^^^^^^^^^
828
829The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
830and :meth:`logical_xor` methods expect their arguments to be *logical
831operands*. A *logical operand* is a :class:`Decimal` instance whose
832exponent and sign are both zero, and whose digits are all either
833:const:`0` or :const:`1`.
834
Georg Brandlb19be572007-12-29 10:57:00 +0000835.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000836
837
838.. _decimal-context:
839
840Context objects
841---------------
842
843Contexts are environments for arithmetic operations. They govern precision, set
844rules for rounding, determine which signals are treated as exceptions, and limit
845the range for exponents.
846
847Each thread has its own current context which is accessed or changed using the
848:func:`getcontext` and :func:`setcontext` functions:
849
850
851.. function:: getcontext()
852
853 Return the current context for the active thread.
854
855
856.. function:: setcontext(c)
857
858 Set the current context for the active thread to *c*.
859
860Beginning with Python 2.5, you can also use the :keyword:`with` statement and
861the :func:`localcontext` function to temporarily change the active context.
862
863
864.. function:: localcontext([c])
865
866 Return a context manager that will set the current context for the active thread
867 to a copy of *c* on entry to the with-statement and restore the previous context
868 when exiting the with-statement. If no context is specified, a copy of the
869 current context is used.
870
871 .. versionadded:: 2.5
872
873 For example, the following code sets the current decimal precision to 42 places,
874 performs a calculation, and then automatically restores the previous context::
875
Georg Brandl8ec7f652007-08-15 14:28:01 +0000876 from decimal import localcontext
877
878 with localcontext() as ctx:
879 ctx.prec = 42 # Perform a high precision calculation
880 s = calculate_something()
881 s = +s # Round the final result back to the default precision
882
883New contexts can also be created using the :class:`Context` constructor
884described below. In addition, the module provides three pre-made contexts:
885
886
887.. class:: BasicContext
888
889 This is a standard context defined by the General Decimal Arithmetic
890 Specification. Precision is set to nine. Rounding is set to
891 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
892 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
893 :const:`Subnormal`.
894
895 Because many of the traps are enabled, this context is useful for debugging.
896
897
898.. class:: ExtendedContext
899
900 This is a standard context defined by the General Decimal Arithmetic
901 Specification. Precision is set to nine. Rounding is set to
902 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
903 exceptions are not raised during computations).
904
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000905 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000906 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
907 raising exceptions. This allows an application to complete a run in the
908 presence of conditions that would otherwise halt the program.
909
910
911.. class:: DefaultContext
912
913 This context is used by the :class:`Context` constructor as a prototype for new
914 contexts. Changing a field (such a precision) has the effect of changing the
915 default for new contexts creating by the :class:`Context` constructor.
916
917 This context is most useful in multi-threaded environments. Changing one of the
918 fields before threads are started has the effect of setting system-wide
919 defaults. Changing the fields after threads have started is not recommended as
920 it would require thread synchronization to prevent race conditions.
921
922 In single threaded environments, it is preferable to not use this context at
923 all. Instead, simply create contexts explicitly as described below.
924
925 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
926 for Overflow, InvalidOperation, and DivisionByZero.
927
928In addition to the three supplied contexts, new contexts can be created with the
929:class:`Context` constructor.
930
931
932.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
933
934 Creates a new context. If a field is not specified or is :const:`None`, the
935 default values are copied from the :const:`DefaultContext`. If the *flags*
936 field is not specified or is :const:`None`, all flags are cleared.
937
938 The *prec* field is a positive integer that sets the precision for arithmetic
939 operations in the context.
940
941 The *rounding* option is one of:
942
943 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
944 * :const:`ROUND_DOWN` (towards zero),
945 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
946 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
947 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
948 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
949 * :const:`ROUND_UP` (away from zero).
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000950 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
951 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000952
953 The *traps* and *flags* fields list any signals to be set. Generally, new
954 contexts should only set traps and leave the flags clear.
955
956 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
957 for exponents.
958
959 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
960 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
961 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
962
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000963 .. versionchanged:: 2.6
964 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000965
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000966 The :class:`Context` class defines several general purpose methods as well as
967 a large number of methods for doing arithmetic directly in a given context.
