blob: 58ed4fabf61a0eeb6f3a6e706c5ab1bef56fcbd8 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`itertools` --- Functions creating iterators for efficient looping
3=======================================================================
4
5.. module:: itertools
6 :synopsis: Functions creating iterators for efficient looping.
7.. moduleauthor:: Raymond Hettinger <python@rcn.com>
8.. sectionauthor:: Raymond Hettinger <python@rcn.com>
9
10
Georg Brandl9afde1c2007-11-01 20:32:30 +000011This module implements a number of :term:`iterator` building blocks inspired by
Georg Brandl116aa622007-08-15 14:28:22 +000012constructs from the Haskell and SML programming languages. Each has been recast
13in a form suitable for Python.
14
15The module standardizes a core set of fast, memory efficient tools that are
16useful by themselves or in combination. Standardization helps avoid the
17readability and reliability problems which arise when many different individuals
18create their own slightly varying implementations, each with their own quirks
19and naming conventions.
20
21The tools are designed to combine readily with one another. This makes it easy
22to construct more specialized tools succinctly and efficiently in pure Python.
23
24For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
25sequence ``f(0), f(1), ...``. This toolbox provides :func:`imap` and
26:func:`count` which can be combined to form ``imap(f, count())`` and produce an
27equivalent result.
28
29Likewise, the functional tools are designed to work well with the high-speed
30functions provided by the :mod:`operator` module.
31
32The module author welcomes suggestions for other basic building blocks to be
33added to future versions of the module.
34
35Whether cast in pure python form or compiled code, tools that use iterators are
36more memory efficient (and faster) than their list based counterparts. Adopting
37the principles of just-in-time manufacturing, they create data when and where
38needed instead of consuming memory with the computer equivalent of "inventory".
39
40The performance advantage of iterators becomes more acute as the number of
41elements increases -- at some point, lists grow large enough to severely impact
42memory cache performance and start running slowly.
43
44
45.. seealso::
46
47 The Standard ML Basis Library, `The Standard ML Basis Library
48 <http://www.standardml.org/Basis/>`_.
49
50 Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
51 Libraries <http://www.haskell.org/definition/>`_.
52
53
54.. _itertools-functions:
55
56Itertool functions
57------------------
58
59The following module functions all construct and return iterators. Some provide
60streams of infinite length, so they should only be accessed by functions or
61loops that truncate the stream.
62
63
64.. function:: chain(*iterables)
65
66 Make an iterator that returns elements from the first iterable until it is
67 exhausted, then proceeds to the next iterable, until all of the iterables are
68 exhausted. Used for treating consecutive sequences as a single sequence.
69 Equivalent to::
70
71 def chain(*iterables):
72 for it in iterables:
73 for element in it:
74 yield element
75
76
77.. function:: count([n])
78
79 Make an iterator that returns consecutive integers starting with *n*. If not
Georg Brandl9afde1c2007-11-01 20:32:30 +000080 specified *n* defaults to zero. Often used as an argument to :func:`imap` to
81 generate consecutive data points. Also, used with :func:`izip` to add sequence
82 numbers. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +000083
84 def count(n=0):
85 while True:
86 yield n
87 n += 1
88
Georg Brandl116aa622007-08-15 14:28:22 +000089
90.. function:: cycle(iterable)
91
92 Make an iterator returning elements from the iterable and saving a copy of each.
93 When the iterable is exhausted, return elements from the saved copy. Repeats
94 indefinitely. Equivalent to::
95
96 def cycle(iterable):
97 saved = []
98 for element in iterable:
99 yield element
100 saved.append(element)
101 while saved:
102 for element in saved:
103 yield element
104
105 Note, this member of the toolkit may require significant auxiliary storage
106 (depending on the length of the iterable).
107
108
109.. function:: dropwhile(predicate, iterable)
110
111 Make an iterator that drops elements from the iterable as long as the predicate
112 is true; afterwards, returns every element. Note, the iterator does not produce
113 *any* output until the predicate first becomes false, so it may have a lengthy
114 start-up time. Equivalent to::
115
116 def dropwhile(predicate, iterable):
117 iterable = iter(iterable)
118 for x in iterable:
119 if not predicate(x):
120 yield x
121 break
122 for x in iterable:
123 yield x
124
125
126.. function:: groupby(iterable[, key])
127
128 Make an iterator that returns consecutive keys and groups from the *iterable*.
129 The *key* is a function computing a key value for each element. If not
130 specified or is ``None``, *key* defaults to an identity function and returns
131 the element unchanged. Generally, the iterable needs to already be sorted on
132 the same key function.
133
134 The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
135 generates a break or new group every time the value of the key function changes
136 (which is why it is usually necessary to have sorted the data using the same key
137 function). That behavior differs from SQL's GROUP BY which aggregates common
138 elements regardless of their input order.
