blob: c9366c8ce3ea1fd71b6da4fb770cd35e0d200f20 [file] [log] [blame]
Skip Montanaro54455942003-01-29 15:41:33 +00001'''"Executable documentation" for the pickle module.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here. Some functions meant for external use:
5
6genops(pickle)
7 Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
Andrew M. Kuchlingd0c53fe2004-08-07 16:51:30 +00009dis(pickle, out=None, memo=None, indentlevel=4)
Tim Peters8ecfc8e2003-01-27 18:51:48 +000010 Print a symbolic disassembly of a pickle.
Skip Montanaro54455942003-01-29 15:41:33 +000011'''
Tim Peters8ecfc8e2003-01-27 18:51:48 +000012
Raymond Hettingerda614dc2008-02-10 20:35:16 +000013__all__ = ['dis', 'genops', 'optimize']
Tim Peters90cf2122004-11-06 23:45:48 +000014
Tim Peters8ecfc8e2003-01-27 18:51:48 +000015# Other ideas:
16#
17# - A pickle verifier: read a pickle and check it exhaustively for
Tim Petersc1c2b3e2003-01-29 20:12:21 +000018# well-formedness. dis() does a lot of this already.
Tim Peters8ecfc8e2003-01-27 18:51:48 +000019#
20# - A protocol identifier: examine a pickle and return its protocol number
21# (== the highest .proto attr value among all the opcodes in the pickle).
Tim Petersc1c2b3e2003-01-29 20:12:21 +000022# dis() already prints this info at the end.
Tim Peters8ecfc8e2003-01-27 18:51:48 +000023#
24# - A pickle optimizer: for example, tuple-building code is sometimes more
25# elaborate than necessary, catering for the possibility that the tuple
26# is recursive. Or lots of times a PUT is generated that's never accessed
27# by a later GET.
28
29
30"""
31"A pickle" is a program for a virtual pickle machine (PM, but more accurately
32called an unpickling machine). It's a sequence of opcodes, interpreted by the
33PM, building an arbitrarily complex Python object.
34
35For the most part, the PM is very simple: there are no looping, testing, or
36conditional instructions, no arithmetic and no function calls. Opcodes are
37executed once each, from first to last, until a STOP opcode is reached.
38
39The PM has two data areas, "the stack" and "the memo".
40
41Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
42integer object on the stack, whose value is gotten from a decimal string
43literal immediately following the INT opcode in the pickle bytestream. Other
44opcodes take Python objects off the stack. The result of unpickling is
45whatever object is left on the stack when the final STOP opcode is executed.
46
47The memo is simply an array of objects, or it can be implemented as a dict
48mapping little integers to objects. The memo serves as the PM's "long term
49memory", and the little integers indexing the memo are akin to variable
50names. Some opcodes pop a stack object into the memo at a given index,
51and others push a memo object at a given index onto the stack again.
52
53At heart, that's all the PM has. Subtleties arise for these reasons:
54
55+ Object identity. Objects can be arbitrarily complex, and subobjects
56 may be shared (for example, the list [a, a] refers to the same object a
57 twice). It can be vital that unpickling recreate an isomorphic object
58 graph, faithfully reproducing sharing.
59
60+ Recursive objects. For example, after "L = []; L.append(L)", L is a
61 list, and L[0] is the same list. This is related to the object identity
62 point, and some sequences of pickle opcodes are subtle in order to
63 get the right result in all cases.
64
65+ Things pickle doesn't know everything about. Examples of things pickle
66 does know everything about are Python's builtin scalar and container
67 types, like ints and tuples. They generally have opcodes dedicated to
68 them. For things like module references and instances of user-defined
69 classes, pickle's knowledge is limited. Historically, many enhancements
70 have been made to the pickle protocol in order to do a better (faster,
71 and/or more compact) job on those.
72
73+ Backward compatibility and micro-optimization. As explained below,
74 pickle opcodes never go away, not even when better ways to do a thing
75 get invented. The repertoire of the PM just keeps growing over time.
Tim Petersfdc03462003-01-28 04:56:33 +000076 For example, protocol 0 had two opcodes for building Python integers (INT
77 and LONG), protocol 1 added three more for more-efficient pickling of short
78 integers, and protocol 2 added two more for more-efficient pickling of
79 long integers (before protocol 2, the only ways to pickle a Python long
80 took time quadratic in the number of digits, for both pickling and
81 unpickling). "Opcode bloat" isn't so much a subtlety as a source of
Tim Peters8ecfc8e2003-01-27 18:51:48 +000082 wearying complication.
83
84
85Pickle protocols:
86
87For compatibility, the meaning of a pickle opcode never changes. Instead new
88pickle opcodes get added, and each version's unpickler can handle all the
89pickle opcodes in all protocol versions to date. So old pickles continue to
90be readable forever. The pickler can generally be told to restrict itself to
91the subset of opcodes available under previous protocol versions too, so that
92users can create pickles under the current version readable by older
93versions. However, a pickle does not contain its version number embedded
94within it. If an older unpickler tries to read a pickle using a later
95protocol, the result is most likely an exception due to seeing an unknown (in
96the older unpickler) opcode.
97
98The original pickle used what's now called "protocol 0", and what was called
99"text mode" before Python 2.3. The entire pickle bytestream is made up of
100printable 7-bit ASCII characters, plus the newline character, in protocol 0.
Tim Petersfdc03462003-01-28 04:56:33 +0000101That's why it was called text mode. Protocol 0 is small and elegant, but
102sometimes painfully inefficient.
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000103
104The second major set of additions is now called "protocol 1", and was called
105"binary mode" before Python 2.3. This added many opcodes with arguments
106consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
107bytes. Binary mode pickles can be substantially smaller than equivalent
108text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
109int as 4 bytes following the opcode, which is cheaper to unpickle than the
Tim Petersfdc03462003-01-28 04:56:33 +0000110(perhaps) 11-character decimal string attached to INT. Protocol 1 also added
111a number of opcodes that operate on many stack elements at once (like APPENDS
Tim Peters81098ac2003-01-28 05:12:08 +0000112and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000113
114The third major set of additions came in Python 2.3, and is called "protocol
Tim Petersfdc03462003-01-28 04:56:33 +00001152". This added:
116
117- A better way to pickle instances of new-style classes (NEWOBJ).
118
119- A way for a pickle to identify its protocol (PROTO).
120
121- Time- and space- efficient pickling of long ints (LONG{1,4}).
122
123- Shortcuts for small tuples (TUPLE{1,2,3}}.
124
125- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
126
127- The "extension registry", a vector of popular objects that can be pushed
128 efficiently by index (EXT{1,2,4}). This is akin to the memo and GET, but
129 the registry contents are predefined (there's nothing akin to the memo's
130 PUT).
Guido van Rossumecb11042003-01-29 06:24:30 +0000131
Skip Montanaro54455942003-01-29 15:41:33 +0000132Another independent change with Python 2.3 is the abandonment of any
133pretense that it might be safe to load pickles received from untrusted
Guido van Rossumecb11042003-01-29 06:24:30 +0000134parties -- no sufficient security analysis has been done to guarantee
Skip Montanaro54455942003-01-29 15:41:33 +0000135this and there isn't a use case that warrants the expense of such an
Guido van Rossumecb11042003-01-29 06:24:30 +0000136analysis.