968 In addition, for each of the :class:`Decimal` methods described above (with
969 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
970 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
971 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000972
973
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000974 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000975
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000976 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000977
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000978 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000979
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000980 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000981
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000982 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000983
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000984 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000985
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000986 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +0000987
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000988 Creates a new Decimal instance from *num* but using *self* as
989 context. Unlike the :class:`Decimal` constructor, the context precision,
990 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000991
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000992 This is useful because constants are often given to a greater precision
993 than is needed by the application. Another benefit is that rounding
994 immediately eliminates unintended effects from digits beyond the current
995 precision. In the following example, using unrounded inputs means that
996 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000997
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000998 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000999
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001000 >>> getcontext().prec = 3
1001 >>> Decimal('3.4445') + Decimal('1.0023')
1002 Decimal('4.45')
1003 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1004 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001005
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001006 This method implements the to-number operation of the IBM specification.
1007 If the argument is a string, no leading or trailing whitespace is
1008 permitted.
1009
1010 .. method:: Etiny()
1011
1012 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1013 value for subnormal results. When underflow occurs, the exponent is set
1014 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001015
1016
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001017 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001018
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001019 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001020
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001021 The usual approach to working with decimals is to create :class:`Decimal`
1022 instances and then apply arithmetic operations which take place within the
1023 current context for the active thread. An alternative approach is to use
1024 context methods for calculating within a specific context. The methods are
1025 similar to those for the :class:`Decimal` class and are only briefly
1026 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001027
1028
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001029 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001030
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001031 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001032
1033
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001034 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001035
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001036 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001037
1038
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001039 .. method:: canonical(x)
1040
1041 Returns the same Decimal object *x*.
1042
1043
1044 .. method:: compare(x, y)
1045
1046 Compares *x* and *y* numerically.
1047
1048
1049 .. method:: compare_signal(x, y)
1050
1051 Compares the values of the two operands numerically.
1052
1053
1054 .. method:: compare_total(x, y)
1055
1056 Compares two operands using their abstract representation.
1057
1058
1059 .. method:: compare_total_mag(x, y)
1060
1061 Compares two operands using their abstract representation, ignoring sign.
1062
1063
1064 .. method:: copy_abs(x)
1065
1066 Returns a copy of *x* with the sign set to 0.
1067
1068
1069 .. method:: copy_negate(x)
1070
1071 Returns a copy of *x* with the sign inverted.
1072
1073
1074 .. method:: copy_sign(x, y)
1075
1076 Copies the sign from *y* to *x*.
1077
1078
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001079 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001080
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001081 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001082
1083
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001084 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001085
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001086 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001087
1088
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001089 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001090
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001091 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001092
1093
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001094 .. method:: exp(x)
1095
1096 Returns `e ** x`.
1097
1098
1099 .. method:: fma(x, y, z)
1100
1101 Returns *x* multiplied by *y*, plus *z*.
1102
1103
1104 .. method:: is_canonical(x)
1105
1106 Returns True if *x* is canonical; otherwise returns False.
1107
1108
1109 .. method:: is_finite(x)
1110
1111 Returns True if *x* is finite; otherwise returns False.
1112
1113
1114 .. method:: is_infinite(x)
1115
1116 Returns True if *x* is infinite; otherwise returns False.
1117
1118
1119 .. method:: is_nan(x)
1120
1121 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1122
1123
1124 .. method:: is_normal(x)
1125
1126 Returns True if *x* is a normal number; otherwise returns False.
1127
1128
1129 .. method:: is_qnan(x)
1130
1131 Returns True if *x* is a quiet NaN; otherwise returns False.
1132
1133
1134 .. method:: is_signed(x)
1135
1136 Returns True if *x* is negative; otherwise returns False.
1137
1138
1139 .. method:: is_snan(x)
1140
1141 Returns True if *x* is a signaling NaN; otherwise returns False.
1142
1143
1144 .. method:: is_subnormal(x)
1145
1146 Returns True if *x* is subnormal; otherwise returns False.
1147
1148
1149 .. method:: is_zero(x)
1150
1151 Returns True if *x* is a zero; otherwise returns False.
1152
1153
1154 .. method:: ln(x)
1155
1156 Returns the natural (base e) logarithm of *x*.
1157
1158
1159 .. method:: log10(x)
1160
1161 Returns the base 10 logarithm of *x*.
1162
1163
1164 .. method:: logb(x)
1165
1166 Returns the exponent of the magnitude of the operand's MSD.
1167
1168
1169 .. method:: logical_and(x, y)
1170
1171 Applies the logical operation `and` between each operand's digits.
1172
1173
1174 .. method:: logical_invert(x)
