blob: 013ed3867b44feb0f47bbb710573506b3b6fe2a1 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`itertools` --- Functions creating iterators for efficient looping
3=======================================================================
4
5.. module:: itertools
6 :synopsis: Functions creating iterators for efficient looping.
7.. moduleauthor:: Raymond Hettinger <python@rcn.com>
8.. sectionauthor:: Raymond Hettinger <python@rcn.com>
9
10
Georg Brandl9afde1c2007-11-01 20:32:30 +000011This module implements a number of :term:`iterator` building blocks inspired by
Georg Brandl116aa622007-08-15 14:28:22 +000012constructs from the Haskell and SML programming languages. Each has been recast
13in a form suitable for Python.
14
15The module standardizes a core set of fast, memory efficient tools that are
16useful by themselves or in combination. Standardization helps avoid the
17readability and reliability problems which arise when many different individuals
18create their own slightly varying implementations, each with their own quirks
19and naming conventions.
20
21The tools are designed to combine readily with one another. This makes it easy
22to construct more specialized tools succinctly and efficiently in pure Python.
23
24For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
25sequence ``f(0), f(1), ...``. This toolbox provides :func:`imap` and
26:func:`count` which can be combined to form ``imap(f, count())`` and produce an
27equivalent result.
28
29Likewise, the functional tools are designed to work well with the high-speed
30functions provided by the :mod:`operator` module.
31
32The module author welcomes suggestions for other basic building blocks to be
33added to future versions of the module.
34
35Whether cast in pure python form or compiled code, tools that use iterators are
36more memory efficient (and faster) than their list based counterparts. Adopting
37the principles of just-in-time manufacturing, they create data when and where
38needed instead of consuming memory with the computer equivalent of "inventory".
39
40The performance advantage of iterators becomes more acute as the number of
41elements increases -- at some point, lists grow large enough to severely impact
42memory cache performance and start running slowly.
43
44
45.. seealso::
46
47 The Standard ML Basis Library, `The Standard ML Basis Library
48 <http://www.standardml.org/Basis/>`_.
49
50 Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
51 Libraries <http://www.haskell.org/definition/>`_.
52
53
54.. _itertools-functions:
55
56Itertool functions
57------------------
58
59The following module functions all construct and return iterators. Some provide
60streams of infinite length, so they should only be accessed by functions or
61loops that truncate the stream.
62
63
64.. function:: chain(*iterables)
65
66 Make an iterator that returns elements from the first iterable until it is
67 exhausted, then proceeds to the next iterable, until all of the iterables are
68 exhausted. Used for treating consecutive sequences as a single sequence.
69 Equivalent to::
70
71 def chain(*iterables):
72 for it in iterables:
73 for element in it:
74 yield element
75
76
77.. function:: count([n])
78
79 Make an iterator that returns consecutive integers starting with *n*. If not
Georg Brandl9afde1c2007-11-01 20:32:30 +000080 specified *n* defaults to zero. Often used as an argument to :func:`imap` to
81 generate consecutive data points. Also, used with :func:`izip` to add sequence
82 numbers. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +000083
84 def count(n=0):
85 while True:
86 yield n
87 n += 1
88
Georg Brandl116aa622007-08-15 14:28:22 +000089
90.. function:: cycle(iterable)
91
92 Make an iterator returning elements from the iterable and saving a copy of each.
93 When the iterable is exhausted, return elements from the saved copy. Repeats
94 indefinitely. Equivalent to::
95
96 def cycle(iterable):
97 saved = []
98 for element in iterable:
99 yield element
100 saved.append(element)
101 while saved:
102 for element in saved:
103 yield element
104
105 Note, this member of the toolkit may require significant auxiliary storage
106 (depending on the length of the iterable).