137
138To this end, all tests for __safe_for_unpickling__ or for
Georg Brandldffbf5f2008-05-20 07:49:57 +0000139copy_reg.safe_constructors are removed from the unpickling code.
Guido van Rossumecb11042003-01-29 06:24:30 +0000140References to these variables in the descriptions below are to be seen
141as describing unpickling in Python 2.2 and before.
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000142"""
143
144# Meta-rule: Descriptions are stored in instances of descriptor objects,
145# with plain constructors. No meta-language is defined from which
146# descriptors could be constructed. If you want, e.g., XML, write a little
147# program to generate XML from the objects.
148
149##############################################################################
150# Some pickle opcodes have an argument, following the opcode in the
151# bytestream. An argument is of a specific type, described by an instance
152# of ArgumentDescriptor. These are not to be confused with arguments taken
153# off the stack -- ArgumentDescriptor applies only to arguments embedded in
154# the opcode stream, immediately following an opcode.
155
156# Represents the number of bytes consumed by an argument delimited by the
157# next newline character.
158UP_TO_NEWLINE = -1
159
160# Represents the number of bytes consumed by a two-argument opcode where
161# the first argument gives the number of bytes in the second argument.
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000162TAKEN_FROM_ARGUMENT1 = -2 # num bytes is 1-byte unsigned int
163TAKEN_FROM_ARGUMENT4 = -3 # num bytes is 4-byte signed little-endian int
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000164
165class ArgumentDescriptor(object):
166 __slots__ = (
167 # name of descriptor record, also a module global name; a string
168 'name',
169
170 # length of argument, in bytes; an int; UP_TO_NEWLINE and
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000171 # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
172 # cases
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000173 'n',
174
175 # a function taking a file-like object, reading this kind of argument
176 # from the object at the current position, advancing the current
177 # position by n bytes, and returning the value of the argument
178 'reader',
179
180 # human-readable docs for this arg descriptor; a string
181 'doc',
182 )
183
184 def __init__(self, name, n, reader, doc):
185 assert isinstance(name, str)
186 self.name = name
187
Serhiy Storchaka994f04d2016-12-27 15:09:36 +0200188 assert isinstance(n, (int, long)) and (n >= 0 or
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000189 n in (UP_TO_NEWLINE,
190 TAKEN_FROM_ARGUMENT1,
191 TAKEN_FROM_ARGUMENT4))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000192 self.n = n
193
194 self.reader = reader
195
196 assert isinstance(doc, str)
197 self.doc = doc
198
199from struct import unpack as _unpack
200
201def read_uint1(f):
Tim Peters55762f52003-01-28 16:01:25 +0000202 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000203 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000204 >>> read_uint1(StringIO.StringIO('\xff'))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000205 255
206 """
207
208 data = f.read(1)
209 if data:
210 return ord(data)
211 raise ValueError("not enough data in stream to read uint1")
212
213uint1 = ArgumentDescriptor(
214 name='uint1',
215 n=1,
216 reader=read_uint1,
217 doc="One-byte unsigned integer.")
218
219
220def read_uint2(f):
Tim Peters55762f52003-01-28 16:01:25 +0000221 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000222 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000223 >>> read_uint2(StringIO.StringIO('\xff\x00'))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000224 255
Tim Peters55762f52003-01-28 16:01:25 +0000225 >>> read_uint2(StringIO.StringIO('\xff\xff'))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000226 65535
227 """
228
229 data = f.read(2)
230 if len(data) == 2:
231 return _unpack("<H", data)[0]
232 raise ValueError("not enough data in stream to read uint2")
233
234uint2 = ArgumentDescriptor(
235 name='uint2',
236 n=2,
237 reader=read_uint2,
238 doc="Two-byte unsigned integer, little-endian.")
239
240
241def read_int4(f):
Tim Peters55762f52003-01-28 16:01:25 +0000242 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000243 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000244 >>> read_int4(StringIO.StringIO('\xff\x00\x00\x00'))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000245 255
Tim Peters55762f52003-01-28 16:01:25 +0000246 >>> read_int4(StringIO.StringIO('\x00\x00\x00\x80')) == -(2**31)
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000247 True
248 """
249
250 data = f.read(4)
251 if len(data) == 4:
252 return _unpack("<i", data)[0]
253 raise ValueError("not enough data in stream to read int4")
254
255int4 = ArgumentDescriptor(
256 name='int4',
257 n=4,
258 reader=read_int4,
259 doc="Four-byte signed integer, little-endian, 2's complement.")
260
261
262def read_stringnl(f, decode=True, stripquotes=True):
Tim Peters55762f52003-01-28 16:01:25 +0000263 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000264 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000265 >>> read_stringnl(StringIO.StringIO("'abcd'\nefg\n"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000266 'abcd'
267
Tim Peters55762f52003-01-28 16:01:25 +0000268 >>> read_stringnl(StringIO.StringIO("\n"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000269 Traceback (most recent call last):
270 ...
271 ValueError: no string quotes around ''
272
Tim Peters55762f52003-01-28 16:01:25 +0000273 >>> read_stringnl(StringIO.StringIO("\n"), stripquotes=False)
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000274 ''
275
Tim Peters55762f52003-01-28 16:01:25 +0000276 >>> read_stringnl(StringIO.StringIO("''\n"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000277 ''
278
279 >>> read_stringnl(StringIO.StringIO('"abcd"'))
280 Traceback (most recent call last):
281 ...
282 ValueError: no newline found when trying to read stringnl
283
284 Embedded escapes are undone in the result.
Tim Peters55762f52003-01-28 16:01:25 +0000285 >>> read_stringnl(StringIO.StringIO(r"'a\n\\b\x00c\td'" + "\n'e'"))
286 'a\n\\b\x00c\td'
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000287 """
288
289 data = f.readline()
290 if not data.endswith('\n'):
291 raise ValueError("no newline found when trying to read stringnl")
292 data = data[:-1] # lose the newline
293
294 if stripquotes:
295 for q in "'\"":
296 if data.startswith(q):
297 if not data.endswith(q):
298 raise ValueError("strinq quote %r not found at both "
299 "ends of %r" % (q, data))
300 data = data[1:-1]
301 break
302 else:
303 raise ValueError("no string quotes around %r" % data)
304
305 # I'm not sure when 'string_escape' was added to the std codecs; it's
306 # crazy not to use it if it's there.
307 if decode:
308 data = data.decode('string_escape')
309 return data
310
311stringnl = ArgumentDescriptor(
312 name='stringnl',
313 n=UP_TO_NEWLINE,
314 reader=read_stringnl,
315 doc="""A newline-terminated string.
316
317 This is a repr-style string, with embedded escapes, and
318 bracketing quotes.
319 """)
320
321def read_stringnl_noescape(f):
322 return read_stringnl(f, decode=False, stripquotes=False)
323
324stringnl_noescape = ArgumentDescriptor(
325 name='stringnl_noescape',
326 n=UP_TO_NEWLINE,
327 reader=read_stringnl_noescape,
328 doc="""A newline-terminated string.
329
330 This is a str-style string, without embedded escapes,
331 or bracketing quotes. It should consist solely of
332 printable ASCII characters.