1175
1176 Invert all the digits in *x*.
1177
1178
1179 .. method:: logical_or(x, y)
1180
1181 Applies the logical operation `or` between each operand's digits.
1182
1183
1184 .. method:: logical_xor(x, y)
1185
1186 Applies the logical operation `xor` between each operand's digits.
1187
1188
1189 .. method:: max(x, y)
1190
1191 Compares two values numerically and returns the maximum.
1192
1193
1194 .. method:: max_mag(x, y)
1195
1196 Compares the values numerically with their sign ignored.
1197
1198
1199 .. method:: min(x, y)
1200
1201 Compares two values numerically and returns the minimum.
1202
1203
1204 .. method:: min_mag(x, y)
1205
1206 Compares the values numerically with their sign ignored.
1207
1208
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001209 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001210
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001211 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001212
1213
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001214 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001215
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001216 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001217
1218
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001219 .. method:: next_minus(x)
1220
1221 Returns the largest representable number smaller than *x*.
1222
1223
1224 .. method:: next_plus(x)
1225
1226 Returns the smallest representable number larger than *x*.
1227
1228
1229 .. method:: next_toward(x, y)
1230
1231 Returns the number closest to *x*, in direction towards *y*.
1232
1233
1234 .. method:: normalize(x)
1235
1236 Reduces *x* to its simplest form.
1237
1238
1239 .. method:: number_class(x)
1240
1241 Returns an indication of the class of *x*.
1242
1243
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001244 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001245
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001246 Plus corresponds to the unary prefix plus operator in Python. This
1247 operation applies the context precision and rounding, so it is *not* an
1248 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001249
1250
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001251 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001252
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001253 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001254
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001255 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1256 must be integral. The result will be inexact unless ``y`` is integral and
1257 the result is finite and can be expressed exactly in 'precision' digits.
1258 The result should always be correctly rounded, using the rounding mode of
1259 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001260
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001261 With three arguments, compute ``(x**y) % modulo``. For the three argument
1262 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001263
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001264 - all three arguments must be integral
1265 - ``y`` must be nonnegative
1266 - at least one of ``x`` or ``y`` must be nonzero
1267 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001268
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001269 The result of ``Context.power(x, y, modulo)`` is identical to the result
1270 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1271 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001272
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001273 .. versionchanged:: 2.6
1274 ``y`` may now be nonintegral in ``x**y``.
1275 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001276
1277
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001278 .. method:: quantize(x, y)
1279
1280 Returns a value equal to *x* (rounded), having the exponent of *y*.
1281
1282
1283 .. method:: radix()
1284
1285 Just returns 10, as this is Decimal, :)
1286
1287
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001288 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001289
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001290 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001291
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001292 The sign of the result, if non-zero, is the same as that of the original
1293 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001294
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001295 .. method:: remainder_near(x, y)
1296
1297 Returns `x - y * n`, where *n* is the integer nearest the exact value
1298 of `x / y` (if the result is `0` then its sign will be the sign of *x*).
1299
1300
1301 .. method:: rotate(x, y)
1302
1303 Returns a rotated copy of *x*, *y* times.
1304
1305
1306 .. method:: same_quantum(x, y)
1307
1308 Returns True if the two operands have the same exponent.
1309
1310
1311 .. method:: scaleb (x, y)
1312
1313 Returns the first operand after adding the second value its exp.
1314
1315
1316 .. method:: shift(x, y)
1317
1318 Returns a shifted copy of *x*, *y* times.
1319
1320
1321 .. method:: sqrt(x)
1322
1323 Square root of a non-negative number to context precision.
1324
1325
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001326 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001327
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001328 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001329
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001330
1331 .. method:: to_eng_string(x)
1332
1333 Converts a number to a string, using scientific notation.
1334
1335
1336 .. method:: to_integral_exact(x)
1337
1338 Rounds to an integer.
1339
1340
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001341 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001342
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001343 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001344
Georg Brandlb19be572007-12-29 10:57:00 +00001345.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001346
1347
1348.. _decimal-signals:
1349
1350Signals
1351-------
1352
1353Signals represent conditions that arise during computation. Each corresponds to
1354one context flag and one context trap enabler.
1355
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001356The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001357computation, flags may be checked for informational purposes (for instance, to
1358determine whether a computation was exact). After checking the flags, be sure to
1359clear all flags before starting the next computation.
1360
1361If the context's trap enabler is set for the signal, then the condition causes a
1362Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1363is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1364condition.