107
108
109.. function:: dropwhile(predicate, iterable)
110
111 Make an iterator that drops elements from the iterable as long as the predicate
112 is true; afterwards, returns every element. Note, the iterator does not produce
113 *any* output until the predicate first becomes false, so it may have a lengthy
114 start-up time. Equivalent to::
115
116 def dropwhile(predicate, iterable):
117 iterable = iter(iterable)
118 for x in iterable:
119 if not predicate(x):
120 yield x
121 break
122 for x in iterable:
123 yield x
124
125
126.. function:: groupby(iterable[, key])
127
128 Make an iterator that returns consecutive keys and groups from the *iterable*.
129 The *key* is a function computing a key value for each element. If not
130 specified or is ``None``, *key* defaults to an identity function and returns
131 the element unchanged. Generally, the iterable needs to already be sorted on
132 the same key function.
133
134 The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
135 generates a break or new group every time the value of the key function changes
136 (which is why it is usually necessary to have sorted the data using the same key
137 function). That behavior differs from SQL's GROUP BY which aggregates common
138 elements regardless of their input order.
139
140 The returned group is itself an iterator that shares the underlying iterable
141 with :func:`groupby`. Because the source is shared, when the :func:`groupby`
142 object is advanced, the previous group is no longer visible. So, if that data
143 is needed later, it should be stored as a list::
144
145 groups = []
146 uniquekeys = []
147 data = sorted(data, key=keyfunc)
148 for k, g in groupby(data, keyfunc):
149 groups.append(list(g)) # Store group iterator as a list
150 uniquekeys.append(k)
151
152 :func:`groupby` is equivalent to::
153
154 class groupby(object):
155 def __init__(self, iterable, key=None):
156 if key is None:
157 key = lambda x: x
158 self.keyfunc = key
159 self.it = iter(iterable)
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000160 self.tgtkey = self.currkey = self.currvalue = object()
Georg Brandl116aa622007-08-15 14:28:22 +0000161 def __iter__(self):
162 return self
163 def __next__(self):
164 while self.currkey == self.tgtkey:
165 self.currvalue = next(self.it) # Exit on StopIteration
166 self.currkey = self.keyfunc(self.currvalue)
167 self.tgtkey = self.currkey
168 return (self.currkey, self._grouper(self.tgtkey))
169 def _grouper(self, tgtkey):
170 while self.currkey == tgtkey:
171 yield self.currvalue
172 self.currvalue = next(self.it) # Exit on StopIteration
173 self.currkey = self.keyfunc(self.currvalue)
174
Georg Brandl116aa622007-08-15 14:28:22 +0000175
176.. function:: ifilter(predicate, iterable)
177
178 Make an iterator that filters elements from iterable returning only those for
179 which the predicate is ``True``. If *predicate* is ``None``, return the items
Georg Brandlf6945182008-02-01 11:56:49 +0000180 that are true. This function is the same as the built-in :func:`filter`
181 function. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +0000182
183 def ifilter(predicate, iterable):
184 if predicate is None:
185 predicate = bool
186 for x in iterable:
187 if predicate(x):
188 yield x
189
190
191.. function:: ifilterfalse(predicate, iterable)
192
193 Make an iterator that filters elements from iterable returning only those for
194 which the predicate is ``False``. If *predicate* is ``None``, return the items
195 that are false. Equivalent to::
196
197 def ifilterfalse(predicate, iterable):
198 if predicate is None:
199 predicate = bool
200 for x in iterable:
201 if not predicate(x):
202 yield x
203
204
205.. function:: imap(function, *iterables)
206
207 Make an iterator that computes the function using arguments from each of the
Georg Brandlf6945182008-02-01 11:56:49 +0000208 iterables. This function is the same as the built-in :func:`map` function.
209 Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +0000210
211 def imap(function, *iterables):
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000212 iterables = [iter(it) for it in iterables)
Georg Brandl116aa622007-08-15 14:28:22 +0000213 while True:
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000214 args = [next(it) for it in iterables]
Christian Heimes1af737c2008-01-23 08:24:23 +0000215 if function is None:
216 yield tuple(args)
217 else:
218 yield function(*args)
Georg Brandl116aa622007-08-15 14:28:22 +0000219
220
221.. function:: islice(iterable, [start,] stop [, step])
222
223 Make an iterator that returns selected elements from the iterable. If *start* is
224 non-zero, then elements from the iterable are skipped until start is reached.