333 """)
334
335def read_stringnl_noescape_pair(f):
Tim Peters55762f52003-01-28 16:01:25 +0000336 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000337 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000338 >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk"))
Tim Petersd916cf42003-01-27 19:01:47 +0000339 'Queue Empty'
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000340 """
341
Tim Petersd916cf42003-01-27 19:01:47 +0000342 return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000343
344stringnl_noescape_pair = ArgumentDescriptor(
345 name='stringnl_noescape_pair',
346 n=UP_TO_NEWLINE,
347 reader=read_stringnl_noescape_pair,
348 doc="""A pair of newline-terminated strings.
349
350 These are str-style strings, without embedded
351 escapes, or bracketing quotes. They should
352 consist solely of printable ASCII characters.
353 The pair is returned as a single string, with
Tim Petersd916cf42003-01-27 19:01:47 +0000354 a single blank separating the two strings.
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000355 """)
356
357def read_string4(f):
Tim Peters55762f52003-01-28 16:01:25 +0000358 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000359 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000360 >>> read_string4(StringIO.StringIO("\x00\x00\x00\x00abc"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000361 ''
Tim Peters55762f52003-01-28 16:01:25 +0000362 >>> read_string4(StringIO.StringIO("\x03\x00\x00\x00abcdef"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000363 'abc'
Tim Peters55762f52003-01-28 16:01:25 +0000364 >>> read_string4(StringIO.StringIO("\x00\x00\x00\x03abcdef"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000365 Traceback (most recent call last):
366 ...
367 ValueError: expected 50331648 bytes in a string4, but only 6 remain
368 """
369
370 n = read_int4(f)
371 if n < 0:
372 raise ValueError("string4 byte count < 0: %d" % n)
373 data = f.read(n)
374 if len(data) == n:
375 return data
376 raise ValueError("expected %d bytes in a string4, but only %d remain" %
377 (n, len(data)))
378
379string4 = ArgumentDescriptor(
380 name="string4",
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000381 n=TAKEN_FROM_ARGUMENT4,
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000382 reader=read_string4,
383 doc="""A counted string.
384
385 The first argument is a 4-byte little-endian signed int giving
386 the number of bytes in the string, and the second argument is
387 that many bytes.
388 """)
389
390
391def read_string1(f):
Tim Peters55762f52003-01-28 16:01:25 +0000392 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000393 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000394 >>> read_string1(StringIO.StringIO("\x00"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000395 ''
Tim Peters55762f52003-01-28 16:01:25 +0000396 >>> read_string1(StringIO.StringIO("\x03abcdef"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000397 'abc'
398 """
399
400 n = read_uint1(f)
401 assert n >= 0
402 data = f.read(n)
403 if len(data) == n:
404 return data
405 raise ValueError("expected %d bytes in a string1, but only %d remain" %
406 (n, len(data)))
407
408string1 = ArgumentDescriptor(
409 name="string1",
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000410 n=TAKEN_FROM_ARGUMENT1,
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000411 reader=read_string1,
412 doc="""A counted string.
413
414 The first argument is a 1-byte unsigned int giving the number
415 of bytes in the string, and the second argument is that many
416 bytes.
417 """)
418
419
420def read_unicodestringnl(f):
Tim Peters55762f52003-01-28 16:01:25 +0000421 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000422 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000423 >>> read_unicodestringnl(StringIO.StringIO("abc\uabcd\njunk"))
424 u'abc\uabcd'
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000425 """
426
427 data = f.readline()
428 if not data.endswith('\n'):
429 raise ValueError("no newline found when trying to read "
430 "unicodestringnl")
431 data = data[:-1] # lose the newline
432 return unicode(data, 'raw-unicode-escape')
433
434unicodestringnl = ArgumentDescriptor(
435 name='unicodestringnl',
436 n=UP_TO_NEWLINE,
437 reader=read_unicodestringnl,
438 doc="""A newline-terminated Unicode string.
439
440 This is raw-unicode-escape encoded, so consists of
441 printable ASCII characters, and may contain embedded
442 escape sequences.
443 """)
444
445def read_unicodestring4(f):
Tim Peters55762f52003-01-28 16:01:25 +0000446 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000447 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000448 >>> s = u'abcd\uabcd'
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000449 >>> enc = s.encode('utf-8')
450 >>> enc
Tim Peters55762f52003-01-28 16:01:25 +0000451 'abcd\xea\xaf\x8d'
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000452 >>> n = chr(len(enc)) + chr(0) * 3 # little-endian 4-byte length
453 >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
454 >>> s == t
455 True
456
457 >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
458 Traceback (most recent call last):
459 ...
460 ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
461 """
462
463 n = read_int4(f)
464 if n < 0:
465 raise ValueError("unicodestring4 byte count < 0: %d" % n)
466 data = f.read(n)
467 if len(data) == n:
468 return unicode(data, 'utf-8')
469 raise ValueError("expected %d bytes in a unicodestring4, but only %d "
470 "remain" % (n, len(data)))
471
472unicodestring4 = ArgumentDescriptor(
473 name="unicodestring4",
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000474 n=TAKEN_FROM_ARGUMENT4,
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000475 reader=read_unicodestring4,
476 doc="""A counted Unicode string.
477
478 The first argument is a 4-byte little-endian signed int
479 giving the number of bytes in the string, and the second
480 argument-- the UTF-8 encoding of the Unicode string --
481 contains that many bytes.
482 """)
483
484
485def read_decimalnl_short(f):
Tim Peters55762f52003-01-28 16:01:25 +0000486 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000487 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000488 >>> read_decimalnl_short(StringIO.StringIO("1234\n56"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000489 1234
490
Tim Peters55762f52003-01-28 16:01:25 +0000491 >>> read_decimalnl_short(StringIO.StringIO("1234L\n56"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000492 Traceback (most recent call last):
493 ...
494 ValueError: trailing 'L' not allowed in '1234L'
495 """
496
497 s = read_stringnl(f, decode=False, stripquotes=False)
498 if s.endswith("L"):
499 raise ValueError("trailing 'L' not allowed in %r" % s)
500
501 # It's not necessarily true that the result fits in a Python short int:
502 # the pickle may have been written on a 64-bit box. There's also a hack
503 # for True and False here.
504 if s == "00":
505 return False
506 elif s == "01":
507 return True
508
509 try:
510 return int(s)
511 except OverflowError:
512 return long(s)
513
514def read_decimalnl_long(f):
Tim Peters55762f52003-01-28 16:01:25 +0000515 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000516 >>> import StringIO
517
Tim Peters55762f52003-01-28 16:01:25 +0000518 >>> read_decimalnl_long(StringIO.StringIO("1234\n56"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000519 Traceback (most recent call last):
520 ...
521 ValueError: trailing 'L' required in '1234'
522
523 Someday the trailing 'L' will probably go away from this output.
524
Tim Peters55762f52003-01-28 16:01:25 +0000525 >>> read_decimalnl_long(StringIO.StringIO("1234L\n56"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000526 1234L
527
Tim Peters55762f52003-01-28 16:01:25 +0000528 >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\n6"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000529 123456789012345678901234L
530 """
531
532 s = read_stringnl(f, decode=False, stripquotes=False)
533 if not s.endswith("L"):
534 raise ValueError("trailing 'L' required in %r" % s)
535 return long(s)
536
537
538decimalnl_short = ArgumentDescriptor(
539 name='decimalnl_short',
540 n=UP_TO_NEWLINE,
541 reader=read_decimalnl_short,
542 doc="""A newline-terminated decimal integer literal.