1365
1366
1367.. class:: Clamped
1368
1369 Altered an exponent to fit representation constraints.
1370
1371 Typically, clamping occurs when an exponent falls outside the context's
1372 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001373 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001374
1375
1376.. class:: DecimalException
1377
1378 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1379
1380
1381.. class:: DivisionByZero
1382
1383 Signals the division of a non-infinite number by zero.
1384
1385 Can occur with division, modulo division, or when raising a number to a negative
1386 power. If this signal is not trapped, returns :const:`Infinity` or
1387 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1388
1389
1390.. class:: Inexact
1391
1392 Indicates that rounding occurred and the result is not exact.
1393
1394 Signals when non-zero digits were discarded during rounding. The rounded result
1395 is returned. The signal flag or trap is used to detect when results are
1396 inexact.
1397
1398
1399.. class:: InvalidOperation
1400
1401 An invalid operation was performed.
1402
1403 Indicates that an operation was requested that does not make sense. If not
1404 trapped, returns :const:`NaN`. Possible causes include::
1405
1406 Infinity - Infinity
1407 0 * Infinity
1408 Infinity / Infinity
1409 x % 0
1410 Infinity % x
1411 x._rescale( non-integer )
1412 sqrt(-x) and x > 0
1413 0 ** 0
1414 x ** (non-integer)
1415 x ** Infinity
1416
1417
1418.. class:: Overflow
1419
1420 Numerical overflow.
1421
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001422 Indicates the exponent is larger than :attr:`Emax` after rounding has
1423 occurred. If not trapped, the result depends on the rounding mode, either
1424 pulling inward to the largest representable finite number or rounding outward
1425 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1426 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001427
1428
1429.. class:: Rounded
1430
1431 Rounding occurred though possibly no information was lost.
1432
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001433 Signaled whenever rounding discards digits; even if those digits are zero
1434 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1435 the result unchanged. This signal is used to detect loss of significant
1436 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001437
1438
1439.. class:: Subnormal
1440
1441 Exponent was lower than :attr:`Emin` prior to rounding.
1442
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001443 Occurs when an operation result is subnormal (the exponent is too small). If
1444 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001445
1446
1447.. class:: Underflow
1448
1449 Numerical underflow with result rounded to zero.
1450
1451 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1452 and :class:`Subnormal` are also signaled.
1453
1454The following table summarizes the hierarchy of signals::
1455
1456 exceptions.ArithmeticError(exceptions.StandardError)
1457 DecimalException
1458 Clamped
1459 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1460 Inexact
1461 Overflow(Inexact, Rounded)
1462 Underflow(Inexact, Rounded, Subnormal)
1463 InvalidOperation
1464 Rounded
1465 Subnormal
1466
Georg Brandlb19be572007-12-29 10:57:00 +00001467.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001468
1469
1470.. _decimal-notes:
1471
1472Floating Point Notes
1473--------------------
1474
1475
1476Mitigating round-off error with increased precision
1477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1478
1479The use of decimal floating point eliminates decimal representation error
1480(making it possible to represent :const:`0.1` exactly); however, some operations
1481can still incur round-off error when non-zero digits exceed the fixed precision.
1482
1483The effects of round-off error can be amplified by the addition or subtraction
1484of nearly offsetting quantities resulting in loss of significance. Knuth
1485provides two instructive examples where rounded floating point arithmetic with
1486insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001487properties of addition:
1488
1489.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001490
1491 # Examples from Seminumerical Algorithms, Section 4.2.2.
1492 >>> from decimal import Decimal, getcontext
1493 >>> getcontext().prec = 8
1494
1495 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1496 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001497 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001498 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001499 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001500
1501 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1502 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001503 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001504 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001505 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001506
1507The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001508expanding the precision sufficiently to avoid loss of significance:
1509
1510.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001511
1512 >>> getcontext().prec = 20
1513 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1514 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001515 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001516 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001517 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001518 >>>
1519 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1520 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001521 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001522 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001523 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001524
1525
1526Special values
1527^^^^^^^^^^^^^^
1528
1529The number system for the :mod:`decimal` module provides special values
1530including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001531and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001532
1533Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1534they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1535not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1536can result from rounding beyond the limits of the largest representable number.
1537
1538The infinities are signed (affine) and can be used in arithmetic operations
1539where they get treated as very large, indeterminate numbers. For instance,
1540adding a constant to infinity gives another infinite result.