225 Afterward, elements are returned consecutively unless *step* is set higher than
226 one which results in items being skipped. If *stop* is ``None``, then iteration
227 continues until the iterator is exhausted, if at all; otherwise, it stops at the
228 specified position. Unlike regular slicing, :func:`islice` does not support
229 negative values for *start*, *stop*, or *step*. Can be used to extract related
230 fields from data where the internal structure has been flattened (for example, a
231 multi-line report may list a name field on every third line). Equivalent to::
232
233 def islice(iterable, *args):
234 s = slice(*args)
Georg Brandlf6945182008-02-01 11:56:49 +0000235 it = range(s.start or 0, s.stop or sys.maxsize, s.step or 1)
Georg Brandl116aa622007-08-15 14:28:22 +0000236 nexti = next(it)
237 for i, element in enumerate(iterable):
238 if i == nexti:
239 yield element
240 nexti = next(it)
241
242 If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
243 then the step defaults to one.
244
Georg Brandl116aa622007-08-15 14:28:22 +0000245
246.. function:: izip(*iterables)
247
248 Make an iterator that aggregates elements from each of the iterables. Like
249 :func:`zip` except that it returns an iterator instead of a list. Used for
250 lock-step iteration over several iterables at a time. Equivalent to::
251
252 def izip(*iterables):
253 iterables = map(iter, iterables)
254 while iterables:
255 result = [next(it) for it in iterables]
256 yield tuple(result)
257
Georg Brandl55ac8f02007-09-01 13:51:09 +0000258 When no iterables are specified, return a zero length iterator.
Georg Brandl116aa622007-08-15 14:28:22 +0000259
Christian Heimes1af737c2008-01-23 08:24:23 +0000260 The left-to-right evaluation order of the iterables is guaranteed. This
261 makes possible an idiom for clustering a data series into n-length groups
262 using ``izip(*[iter(s)]*n)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000263
Christian Heimes1af737c2008-01-23 08:24:23 +0000264 :func:`izip` should only be used with unequal length inputs when you don't
265 care about trailing, unmatched values from the longer iterables. If those
266 values are important, use :func:`izip_longest` instead.
Georg Brandl116aa622007-08-15 14:28:22 +0000267
268
269.. function:: izip_longest(*iterables[, fillvalue])
270
271 Make an iterator that aggregates elements from each of the iterables. If the
272 iterables are of uneven length, missing values are filled-in with *fillvalue*.
273 Iteration continues until the longest iterable is exhausted. Equivalent to::
274
275 def izip_longest(*args, **kwds):
276 fillvalue = kwds.get('fillvalue')
277 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
278 yield counter() # yields the fillvalue, or raises IndexError
279 fillers = repeat(fillvalue)
280 iters = [chain(it, sentinel(), fillers) for it in args]
281 try:
282 for tup in izip(*iters):
283 yield tup
284 except IndexError:
285 pass
286
287 If one of the iterables is potentially infinite, then the :func:`izip_longest`
288 function should be wrapped with something that limits the number of calls (for
289 example :func:`islice` or :func:`takewhile`).