543
544 This never has a trailing 'L', and the integer fit
545 in a short Python int on the box where the pickle
546 was written -- but there's no guarantee it will fit
547 in a short Python int on the box where the pickle
548 is read.
549 """)
550
551decimalnl_long = ArgumentDescriptor(
552 name='decimalnl_long',
553 n=UP_TO_NEWLINE,
554 reader=read_decimalnl_long,
555 doc="""A newline-terminated decimal integer literal.
556
557 This has a trailing 'L', and can represent integers
558 of any size.
559 """)
560
561
562def read_floatnl(f):
Tim Peters55762f52003-01-28 16:01:25 +0000563 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000564 >>> import StringIO
Tim Peters55762f52003-01-28 16:01:25 +0000565 >>> read_floatnl(StringIO.StringIO("-1.25\n6"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000566 -1.25
567 """
568 s = read_stringnl(f, decode=False, stripquotes=False)
569 return float(s)
570
571floatnl = ArgumentDescriptor(
572 name='floatnl',
573 n=UP_TO_NEWLINE,
574 reader=read_floatnl,
575 doc="""A newline-terminated decimal floating literal.
576
577 In general this requires 17 significant digits for roundtrip
578 identity, and pickling then unpickling infinities, NaNs, and
579 minus zero doesn't work across boxes, or on some boxes even
580 on itself (e.g., Windows can't read the strings it produces
581 for infinities or NaNs).
582 """)
583
584def read_float8(f):
Tim Peters55762f52003-01-28 16:01:25 +0000585 r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000586 >>> import StringIO, struct
587 >>> raw = struct.pack(">d", -1.25)
588 >>> raw
Tim Peters55762f52003-01-28 16:01:25 +0000589 '\xbf\xf4\x00\x00\x00\x00\x00\x00'
590 >>> read_float8(StringIO.StringIO(raw + "\n"))
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000591 -1.25
592 """
593
594 data = f.read(8)
595 if len(data) == 8:
596 return _unpack(">d", data)[0]
597 raise ValueError("not enough data in stream to read float8")
598
599
600float8 = ArgumentDescriptor(
601 name='float8',
602 n=8,
603 reader=read_float8,
604 doc="""An 8-byte binary representation of a float, big-endian.
605
606 The format is unique to Python, and shared with the struct
607 module (format string '>d') "in theory" (the struct and cPickle
608 implementations don't share the code -- they should). It's
609 strongly related to the IEEE-754 double format, and, in normal
610 cases, is in fact identical to the big-endian 754 double format.
611 On other boxes the dynamic range is limited to that of a 754
612 double, and "add a half and chop" rounding is used to reduce
613 the precision to 53 bits. However, even on a 754 box,
614 infinities, NaNs, and minus zero may not be handled correctly
615 (may not survive roundtrip pickling intact).
616 """)
617
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000618# Protocol 2 formats
619
Tim Petersc0c12b52003-01-29 00:56:17 +0000620from pickle import decode_long
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000621
622def read_long1(f):
623 r"""
624 >>> import StringIO
Tim Peters4b23f2b2003-01-31 16:43:39 +0000625 >>> read_long1(StringIO.StringIO("\x00"))
626 0L
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000627 >>> read_long1(StringIO.StringIO("\x02\xff\x00"))
628 255L
629 >>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
630 32767L
631 >>> read_long1(StringIO.StringIO("\x02\x00\xff"))
632 -256L
633 >>> read_long1(StringIO.StringIO("\x02\x00\x80"))
634 -32768L
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000635 """
636
637 n = read_uint1(f)
638 data = f.read(n)
639 if len(data) != n:
640 raise ValueError("not enough data in stream to read long1")
641 return decode_long(data)
642
643long1 = ArgumentDescriptor(
644 name="long1",
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000645 n=TAKEN_FROM_ARGUMENT1,
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000646 reader=read_long1,
647 doc="""A binary long, little-endian, using 1-byte size.
648
649 This first reads one byte as an unsigned size, then reads that
Tim Petersbdbe7412003-01-27 23:54:04 +0000650 many bytes and interprets them as a little-endian 2's-complement long.
Tim Peters4b23f2b2003-01-31 16:43:39 +0000651 If the size is 0, that's taken as a shortcut for the long 0L.
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000652 """)
653
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000654def read_long4(f):
655 r"""
656 >>> import StringIO
657 >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
658 255L
659 >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
660 32767L
661 >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
662 -256L
663 >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
664 -32768L
Tim Peters4b23f2b2003-01-31 16:43:39 +0000665 >>> read_long1(StringIO.StringIO("\x00\x00\x00\x00"))
666 0L
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000667 """
668
669 n = read_int4(f)
670 if n < 0:
Neal Norwitz784a3f52003-01-28 00:20:41 +0000671 raise ValueError("long4 byte count < 0: %d" % n)
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000672 data = f.read(n)
673 if len(data) != n:
Neal Norwitz784a3f52003-01-28 00:20:41 +0000674 raise ValueError("not enough data in stream to read long4")
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000675 return decode_long(data)
676
677long4 = ArgumentDescriptor(
678 name="long4",
Tim Petersfdb8cfa2003-01-28 00:13:19 +0000679 n=TAKEN_FROM_ARGUMENT4,
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000680 reader=read_long4,
681 doc="""A binary representation of a long, little-endian.
682
683 This first reads four bytes as a signed size (but requires the
684 size to be >= 0), then reads that many bytes and interprets them
Tim Peters4b23f2b2003-01-31 16:43:39 +0000685 as a little-endian 2's-complement long. If the size is 0, that's taken
686 as a shortcut for the long 0L, although LONG1 should really be used
687 then instead (and in any case where # of bytes < 256).
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000688 """)
689
690
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000691##############################################################################
692# Object descriptors. The stack used by the pickle machine holds objects,
693# and in the stack_before and stack_after attributes of OpcodeInfo
694# descriptors we need names to describe the various types of objects that can
695# appear on the stack.
696
697class StackObject(object):
698 __slots__ = (
699 # name of descriptor record, for info only
700 'name',
701
702 # type of object, or tuple of type objects (meaning the object can
703 # be of any type in the tuple)
704 'obtype',
705
706 # human-readable docs for this kind of stack object; a string
707 'doc',
708 )
709
710 def __init__(self, name, obtype, doc):
711 assert isinstance(name, str)
712 self.name = name
713
714 assert isinstance(obtype, type) or isinstance(obtype, tuple)
715 if isinstance(obtype, tuple):
716 for contained in obtype:
717 assert isinstance(contained, type)
718 self.obtype = obtype
719
720 assert isinstance(doc, str)
721 self.doc = doc
722
Tim Petersc1c2b3e2003-01-29 20:12:21 +0000723 def __repr__(self):
724 return self.name
725
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000726
727pyint = StackObject(
728 name='int',
729 obtype=int,
730 doc="A short (as opposed to long) Python integer object.")