1541
1542Some operations are indeterminate and return :const:`NaN`, or if the
1543:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1544``0/0`` returns :const:`NaN` which means "not a number". This variety of
1545:const:`NaN` is quiet and, once created, will flow through other computations
1546always resulting in another :const:`NaN`. This behavior can be useful for a
1547series of computations that occasionally have missing inputs --- it allows the
1548calculation to proceed while flagging specific results as invalid.
1549
1550A variant is :const:`sNaN` which signals rather than remaining quiet after every
1551operation. This is a useful return value when an invalid result needs to
1552interrupt a calculation for special handling.
1553
Mark Dickinson2fc92632008-02-06 22:10:50 +00001554The behavior of Python's comparison operators can be a little surprising where a
1555:const:`NaN` is involved. A test for equality where one of the operands is a
1556quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1557``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001558:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001559``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1560if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001561not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001562specify the behavior of direct comparisons; these rules for comparisons
1563involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1564section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001565and :meth:`compare-signal` methods instead.
1566
Georg Brandl8ec7f652007-08-15 14:28:01 +00001567The signed zeros can result from calculations that underflow. They keep the sign
1568that would have resulted if the calculation had been carried out to greater
1569precision. Since their magnitude is zero, both positive and negative zeros are
1570treated as equal and their sign is informational.
1571
1572In addition to the two signed zeros which are distinct yet equal, there are
1573various representations of zero with differing precisions yet equivalent in
1574value. This takes a bit of getting used to. For an eye accustomed to
1575normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001576the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001577
1578 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001579 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001580
Georg Brandlb19be572007-12-29 10:57:00 +00001581.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001582
1583
1584.. _decimal-threads:
1585
1586Working with threads
1587--------------------
1588
1589The :func:`getcontext` function accesses a different :class:`Context` object for
1590each thread. Having separate thread contexts means that threads may make
1591changes (such as ``getcontext.prec=10``) without interfering with other threads.
1592
1593Likewise, the :func:`setcontext` function automatically assigns its target to
1594the current thread.
1595
1596If :func:`setcontext` has not been called before :func:`getcontext`, then
1597:func:`getcontext` will automatically create a new context for use in the
1598current thread.
1599
1600The new context is copied from a prototype context called *DefaultContext*. To
1601control the defaults so that each thread will use the same values throughout the
1602application, directly modify the *DefaultContext* object. This should be done
1603*before* any threads are started so that there won't be a race condition between
1604threads calling :func:`getcontext`. For example::
1605
1606 # Set applicationwide defaults for all threads about to be launched
1607 DefaultContext.prec = 12
1608 DefaultContext.rounding = ROUND_DOWN
1609 DefaultContext.traps = ExtendedContext.traps.copy()
1610 DefaultContext.traps[InvalidOperation] = 1
1611 setcontext(DefaultContext)
1612
1613 # Afterwards, the threads can be started
1614 t1.start()
1615 t2.start()
1616 t3.start()
1617 . . .
1618
Georg Brandlb19be572007-12-29 10:57:00 +00001619.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001620
1621
1622.. _decimal-recipes:
1623
1624Recipes
1625-------
1626
1627Here are a few recipes that serve as utility functions and that demonstrate ways
1628to work with the :class:`Decimal` class::
1629
1630 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1631 pos='', neg='-', trailneg=''):
1632 """Convert Decimal to a money formatted string.
1633
1634 places: required number of places after the decimal point
1635 curr: optional currency symbol before the sign (may be blank)
1636 sep: optional grouping separator (comma, period, space, or blank)
1637 dp: decimal point indicator (comma or period)
1638 only specify as blank when places is zero
1639 pos: optional sign for positive numbers: '+', space or blank
1640 neg: optional sign for negative numbers: '-', '(', space or blank
1641 trailneg:optional trailing minus indicator: '-', ')', space or blank
1642
1643 >>> d = Decimal('-1234567.8901')
1644 >>> moneyfmt(d, curr='$')
1645 '-$1,234,567.89'
1646 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1647 '1.234.568-'
1648 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1649 '($1,234,567.89)'
1650 >>> moneyfmt(Decimal(123456789), sep=' ')
1651 '123 456 789.00'
1652 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001653 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001654
1655 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001656 q = Decimal(10) ** -places # 2 places --> '0.01'
1657 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001658 result = []
1659 digits = map(str, digits)
1660 build, next = result.append, digits.pop
1661 if sign:
1662 build(trailneg)
1663 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001664 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001665 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001666 if not digits:
1667 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001668 i = 0
1669 while digits:
1670 build(next())
1671 i += 1
1672 if i == 3 and digits:
1673 i = 0
1674 build(sep)
1675 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001676 build(neg if sign else pos)
1677 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001678
1679 def pi():
1680 """Compute Pi to the current precision.