139
140 The returned group is itself an iterator that shares the underlying iterable
141 with :func:`groupby`. Because the source is shared, when the :func:`groupby`
142 object is advanced, the previous group is no longer visible. So, if that data
143 is needed later, it should be stored as a list::
144
145 groups = []
146 uniquekeys = []
147 data = sorted(data, key=keyfunc)
148 for k, g in groupby(data, keyfunc):
149 groups.append(list(g)) # Store group iterator as a list
150 uniquekeys.append(k)
151
152 :func:`groupby` is equivalent to::
153
154 class groupby(object):
155 def __init__(self, iterable, key=None):
156 if key is None:
157 key = lambda x: x
158 self.keyfunc = key
159 self.it = iter(iterable)
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000160 self.tgtkey = self.currkey = self.currvalue = object()
Georg Brandl116aa622007-08-15 14:28:22 +0000161 def __iter__(self):
162 return self
163 def __next__(self):
164 while self.currkey == self.tgtkey:
165 self.currvalue = next(self.it) # Exit on StopIteration
166 self.currkey = self.keyfunc(self.currvalue)
167 self.tgtkey = self.currkey
168 return (self.currkey, self._grouper(self.tgtkey))
169 def _grouper(self, tgtkey):
170 while self.currkey == tgtkey:
171 yield self.currvalue
172 self.currvalue = next(self.it) # Exit on StopIteration
173 self.currkey = self.keyfunc(self.currvalue)
174
Georg Brandl116aa622007-08-15 14:28:22 +0000175
176.. function:: ifilter(predicate, iterable)
177
178 Make an iterator that filters elements from iterable returning only those for
179 which the predicate is ``True``. If *predicate* is ``None``, return the items
180 that are true. Equivalent to::
181
182 def ifilter(predicate, iterable):
183 if predicate is None:
184 predicate = bool
185 for x in iterable:
186 if predicate(x):
187 yield x
188
189
190.. function:: ifilterfalse(predicate, iterable)
191
192 Make an iterator that filters elements from iterable returning only those for
193 which the predicate is ``False``. If *predicate* is ``None``, return the items
194 that are false. Equivalent to::
195
196 def ifilterfalse(predicate, iterable):
197 if predicate is None:
198 predicate = bool
199 for x in iterable:
200 if not predicate(x):
201 yield x
202
203
204.. function:: imap(function, *iterables)
205
206 Make an iterator that computes the function using arguments from each of the
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000207 iterables. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +0000208
209 def imap(function, *iterables):
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000210 iterables = [iter(it) for it in iterables)
Georg Brandl116aa622007-08-15 14:28:22 +0000211 while True:
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000212 args = [next(it) for it in iterables]
Christian Heimes1af737c2008-01-23 08:24:23 +0000213 if function is None:
214 yield tuple(args)
215 else:
216 yield function(*args)
Georg Brandl116aa622007-08-15 14:28:22 +0000217
218
219.. function:: islice(iterable, [start,] stop [, step])
220
221 Make an iterator that returns selected elements from the iterable. If *start* is
222 non-zero, then elements from the iterable are skipped until start is reached.
223 Afterward, elements are returned consecutively unless *step* is set higher than
224 one which results in items being skipped. If *stop* is ``None``, then iteration
225 continues until the iterator is exhausted, if at all; otherwise, it stops at the
226 specified position. Unlike regular slicing, :func:`islice` does not support
227 negative values for *start*, *stop*, or *step*. Can be used to extract related
228 fields from data where the internal structure has been flattened (for example, a
229 multi-line report may list a name field on every third line). Equivalent to::
230
231 def islice(iterable, *args):
232 s = slice(*args)
Christian Heimesa37d4c62007-12-04 23:02:19 +0000233 it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
Georg Brandl116aa622007-08-15 14:28:22 +0000234 nexti = next(it)
235 for i, element in enumerate(iterable):
236 if i == nexti:
237 yield element
238 nexti = next(it)
239
240 If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
241 then the step defaults to one.
242
Georg Brandl116aa622007-08-15 14:28:22 +0000243
244.. function:: izip(*iterables)
245
246 Make an iterator that aggregates elements from each of the iterables. Like
247 :func:`zip` except that it returns an iterator instead of a list. Used for
248 lock-step iteration over several iterables at a time. Equivalent to::
249
250 def izip(*iterables):
251 iterables = map(iter, iterables)
252 while iterables:
253 result = [next(it) for it in iterables]
254 yield tuple(result)
255
Georg Brandl55ac8f02007-09-01 13:51:09 +0000256 When no iterables are specified, return a zero length iterator.