731
732pylong = StackObject(
733 name='long',
734 obtype=long,
735 doc="A long (as opposed to short) Python integer object.")
736
737pyinteger_or_bool = StackObject(
738 name='int_or_bool',
739 obtype=(int, long, bool),
740 doc="A Python integer object (short or long), or "
741 "a Python bool.")
742
Guido van Rossum5a2d8f52003-01-27 21:44:25 +0000743pybool = StackObject(
744 name='bool',
745 obtype=(bool,),
746 doc="A Python bool object.")
747
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000748pyfloat = StackObject(
749 name='float',
750 obtype=float,
751 doc="A Python float object.")
752
753pystring = StackObject(
754 name='str',
755 obtype=str,
756 doc="A Python string object.")
757
758pyunicode = StackObject(
759 name='unicode',
760 obtype=unicode,
761 doc="A Python Unicode string object.")
762
763pynone = StackObject(
764 name="None",
765 obtype=type(None),
766 doc="The Python None object.")
767
768pytuple = StackObject(
769 name="tuple",
770 obtype=tuple,
771 doc="A Python tuple object.")
772
773pylist = StackObject(
774 name="list",
775 obtype=list,
776 doc="A Python list object.")
777
778pydict = StackObject(
779 name="dict",
780 obtype=dict,
781 doc="A Python dict object.")
782
783anyobject = StackObject(
784 name='any',
785 obtype=object,
786 doc="Any kind of object whatsoever.")
787
788markobject = StackObject(
789 name="mark",
790 obtype=StackObject,
791 doc="""'The mark' is a unique object.
792
793 Opcodes that operate on a variable number of objects
794 generally don't embed the count of objects in the opcode,
795 or pull it off the stack. Instead the MARK opcode is used
796 to push a special marker object on the stack, and then
797 some other opcodes grab all the objects from the top of
798 the stack down to (but not including) the topmost marker
799 object.
800 """)
801
802stackslice = StackObject(
803 name="stackslice",
804 obtype=StackObject,
805 doc="""An object representing a contiguous slice of the stack.
806
Ezio Melottif5469cf2013-08-17 15:43:51 +0300807 This is used in conjunction with markobject, to represent all
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000808 of the stack following the topmost markobject. For example,
809 the POP_MARK opcode changes the stack from
810
811 [..., markobject, stackslice]
812 to
813 [...]
814
815 No matter how many object are on the stack after the topmost
816 markobject, POP_MARK gets rid of all of them (including the
817 topmost markobject too).
818 """)
819
820##############################################################################
821# Descriptors for pickle opcodes.
822
823class OpcodeInfo(object):
824
825 __slots__ = (
826 # symbolic name of opcode; a string
827 'name',
828
829 # the code used in a bytestream to represent the opcode; a
830 # one-character string
831 'code',
832
833 # If the opcode has an argument embedded in the byte string, an
834 # instance of ArgumentDescriptor specifying its type. Note that
835 # arg.reader(s) can be used to read and decode the argument from
836 # the bytestream s, and arg.doc documents the format of the raw
837 # argument bytes. If the opcode doesn't have an argument embedded
838 # in the bytestream, arg should be None.
839 'arg',
840
841 # what the stack looks like before this opcode runs; a list
842 'stack_before',
843
844 # what the stack looks like after this opcode runs; a list
845 'stack_after',
846
847 # the protocol number in which this opcode was introduced; an int
848 'proto',
849
850 # human-readable docs for this opcode; a string
851 'doc',
852 )
853
854 def __init__(self, name, code, arg,
855 stack_before, stack_after, proto, doc):
856 assert isinstance(name, str)
857 self.name = name
858
859 assert isinstance(code, str)
860 assert len(code) == 1
861 self.code = code
862
863 assert arg is None or isinstance(arg, ArgumentDescriptor)
864 self.arg = arg
865
866 assert isinstance(stack_before, list)
867 for x in stack_before:
868 assert isinstance(x, StackObject)
869 self.stack_before = stack_before
870
871 assert isinstance(stack_after, list)
872 for x in stack_after:
873 assert isinstance(x, StackObject)
874 self.stack_after = stack_after
875
Serhiy Storchaka994f04d2016-12-27 15:09:36 +0200876 assert isinstance(proto, (int, long)) and 0 <= proto <= 2
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000877 self.proto = proto
878
879 assert isinstance(doc, str)
880 self.doc = doc
881
882I = OpcodeInfo
883opcodes = [
884
885 # Ways to spell integers.
886
887 I(name='INT',
888 code='I',
889 arg=decimalnl_short,
890 stack_before=[],
891 stack_after=[pyinteger_or_bool],
892 proto=0,
893 doc="""Push an integer or bool.
894
895 The argument is a newline-terminated decimal literal string.
896
897 The intent may have been that this always fit in a short Python int,
898 but INT can be generated in pickles written on a 64-bit box that
899 require a Python long on a 32-bit box. The difference between this
900 and LONG then is that INT skips a trailing 'L', and produces a short
901 int whenever possible.
902
903 Another difference is due to that, when bool was introduced as a
904 distinct type in 2.3, builtin names True and False were also added to
905 2.2.2, mapping to ints 1 and 0. For compatibility in both directions,
906 True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
907 Leading zeroes are never produced for a genuine integer. The 2.3
908 (and later) unpicklers special-case these and return bool instead;
909 earlier unpicklers ignore the leading "0" and return the int.
910 """),
911
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000912 I(name='BININT',
913 code='J',
914 arg=int4,
915 stack_before=[],
916 stack_after=[pyint],
917 proto=1,
918 doc="""Push a four-byte signed integer.
919
920 This handles the full range of Python (short) integers on a 32-bit
921 box, directly as binary bytes (1 for the opcode and 4 for the integer).
922 If the integer is non-negative and fits in 1 or 2 bytes, pickling via
923 BININT1 or BININT2 saves space.
924 """),
925
926 I(name='BININT1',
927 code='K',
928 arg=uint1,
929 stack_before=[],
930 stack_after=[pyint],
931 proto=1,
932 doc="""Push a one-byte unsigned integer.
933
934 This is a space optimization for pickling very small non-negative ints,
935 in range(256).
936 """),
937
938 I(name='BININT2',
939 code='M',
940 arg=uint2,
941 stack_before=[],
942 stack_after=[pyint],
943 proto=1,
944 doc="""Push a two-byte unsigned integer.
945
946 This is a space optimization for pickling small positive ints, in
947 range(256, 2**16). Integers in range(256) can also be pickled via
948 BININT2, but BININT1 instead saves a byte.
949 """),
950
Tim Petersfdc03462003-01-28 04:56:33 +0000951 I(name='LONG',
952 code='L',
953 arg=decimalnl_long,
954 stack_before=[],
955 stack_after=[pylong],
956 proto=0,
957 doc="""Push a long integer.
958
959 The same as INT, except that the literal ends with 'L', and always
960 unpickles to a Python long. There doesn't seem a real purpose to the
961 trailing 'L'.
962
963 Note that LONG takes time quadratic in the number of digits when
964 unpickling (this is simply due to the nature of decimal->binary
965 conversion). Proto 2 added linear-time (in C; still quadratic-time
966 in Python) LONG1 and LONG4 opcodes.