1681
1682 >>> print pi()
1683 3.141592653589793238462643383
1684
1685 """
1686 getcontext().prec += 2 # extra digits for intermediate steps
1687 three = Decimal(3) # substitute "three=3.0" for regular floats
1688 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1689 while s != lasts:
1690 lasts = s
1691 n, na = n+na, na+8
1692 d, da = d+da, da+32
1693 t = (t * n) / d
1694 s += t
1695 getcontext().prec -= 2
1696 return +s # unary plus applies the new precision
1697
1698 def exp(x):
1699 """Return e raised to the power of x. Result type matches input type.
1700
1701 >>> print exp(Decimal(1))
1702 2.718281828459045235360287471
1703 >>> print exp(Decimal(2))
1704 7.389056098930650227230427461
1705 >>> print exp(2.0)
1706 7.38905609893
1707 >>> print exp(2+0j)
1708 (7.38905609893+0j)
1709
1710 """
1711 getcontext().prec += 2
1712 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1713 while s != lasts:
1714 lasts = s
1715 i += 1
1716 fact *= i
1717 num *= x
1718 s += num / fact
1719 getcontext().prec -= 2
1720 return +s
1721
1722 def cos(x):
1723 """Return the cosine of x as measured in radians.
1724
1725 >>> print cos(Decimal('0.5'))
1726 0.8775825618903727161162815826
1727 >>> print cos(0.5)
1728 0.87758256189
1729 >>> print cos(0.5+0j)
1730 (0.87758256189+0j)
1731
1732 """
1733 getcontext().prec += 2
1734 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1735 while s != lasts:
1736 lasts = s
1737 i += 2
1738 fact *= i * (i-1)
1739 num *= x * x
1740 sign *= -1
1741 s += num / fact * sign
1742 getcontext().prec -= 2
1743 return +s
1744
1745 def sin(x):
1746 """Return the sine of x as measured in radians.
1747
1748 >>> print sin(Decimal('0.5'))
1749 0.4794255386042030002732879352
1750 >>> print sin(0.5)
1751 0.479425538604
1752 >>> print sin(0.5+0j)
1753 (0.479425538604+0j)
1754
1755 """
1756 getcontext().prec += 2
1757 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1758 while s != lasts:
1759 lasts = s
1760 i += 2
1761 fact *= i * (i-1)
1762 num *= x * x
1763 sign *= -1
1764 s += num / fact * sign
1765 getcontext().prec -= 2
1766 return +s
1767
1768
Georg Brandlb19be572007-12-29 10:57:00 +00001769.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001770
1771
1772.. _decimal-faq:
1773
1774Decimal FAQ
1775-----------
1776
1777Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1778minimize typing when using the interactive interpreter?
1779
Georg Brandl9f662322008-03-22 11:47:10 +00001780A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001781
1782 >>> D = decimal.Decimal
1783 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001784 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001785
1786Q. In a fixed-point application with two decimal places, some inputs have many
1787places and need to be rounded. Others are not supposed to have excess digits
1788and need to be validated. What methods should be used?
1789
1790A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001791the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001792
1793 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1794
1795 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001796 >>> Decimal('3.214').quantize(TWOPLACES)
1797 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001798
1799 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001800 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1801 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001802
Raymond Hettingerabe32372008-02-14 02:41:22 +00001803 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001804 Traceback (most recent call last):
1805 ...
Georg Brandl9f662322008-03-22 11:47:10 +00001806 Inexact
Georg Brandl8ec7f652007-08-15 14:28:01 +00001807
1808Q. Once I have valid two place inputs, how do I maintain that invariant
1809throughout an application?