290
Georg Brandl116aa622007-08-15 14:28:22 +0000291
292.. function:: repeat(object[, times])
293
294 Make an iterator that returns *object* over and over again. Runs indefinitely
295 unless the *times* argument is specified. Used as argument to :func:`imap` for
296 invariant parameters to the called function. Also used with :func:`izip` to
297 create an invariant part of a tuple record. Equivalent to::
298
299 def repeat(object, times=None):
300 if times is None:
301 while True:
302 yield object
303 else:
304 for i in range(times):
305 yield object
306
307
308.. function:: starmap(function, iterable)
309
Christian Heimes679db4a2008-01-18 09:56:22 +0000310 Make an iterator that computes the function using arguments obtained from
Georg Brandl116aa622007-08-15 14:28:22 +0000311 the iterable. Used instead of :func:`imap` when argument parameters are already
312 grouped in tuples from a single iterable (the data has been "pre-zipped"). The
313 difference between :func:`imap` and :func:`starmap` parallels the distinction
314 between ``function(a,b)`` and ``function(*c)``. Equivalent to::
315
316 def starmap(function, iterable):
Christian Heimes679db4a2008-01-18 09:56:22 +0000317 for args in iterable:
318 yield function(*args)
319
320 .. versionchanged:: 2.6
321 Previously, :func:`starmap` required the function arguments to be tuples.
322 Now, any iterable is allowed.
Georg Brandl116aa622007-08-15 14:28:22 +0000323
324
325.. function:: takewhile(predicate, iterable)
326
327 Make an iterator that returns elements from the iterable as long as the
328 predicate is true. Equivalent to::
329
330 def takewhile(predicate, iterable):
331 for x in iterable:
332 if predicate(x):
333 yield x
334 else:
335 break
336
337
338.. function:: tee(iterable[, n=2])
339
340 Return *n* independent iterators from a single iterable. The case where ``n==2``
341 is equivalent to::
342
343 def tee(iterable):
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000344 def gen(next, data={}):
Georg Brandl116aa622007-08-15 14:28:22 +0000345 for i in count():
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000346 if i in data:
347 yield data.pop(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000348 else:
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000349 data[i] = next()
350 yield data[i]
Georg Brandl116aa622007-08-15 14:28:22 +0000351 it = iter(iterable)
352 return (gen(it.__next__), gen(it.__next__))
353
354 Note, once :func:`tee` has made a split, the original *iterable* should not be
355 used anywhere else; otherwise, the *iterable* could get advanced without the tee
356 objects being informed.
357
358 Note, this member of the toolkit may require significant auxiliary storage
359 (depending on how much temporary data needs to be stored). In general, if one
360 iterator is going to use most or all of the data before the other iterator, it
361 is faster to use :func:`list` instead of :func:`tee`.
362
Georg Brandl116aa622007-08-15 14:28:22 +0000363
364.. _itertools-example:
365
366Examples
367--------
368
369The following examples show common uses for each tool and demonstrate ways they
370can be combined. ::
371
372 >>> amounts = [120.15, 764.05, 823.14]
373 >>> for checknum, amount in izip(count(1200), amounts):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000374 ... print('Check %d is for $%.2f' % (checknum, amount))
Georg Brandl116aa622007-08-15 14:28:22 +0000375 ...
376 Check 1200 is for $120.15
377 Check 1201 is for $764.05
378 Check 1202 is for $823.14
379
380 >>> import operator
381 >>> for cube in imap(operator.pow, range(1,5), repeat(3)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000382 ... print(cube)
Georg Brandl116aa622007-08-15 14:28:22 +0000383 ...
384 1
385 8
386 27
387 64
388
389 >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
390 ... '', 'martin', '', 'walter', '', 'mark']
391 >>> for name in islice(reportlines, 3, None, 2):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000392 ... print(name.title())
Georg Brandl116aa622007-08-15 14:28:22 +0000393 ...
394 Alex
395 Laura
396 Martin
397 Walter
398 Mark
399
400 # Show a dictionary sorted and grouped by value
401 >>> from operator import itemgetter
402 >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
Fred Drake2e748782007-09-04 17:33:11 +0000403 >>> di = sorted(d.items(), key=itemgetter(1))
Georg Brandl116aa622007-08-15 14:28:22 +0000404 >>> for k, g in groupby(di, key=itemgetter(1)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000405 ... print(k, map(itemgetter(0), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000406 ...