967 """),
968
969 I(name="LONG1",
970 code='\x8a',
971 arg=long1,
972 stack_before=[],
973 stack_after=[pylong],
974 proto=2,
975 doc="""Long integer using one-byte length.
976
977 A more efficient encoding of a Python long; the long1 encoding
978 says it all."""),
979
980 I(name="LONG4",
981 code='\x8b',
982 arg=long4,
983 stack_before=[],
984 stack_after=[pylong],
985 proto=2,
986 doc="""Long integer using found-byte length.
987
988 A more efficient encoding of a Python long; the long4 encoding
989 says it all."""),
990
Tim Peters8ecfc8e2003-01-27 18:51:48 +0000991 # Ways to spell strings (8-bit, not Unicode).
992
993 I(name='STRING',
994 code='S',
995 arg=stringnl,
996 stack_before=[],
997 stack_after=[pystring],
998 proto=0,
999 doc="""Push a Python string object.
1000
1001 The argument is a repr-style string, with bracketing quote characters,
1002 and perhaps embedded escapes. The argument extends until the next
1003 newline character.
1004 """),
1005
1006 I(name='BINSTRING',
1007 code='T',
1008 arg=string4,
1009 stack_before=[],
1010 stack_after=[pystring],
1011 proto=1,
1012 doc="""Push a Python string object.
1013
1014 There are two arguments: the first is a 4-byte little-endian signed int
1015 giving the number of bytes in the string, and the second is that many
1016 bytes, which are taken literally as the string content.
1017 """),
1018
1019 I(name='SHORT_BINSTRING',
1020 code='U',
1021 arg=string1,
1022 stack_before=[],
1023 stack_after=[pystring],
1024 proto=1,
1025 doc="""Push a Python string object.
1026
1027 There are two arguments: the first is a 1-byte unsigned int giving
1028 the number of bytes in the string, and the second is that many bytes,
1029 which are taken literally as the string content.
1030 """),
1031
1032 # Ways to spell None.
1033
1034 I(name='NONE',
1035 code='N',
1036 arg=None,
1037 stack_before=[],
1038 stack_after=[pynone],
1039 proto=0,
1040 doc="Push None on the stack."),
1041
Tim Petersfdc03462003-01-28 04:56:33 +00001042 # Ways to spell bools, starting with proto 2. See INT for how this was
1043 # done before proto 2.
1044
1045 I(name='NEWTRUE',
1046 code='\x88',
1047 arg=None,
1048 stack_before=[],
1049 stack_after=[pybool],
1050 proto=2,
1051 doc="""True.
1052
1053 Push True onto the stack."""),
1054
1055 I(name='NEWFALSE',
1056 code='\x89',
1057 arg=None,
1058 stack_before=[],
1059 stack_after=[pybool],
1060 proto=2,
1061 doc="""True.
1062
1063 Push False onto the stack."""),
1064
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001065 # Ways to spell Unicode strings.
1066
1067 I(name='UNICODE',
1068 code='V',
1069 arg=unicodestringnl,
1070 stack_before=[],
1071 stack_after=[pyunicode],
1072 proto=0, # this may be pure-text, but it's a later addition
1073 doc="""Push a Python Unicode string object.
1074
1075 The argument is a raw-unicode-escape encoding of a Unicode string,
1076 and so may contain embedded escape sequences. The argument extends
1077 until the next newline character.
1078 """),
1079
1080 I(name='BINUNICODE',
1081 code='X',
1082 arg=unicodestring4,
1083 stack_before=[],
1084 stack_after=[pyunicode],
1085 proto=1,
1086 doc="""Push a Python Unicode string object.
1087
1088 There are two arguments: the first is a 4-byte little-endian signed int
1089 giving the number of bytes in the string. The second is that many
1090 bytes, and is the UTF-8 encoding of the Unicode string.
1091 """),
1092
1093 # Ways to spell floats.
1094
1095 I(name='FLOAT',
1096 code='F',
1097 arg=floatnl,
1098 stack_before=[],
1099 stack_after=[pyfloat],
1100 proto=0,
1101 doc="""Newline-terminated decimal float literal.
1102
1103 The argument is repr(a_float), and in general requires 17 significant
1104 digits for roundtrip conversion to be an identity (this is so for
1105 IEEE-754 double precision values, which is what Python float maps to
1106 on most boxes).
1107
1108 In general, FLOAT cannot be used to transport infinities, NaNs, or
1109 minus zero across boxes (or even on a single box, if the platform C
1110 library can't read the strings it produces for such things -- Windows
1111 is like that), but may do less damage than BINFLOAT on boxes with
1112 greater precision or dynamic range than IEEE-754 double.
1113 """),
1114
1115 I(name='BINFLOAT',
1116 code='G',
1117 arg=float8,
1118 stack_before=[],
1119 stack_after=[pyfloat],
1120 proto=1,
1121 doc="""Float stored in binary form, with 8 bytes of data.
1122
1123 This generally requires less than half the space of FLOAT encoding.
1124 In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1125 minus zero, raises an exception if the exponent exceeds the range of
1126 an IEEE-754 double, and retains no more than 53 bits of precision (if
1127 there are more than that, "add a half and chop" rounding is used to
1128 cut it back to 53 significant bits).
1129 """),
1130
1131 # Ways to build lists.
1132
1133 I(name='EMPTY_LIST',
1134 code=']',
1135 arg=None,
1136 stack_before=[],
1137 stack_after=[pylist],
1138 proto=1,
1139 doc="Push an empty list."),
1140
1141 I(name='APPEND',
1142 code='a',
1143 arg=None,
1144 stack_before=[pylist, anyobject],
1145 stack_after=[pylist],
1146 proto=0,
1147 doc="""Append an object to a list.
1148
1149 Stack before: ... pylist anyobject
1150 Stack after: ... pylist+[anyobject]
Tim Peters81098ac2003-01-28 05:12:08 +00001151
1152 although pylist is really extended in-place.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001153 """),
1154
1155 I(name='APPENDS',
1156 code='e',
1157 arg=None,
1158 stack_before=[pylist, markobject, stackslice],
1159 stack_after=[pylist],
1160 proto=1,
1161 doc="""Extend a list by a slice of stack objects.
1162
1163 Stack before: ... pylist markobject stackslice
1164 Stack after: ... pylist+stackslice
Tim Peters81098ac2003-01-28 05:12:08 +00001165
1166 although pylist is really extended in-place.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001167 """),
1168
1169 I(name='LIST',
1170 code='l',
1171 arg=None,
1172 stack_before=[markobject, stackslice],
1173 stack_after=[pylist],
1174 proto=0,
1175 doc="""Build a list out of the topmost stack slice, after markobject.
1176
1177 All the stack entries following the topmost markobject are placed into
1178 a single Python list, which single list object replaces all of the
1179 stack from the topmost markobject onward. For example,
1180
1181 Stack before: ... markobject 1 2 3 'abc'
1182 Stack after: ... [1, 2, 3, 'abc']
1183 """),
1184
1185 # Ways to build tuples.