1810
Raymond Hettinger46314812008-02-14 10:46:57 +00001811A. Some operations like addition, subtraction, and multiplication by an integer
1812will automatically preserve fixed point. Others operations, like division and
1813non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001814be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001815
1816 >>> a = Decimal('102.72') # Initial fixed-point values
1817 >>> b = Decimal('3.17')
1818 >>> a + b # Addition preserves fixed-point
1819 Decimal('105.89')
1820 >>> a - b
1821 Decimal('99.55')
1822 >>> a * 42 # So does integer multiplication
1823 Decimal('4314.24')
1824 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1825 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001826 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001827 Decimal('0.03')
1828
1829In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001830to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001831
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001832 >>> def mul(x, y, fp=TWOPLACES):
1833 ... return (x * y).quantize(fp)
1834 >>> def div(x, y, fp=TWOPLACES):
1835 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001836
Raymond Hettinger46314812008-02-14 10:46:57 +00001837 >>> mul(a, b) # Automatically preserve fixed-point
1838 Decimal('325.62')
1839 >>> div(b, a)
1840 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001841
1842Q. There are many ways to express the same value. The numbers :const:`200`,
1843:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1844various precisions. Is there a way to transform them to a single recognizable
1845canonical value?
1846
1847A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001848representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001849
1850 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1851 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001852 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001853
1854Q. Some decimal values always print with exponential notation. Is there a way
1855to get a non-exponential representation?
1856
1857A. For some values, exponential notation is the only way to express the number
1858of significant places in the coefficient. For example, expressing
1859:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1860original's two-place significance.
1861
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001862If an application does not care about tracking significance, it is easy to
Georg Brandl907a7202008-02-22 12:31:45 +00001863remove the exponent and trailing zeroes, losing significance, but keeping the
Georg Brandl9f662322008-03-22 11:47:10 +00001864value unchanged:
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001865
1866 >>> def remove_exponent(d):
1867 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1868
1869 >>> remove_exponent(Decimal('5E+3'))
1870 Decimal('5000')
1871
Georg Brandl8ec7f652007-08-15 14:28:01 +00001872Q. Is there a way to convert a regular float to a :class:`Decimal`?
1873
1874A. Yes, all binary floating point numbers can be exactly expressed as a
1875Decimal. An exact conversion may take more precision than intuition would
Georg Brandl9f662322008-03-22 11:47:10 +00001876suggest, so we trap :const:`Inexact` to signal a need for more precision:
1877
Georg Brandl838b4b02008-03-22 13:07:06 +00001878.. testcode::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001879
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001880 def float_to_decimal(f):
1881 "Convert a floating point number to a Decimal with no loss of information"
1882 n, d = f.as_integer_ratio()
1883 with localcontext() as ctx:
1884 ctx.traps[Inexact] = True
1885 while True:
1886 try:
1887 return Decimal(n) / Decimal(d)
1888 except Inexact:
1889 ctx.prec += 1
Georg Brandl8ec7f652007-08-15 14:28:01 +00001890
Georg Brandl838b4b02008-03-22 13:07:06 +00001891.. doctest::
Georg Brandl9f662322008-03-22 11:47:10 +00001892
Raymond Hettingerff1f9732008-02-07 20:04:37 +00001893 >>> float_to_decimal(math.pi)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001894 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001895
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001896Q. Why isn't the :func:`float_to_decimal` routine included in the module?
Georg Brandl8ec7f652007-08-15 14:28:01 +00001897
1898A. There is some question about whether it is advisable to mix binary and
1899decimal floating point. Also, its use requires some care to avoid the
Georg Brandl9f662322008-03-22 11:47:10 +00001900representation issues associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001901
Raymond Hettinger23bdcc92008-02-07 20:10:49 +00001902 >>> float_to_decimal(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001903 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001904
1905Q. Within a complex calculation, how can I make sure that I haven't gotten a
1906spurious result because of insufficient precision or rounding anomalies.
1907
1908A. The decimal module makes it easy to test results. A best practice is to
1909re-run calculations using greater precision and with various rounding modes.
1910Widely differing results indicate insufficient precision, rounding mode issues,
1911ill-conditioned inputs, or a numerically unstable algorithm.
1912
1913Q. I noticed that context precision is applied to the results of operations but
1914not to the inputs. Is there anything to watch out for when mixing values of
1915different precisions?
1916
1917A. Yes. The principle is that all values are considered to be exact and so is
1918the arithmetic on those values. Only the results are rounded. The advantage
1919for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001920results can look odd if you forget that the inputs haven't been rounded:
1921
1922.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001923
1924 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001925 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001926 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001927 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001928 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001929
1930The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001931using the unary plus operation:
1932
1933.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001934
1935 >>> getcontext().prec = 3
1936 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001937 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001938
1939Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001940:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001941
1942 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001943 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001944