407 1 ['a', 'c', 'e']
408 2 ['b', 'd', 'f']
409 3 ['g']
410
411 # Find runs of consecutive numbers using groupby. The key to the solution
412 # is differencing with a range so that consecutive numbers all appear in
413 # same group.
414 >>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
415 >>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000416 ... print(map(operator.itemgetter(1), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000417 ...
418 [1]
419 [4, 5, 6]
420 [10]
421 [15, 16, 17, 18]
422 [22]
423 [25, 26, 27, 28]
424
425
426
427.. _itertools-recipes:
428
429Recipes
430-------
431
432This section shows recipes for creating an extended toolset using the existing
433itertools as building blocks.
434
435The extended tools offer the same high performance as the underlying toolset.
436The superior memory performance is kept by processing elements one at a time
437rather than bringing the whole iterable into memory all at once. Code volume is
438kept small by linking the tools together in a functional style which helps
439eliminate temporary variables. High speed is retained by preferring
Georg Brandl9afde1c2007-11-01 20:32:30 +0000440"vectorized" building blocks over the use of for-loops and :term:`generator`\s
441which incur interpreter overhead. ::
Georg Brandl116aa622007-08-15 14:28:22 +0000442
443 def take(n, seq):
444 return list(islice(seq, n))
445
446 def enumerate(iterable):
447 return izip(count(), iterable)
448
449 def tabulate(function):
450 "Return function(0), function(1), ..."
451 return imap(function, count())
452
Georg Brandl116aa622007-08-15 14:28:22 +0000453 def nth(iterable, n):
454 "Returns the nth item or raise StopIteration"
455 return islice(iterable, n, None).next()
456
457 def all(seq, pred=None):
458 "Returns True if pred(x) is true for every element in the iterable"
459 for elem in ifilterfalse(pred, seq):
460 return False
461 return True
462
463 def any(seq, pred=None):
464 "Returns True if pred(x) is true for at least one element in the iterable"
465 for elem in ifilter(pred, seq):
466 return True
467 return False
468
469 def no(seq, pred=None):
470 "Returns True if pred(x) is false for every element in the iterable"
471 for elem in ifilter(pred, seq):
472 return False
473 return True
474
475 def quantify(seq, pred=None):
476 "Count how many times the predicate is true in the sequence"
477 return sum(imap(pred, seq))
478
479 def padnone(seq):
480 """Returns the sequence elements and then returns None indefinitely.
481
482 Useful for emulating the behavior of the built-in map() function.
483 """
484 return chain(seq, repeat(None))
485
486 def ncycles(seq, n):
487 "Returns the sequence elements n times"
488 return chain(*repeat(seq, n))
489
490 def dotproduct(vec1, vec2):
491 return sum(imap(operator.mul, vec1, vec2))
492
493 def flatten(listOfLists):
494 return list(chain(*listOfLists))
495
496 def repeatfunc(func, times=None, *args):
497 """Repeat calls to func with specified arguments.
498
499 Example: repeatfunc(random.random)
500 """
501 if times is None:
502 return starmap(func, repeat(args))
503 else:
504 return starmap(func, repeat(args, times))
505
506 def pairwise(iterable):
507 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
508 a, b = tee(iterable)
509 next(b, None)
510 return izip(a, b)
511
512 def grouper(n, iterable, padvalue=None):
513 "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
514 return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
515
Christian Heimes7b3ce6a2008-01-31 14:31:45 +0000516 def roundrobin(*iterables):
517 "roundrobin('abc', 'd', 'ef') --> 'a', 'd', 'e', 'b', 'f', 'c'"
518 # Recipe contributed by George Sakkis
519 pending = len(iterables)
520 nexts = cycle(iter(it).next for it in iterables)
521 while pending:
522 try:
523 for next in nexts:
524 yield next()
525 except StopIteration:
526 pending -= 1
527 nexts = cycle(islice(nexts, pending))
Georg Brandl116aa622007-08-15 14:28:22 +0000528