1186
1187 I(name='EMPTY_TUPLE',
1188 code=')',
1189 arg=None,
1190 stack_before=[],
1191 stack_after=[pytuple],
1192 proto=1,
1193 doc="Push an empty tuple."),
1194
1195 I(name='TUPLE',
1196 code='t',
1197 arg=None,
1198 stack_before=[markobject, stackslice],
1199 stack_after=[pytuple],
1200 proto=0,
1201 doc="""Build a tuple out of the topmost stack slice, after markobject.
1202
1203 All the stack entries following the topmost markobject are placed into
1204 a single Python tuple, which single tuple object replaces all of the
1205 stack from the topmost markobject onward. For example,
1206
1207 Stack before: ... markobject 1 2 3 'abc'
1208 Stack after: ... (1, 2, 3, 'abc')
1209 """),
1210
Tim Petersfdc03462003-01-28 04:56:33 +00001211 I(name='TUPLE1',
1212 code='\x85',
1213 arg=None,
1214 stack_before=[anyobject],
1215 stack_after=[pytuple],
1216 proto=2,
Alexander Belopolsky84305c52010-07-16 14:53:52 +00001217 doc="""Build a one-tuple out of the topmost item on the stack.
Tim Petersfdc03462003-01-28 04:56:33 +00001218
1219 This code pops one value off the stack and pushes a tuple of
Alexander Belopolsky84305c52010-07-16 14:53:52 +00001220 length 1 whose one item is that value back onto it. In other
1221 words:
Tim Petersfdc03462003-01-28 04:56:33 +00001222
1223 stack[-1] = tuple(stack[-1:])
1224 """),
1225
1226 I(name='TUPLE2',
1227 code='\x86',
1228 arg=None,
1229 stack_before=[anyobject, anyobject],
1230 stack_after=[pytuple],
1231 proto=2,
Alexander Belopolsky84305c52010-07-16 14:53:52 +00001232 doc="""Build a two-tuple out of the top two items on the stack.
Tim Petersfdc03462003-01-28 04:56:33 +00001233
Alexander Belopolsky84305c52010-07-16 14:53:52 +00001234 This code pops two values off the stack and pushes a tuple of
1235 length 2 whose items are those values back onto it. In other
1236 words:
Tim Petersfdc03462003-01-28 04:56:33 +00001237
1238 stack[-2:] = [tuple(stack[-2:])]
1239 """),
1240
1241 I(name='TUPLE3',
1242 code='\x87',
1243 arg=None,
1244 stack_before=[anyobject, anyobject, anyobject],
1245 stack_after=[pytuple],
1246 proto=2,
Alexander Belopolsky84305c52010-07-16 14:53:52 +00001247 doc="""Build a three-tuple out of the top three items on the stack.
Tim Petersfdc03462003-01-28 04:56:33 +00001248
Alexander Belopolsky84305c52010-07-16 14:53:52 +00001249 This code pops three values off the stack and pushes a tuple of
1250 length 3 whose items are those values back onto it. In other
1251 words:
Tim Petersfdc03462003-01-28 04:56:33 +00001252
1253 stack[-3:] = [tuple(stack[-3:])]
1254 """),
1255
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001256 # Ways to build dicts.
1257
1258 I(name='EMPTY_DICT',
1259 code='}',
1260 arg=None,
1261 stack_before=[],
1262 stack_after=[pydict],
1263 proto=1,
1264 doc="Push an empty dict."),
1265
1266 I(name='DICT',
1267 code='d',
1268 arg=None,
1269 stack_before=[markobject, stackslice],
1270 stack_after=[pydict],
1271 proto=0,
1272 doc="""Build a dict out of the topmost stack slice, after markobject.
1273
1274 All the stack entries following the topmost markobject are placed into
1275 a single Python dict, which single dict object replaces all of the
1276 stack from the topmost markobject onward. The stack slice alternates
1277 key, value, key, value, .... For example,
1278
1279 Stack before: ... markobject 1 2 3 'abc'
1280 Stack after: ... {1: 2, 3: 'abc'}
1281 """),
1282
1283 I(name='SETITEM',
1284 code='s',
1285 arg=None,
1286 stack_before=[pydict, anyobject, anyobject],
1287 stack_after=[pydict],
1288 proto=0,
1289 doc="""Add a key+value pair to an existing dict.
1290
1291 Stack before: ... pydict key value
1292 Stack after: ... pydict
1293
1294 where pydict has been modified via pydict[key] = value.
1295 """),
1296
1297 I(name='SETITEMS',
1298 code='u',
1299 arg=None,
1300 stack_before=[pydict, markobject, stackslice],
1301 stack_after=[pydict],
1302 proto=1,
1303 doc="""Add an arbitrary number of key+value pairs to an existing dict.
1304
1305 The slice of the stack following the topmost markobject is taken as
1306 an alternating sequence of keys and values, added to the dict
1307 immediately under the topmost markobject. Everything at and after the
1308 topmost markobject is popped, leaving the mutated dict at the top
1309 of the stack.
1310
1311 Stack before: ... pydict markobject key_1 value_1 ... key_n value_n
1312 Stack after: ... pydict
1313
1314 where pydict has been modified via pydict[key_i] = value_i for i in
1315 1, 2, ..., n, and in that order.
1316 """),
1317
1318 # Stack manipulation.
1319
1320 I(name='POP',
1321 code='0',
1322 arg=None,
1323 stack_before=[anyobject],
1324 stack_after=[],
1325 proto=0,
1326 doc="Discard the top stack item, shrinking the stack by one item."),
1327
1328 I(name='DUP',
1329 code='2',
1330 arg=None,
1331 stack_before=[anyobject],
1332 stack_after=[anyobject, anyobject],
1333 proto=0,
1334 doc="Push the top stack item onto the stack again, duplicating it."),
1335
1336 I(name='MARK',
1337 code='(',
1338 arg=None,
1339 stack_before=[],
1340 stack_after=[markobject],
1341 proto=0,
1342 doc="""Push markobject onto the stack.
1343
1344 markobject is a unique object, used by other opcodes to identify a
1345 region of the stack containing a variable number of objects for them
1346 to work on. See markobject.doc for more detail.
1347 """),
1348
1349 I(name='POP_MARK',
1350 code='1',
1351 arg=None,
1352 stack_before=[markobject, stackslice],
1353 stack_after=[],
Collin Winter1ef9c832009-05-20 16:49:12 +00001354 proto=1,
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001355 doc="""Pop all the stack objects at and above the topmost markobject.
1356
1357 When an opcode using a variable number of stack objects is done,
1358 POP_MARK is used to remove those objects, and to remove the markobject
1359 that delimited their starting position on the stack.
1360 """),
1361
1362 # Memo manipulation. There are really only two operations (get and put),
1363 # each in all-text, "short binary", and "long binary" flavors.
1364
1365 I(name='GET',
1366 code='g',
1367 arg=decimalnl_short,
1368 stack_before=[],
1369 stack_after=[anyobject],
1370 proto=0,
1371 doc="""Read an object from the memo and push it on the stack.
1372
Ezio Melottic2077b02011-03-16 12:34:31 +02001373 The index of the memo object to push is given by the newline-terminated
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001374 decimal string following. BINGET and LONG_BINGET are space-optimized
1375 versions.