Georg Brandl116aa622007-08-15 14:28:22 +0000257
Christian Heimes1af737c2008-01-23 08:24:23 +0000258 The left-to-right evaluation order of the iterables is guaranteed. This
259 makes possible an idiom for clustering a data series into n-length groups
260 using ``izip(*[iter(s)]*n)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000261
Christian Heimes1af737c2008-01-23 08:24:23 +0000262 :func:`izip` should only be used with unequal length inputs when you don't
263 care about trailing, unmatched values from the longer iterables. If those
264 values are important, use :func:`izip_longest` instead.
Georg Brandl116aa622007-08-15 14:28:22 +0000265
266
267.. function:: izip_longest(*iterables[, fillvalue])
268
269 Make an iterator that aggregates elements from each of the iterables. If the
270 iterables are of uneven length, missing values are filled-in with *fillvalue*.
271 Iteration continues until the longest iterable is exhausted. Equivalent to::
272
273 def izip_longest(*args, **kwds):
274 fillvalue = kwds.get('fillvalue')
275 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
276 yield counter() # yields the fillvalue, or raises IndexError
277 fillers = repeat(fillvalue)
278 iters = [chain(it, sentinel(), fillers) for it in args]
279 try:
280 for tup in izip(*iters):
281 yield tup
282 except IndexError:
283 pass
284
285 If one of the iterables is potentially infinite, then the :func:`izip_longest`
286 function should be wrapped with something that limits the number of calls (for
287 example :func:`islice` or :func:`takewhile`).
288
Georg Brandl116aa622007-08-15 14:28:22 +0000289
290.. function:: repeat(object[, times])
291
292 Make an iterator that returns *object* over and over again. Runs indefinitely
293 unless the *times* argument is specified. Used as argument to :func:`imap` for
294 invariant parameters to the called function. Also used with :func:`izip` to
295 create an invariant part of a tuple record. Equivalent to::
296
297 def repeat(object, times=None):
298 if times is None:
299 while True:
300 yield object
301 else:
302 for i in range(times):
303 yield object
304
305
306.. function:: starmap(function, iterable)
307
Christian Heimes679db4a2008-01-18 09:56:22 +0000308 Make an iterator that computes the function using arguments obtained from
Georg Brandl116aa622007-08-15 14:28:22 +0000309 the iterable. Used instead of :func:`imap` when argument parameters are already
310 grouped in tuples from a single iterable (the data has been "pre-zipped"). The
311 difference between :func:`imap` and :func:`starmap` parallels the distinction
312 between ``function(a,b)`` and ``function(*c)``. Equivalent to::
313
314 def starmap(function, iterable):
Christian Heimes679db4a2008-01-18 09:56:22 +0000315 for args in iterable:
316 yield function(*args)
317
318 .. versionchanged:: 2.6
319 Previously, :func:`starmap` required the function arguments to be tuples.
320 Now, any iterable is allowed.
Georg Brandl116aa622007-08-15 14:28:22 +0000321
322
323.. function:: takewhile(predicate, iterable)
324
325 Make an iterator that returns elements from the iterable as long as the
326 predicate is true. Equivalent to::
327
328 def takewhile(predicate, iterable):
329 for x in iterable:
330 if predicate(x):
331 yield x
332 else:
333 break
334
335
336.. function:: tee(iterable[, n=2])
337
338 Return *n* independent iterators from a single iterable. The case where ``n==2``
339 is equivalent to::
340
341 def tee(iterable):
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000342 def gen(next, data={}):
Georg Brandl116aa622007-08-15 14:28:22 +0000343 for i in count():
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000344 if i in data:
345 yield data.pop(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000346 else:
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000347 data[i] = next()
348 yield data[i]
Georg Brandl116aa622007-08-15 14:28:22 +0000349 it = iter(iterable)
350 return (gen(it.__next__), gen(it.__next__))
351
352 Note, once :func:`tee` has made a split, the original *iterable* should not be
353 used anywhere else; otherwise, the *iterable* could get advanced without the tee
354 objects being informed.
355
356 Note, this member of the toolkit may require significant auxiliary storage
357 (depending on how much temporary data needs to be stored). In general, if one
358 iterator is going to use most or all of the data before the other iterator, it
359 is faster to use :func:`list` instead of :func:`tee`.
360
Georg Brandl116aa622007-08-15 14:28:22 +0000361
362.. _itertools-example:
363
364Examples
365--------
366
367The following examples show common uses for each tool and demonstrate ways they
368can be combined. ::
369
370 >>> amounts = [120.15, 764.05, 823.14]
371 >>> for checknum, amount in izip(count(1200), amounts):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000372 ... print('Check %d is for $%.2f' % (checknum, amount))
Georg Brandl116aa622007-08-15 14:28:22 +0000373 ...
374 Check 1200 is for $120.15
375 Check 1201 is for $764.05
376 Check 1202 is for $823.14
377
378 >>> import operator
379 >>> for cube in imap(operator.pow, range(1,5), repeat(3)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000380 ... print(cube)
Georg Brandl116aa622007-08-15 14:28:22 +0000381 ...
382 1
383 8
384 27
385 64
386
387 >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
388 ... '', 'martin', '', 'walter', '', 'mark']
389 >>> for name in islice(reportlines, 3, None, 2):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000390 ... print(name.title())
Georg Brandl116aa622007-08-15 14:28:22 +0000391 ...
392 Alex
393 Laura
394 Martin
395 Walter
396 Mark
397
398 # Show a dictionary sorted and grouped by value
399 >>> from operator import itemgetter
400 >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
Fred Drake2e748782007-09-04 17:33:11 +0000401 >>> di = sorted(d.items(), key=itemgetter(1))
Georg Brandl116aa622007-08-15 14:28:22 +0000402 >>> for k, g in groupby(di, key=itemgetter(1)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000403 ... print(k, map(itemgetter(0), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000404 ...
405 1 ['a', 'c', 'e']
406 2 ['b', 'd', 'f']
407 3 ['g']
408
409 # Find runs of consecutive numbers using groupby. The key to the solution
410 # is differencing with a range so that consecutive numbers all appear in
411 # same group.
412 >>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
413 >>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000414 ... print(map(operator.itemgetter(1), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000415 ...
416 [1]
417 [4, 5, 6]
418 [10]
419 [15, 16, 17, 18]
420 [22]
421 [25, 26, 27, 28]
422
423
424
425.. _itertools-recipes:
426
427Recipes
428-------
429
430This section shows recipes for creating an extended toolset using the existing
431itertools as building blocks.
432
433The extended tools offer the same high performance as the underlying toolset.
434The superior memory performance is kept by processing elements one at a time
435rather than bringing the whole iterable into memory all at once. Code volume is
436kept small by linking the tools together in a functional style which helps
437eliminate temporary variables. High speed is retained by preferring
Georg Brandl9afde1c2007-11-01 20:32:30 +0000438"vectorized" building blocks over the use of for-loops and :term:`generator`\s
439which incur interpreter overhead. ::
Georg Brandl116aa622007-08-15 14:28:22 +0000440
441 def take(n, seq):
442 return list(islice(seq, n))
443
444 def enumerate(iterable):
445 return izip(count(), iterable)
446
447 def tabulate(function):
448 "Return function(0), function(1), ..."
449 return imap(function, count())
450
Georg Brandl116aa622007-08-15 14:28:22 +0000451 def nth(iterable, n):
452 "Returns the nth item or raise StopIteration"
453 return islice(iterable, n, None).next()
454
455 def all(seq, pred=None):
456 "Returns True if pred(x) is true for every element in the iterable"
457 for elem in ifilterfalse(pred, seq):
458 return False
459 return True
460
461 def any(seq, pred=None):
462 "Returns True if pred(x) is true for at least one element in the iterable"
463 for elem in ifilter(pred, seq):
464 return True
465 return False
466
467 def no(seq, pred=None):
468 "Returns True if pred(x) is false for every element in the iterable"
469 for elem in ifilter(pred, seq):
470 return False
471 return True
472
473 def quantify(seq, pred=None):
474 "Count how many times the predicate is true in the sequence"
475 return sum(imap(pred, seq))
476
477 def padnone(seq):
478 """Returns the sequence elements and then returns None indefinitely.
479
480 Useful for emulating the behavior of the built-in map() function.
481 """
482 return chain(seq, repeat(None))
483
484 def ncycles(seq, n):
485 "Returns the sequence elements n times"
486 return chain(*repeat(seq, n))
487
488 def dotproduct(vec1, vec2):
489 return sum(imap(operator.mul, vec1, vec2))
490
491 def flatten(listOfLists):
492 return list(chain(*listOfLists))
493
494 def repeatfunc(func, times=None, *args):
495 """Repeat calls to func with specified arguments.
496
497 Example: repeatfunc(random.random)
498 """
499 if times is None:
500 return starmap(func, repeat(args))
501 else:
502 return starmap(func, repeat(args, times))
503
504 def pairwise(iterable):
505 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
506 a, b = tee(iterable)
507 next(b, None)
508 return izip(a, b)
509
510 def grouper(n, iterable, padvalue=None):
511 "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
512 return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
513
Christian Heimes7b3ce6a2008-01-31 14:31:45 +0000514 def roundrobin(*iterables):
515 "roundrobin('abc', 'd', 'ef') --> 'a', 'd', 'e', 'b', 'f', 'c'"
516 # Recipe contributed by George Sakkis
517 pending = len(iterables)
518 nexts = cycle(iter(it).next for it in iterables)
519 while pending:
520 try:
521 for next in nexts:
522 yield next()
523 except StopIteration:
524 pending -= 1
525 nexts = cycle(islice(nexts, pending))
Georg Brandl116aa622007-08-15 14:28:22 +0000526