1376 """),
1377
1378 I(name='BINGET',
1379 code='h',
1380 arg=uint1,
1381 stack_before=[],
1382 stack_after=[anyobject],
1383 proto=1,
1384 doc="""Read an object from the memo and push it on the stack.
1385
1386 The index of the memo object to push is given by the 1-byte unsigned
1387 integer following.
1388 """),
1389
1390 I(name='LONG_BINGET',
1391 code='j',
1392 arg=int4,
1393 stack_before=[],
1394 stack_after=[anyobject],
1395 proto=1,
1396 doc="""Read an object from the memo and push it on the stack.
1397
1398 The index of the memo object to push is given by the 4-byte signed
1399 little-endian integer following.
1400 """),
1401
1402 I(name='PUT',
1403 code='p',
1404 arg=decimalnl_short,
1405 stack_before=[],
1406 stack_after=[],
1407 proto=0,
1408 doc="""Store the stack top into the memo. The stack is not popped.
1409
1410 The index of the memo location to write into is given by the newline-
1411 terminated decimal string following. BINPUT and LONG_BINPUT are
1412 space-optimized versions.
1413 """),
1414
1415 I(name='BINPUT',
1416 code='q',
1417 arg=uint1,
1418 stack_before=[],
1419 stack_after=[],
1420 proto=1,
1421 doc="""Store the stack top into the memo. The stack is not popped.
1422
1423 The index of the memo location to write into is given by the 1-byte
1424 unsigned integer following.
1425 """),
1426
1427 I(name='LONG_BINPUT',
1428 code='r',
1429 arg=int4,
1430 stack_before=[],
1431 stack_after=[],
1432 proto=1,
1433 doc="""Store the stack top into the memo. The stack is not popped.
1434
1435 The index of the memo location to write into is given by the 4-byte
1436 signed little-endian integer following.
1437 """),
1438
Tim Petersfdc03462003-01-28 04:56:33 +00001439 # Access the extension registry (predefined objects). Akin to the GET
1440 # family.
1441
1442 I(name='EXT1',
1443 code='\x82',
1444 arg=uint1,
1445 stack_before=[],
1446 stack_after=[anyobject],
1447 proto=2,
1448 doc="""Extension code.
1449
1450 This code and the similar EXT2 and EXT4 allow using a registry
1451 of popular objects that are pickled by name, typically classes.
1452 It is envisioned that through a global negotiation and
1453 registration process, third parties can set up a mapping between
1454 ints and object names.
1455
1456 In order to guarantee pickle interchangeability, the extension
1457 code registry ought to be global, although a range of codes may
1458 be reserved for private use.
1459
1460 EXT1 has a 1-byte integer argument. This is used to index into the
1461 extension registry, and the object at that index is pushed on the stack.
1462 """),
1463
1464 I(name='EXT2',
1465 code='\x83',
1466 arg=uint2,
1467 stack_before=[],
1468 stack_after=[anyobject],
1469 proto=2,
1470 doc="""Extension code.
1471
1472 See EXT1. EXT2 has a two-byte integer argument.
1473 """),
1474
1475 I(name='EXT4',
1476 code='\x84',
1477 arg=int4,
1478 stack_before=[],
1479 stack_after=[anyobject],
1480 proto=2,
1481 doc="""Extension code.
1482
1483 See EXT1. EXT4 has a four-byte integer argument.
1484 """),
1485
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001486 # Push a class object, or module function, on the stack, via its module
1487 # and name.
1488
1489 I(name='GLOBAL',
1490 code='c',
1491 arg=stringnl_noescape_pair,
1492 stack_before=[],
1493 stack_after=[anyobject],
1494 proto=0,
1495 doc="""Push a global object (module.attr) on the stack.
1496
1497 Two newline-terminated strings follow the GLOBAL opcode. The first is
1498 taken as a module name, and the second as a class name. The class
1499 object module.class is pushed on the stack. More accurately, the
1500 object returned by self.find_class(module, class) is pushed on the
1501 stack, so unpickling subclasses can override this form of lookup.
1502 """),
1503
1504 # Ways to build objects of classes pickle doesn't know about directly
1505 # (user-defined classes). I despair of documenting this accurately
1506 # and comprehensibly -- you really have to read the pickle code to
1507 # find all the special cases.
1508
1509 I(name='REDUCE',
1510 code='R',
1511 arg=None,
1512 stack_before=[anyobject, anyobject],
1513 stack_after=[anyobject],
1514 proto=0,
1515 doc="""Push an object built from a callable and an argument tuple.
1516
1517 The opcode is named to remind of the __reduce__() method.
1518
1519 Stack before: ... callable pytuple
1520 Stack after: ... callable(*pytuple)
1521
1522 The callable and the argument tuple are the first two items returned
1523 by a __reduce__ method. Applying the callable to the argtuple is
1524 supposed to reproduce the original object, or at least get it started.
1525 If the __reduce__ method returns a 3-tuple, the last component is an
1526 argument to be passed to the object's __setstate__, and then the REDUCE
1527 opcode is followed by code to create setstate's argument, and then a
1528 BUILD opcode to apply __setstate__ to that argument.
1529
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001530 If type(callable) is not ClassType, REDUCE complains unless the
Georg Brandldffbf5f2008-05-20 07:49:57 +00001531 callable has been registered with the copy_reg module's
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001532 safe_constructors dict, or the callable has a magic
1533 '__safe_for_unpickling__' attribute with a true value. I'm not sure
1534 why it does this, but I've sure seen this complaint often enough when
1535 I didn't want to <wink>.
1536 """),
1537
1538 I(name='BUILD',
1539 code='b',
1540 arg=None,
1541 stack_before=[anyobject, anyobject],
1542 stack_after=[anyobject],
1543 proto=0,
1544 doc="""Finish building an object, via __setstate__ or dict update.
1545
1546 Stack before: ... anyobject argument
1547 Stack after: ... anyobject
1548
1549 where anyobject may have been mutated, as follows:
1550
1551 If the object has a __setstate__ method,
1552
1553 anyobject.__setstate__(argument)
1554
1555 is called.
1556
1557 Else the argument must be a dict, the object must have a __dict__, and
1558 the object is updated via
1559
1560 anyobject.__dict__.update(argument)
1561
1562 This may raise RuntimeError in restricted execution mode (which
1563 disallows access to __dict__ directly); in that case, the object
1564 is updated instead via
1565
1566 for k, v in argument.items():
1567 anyobject[k] = v
1568 """),
1569
1570 I(name='INST',
1571 code='i',
1572 arg=stringnl_noescape_pair,
1573 stack_before=[markobject, stackslice],
1574 stack_after=[anyobject],
1575 proto=0,
1576 doc="""Build a class instance.
1577
1578 This is the protocol 0 version of protocol 1's OBJ opcode.
1579 INST is followed by two newline-terminated strings, giving a
1580 module and class name, just as for the GLOBAL opcode (and see
1581 GLOBAL for more details about that). self.find_class(module, name)
1582 is used to get a class object.
1583
1584 In addition, all the objects on the stack following the topmost
1585 markobject are gathered into a tuple and popped (along with the
1586 topmost markobject), just as for the TUPLE opcode.
1587
1588 Now it gets complicated. If all of these are true:
1589
1590 + The argtuple is empty (markobject was at the top of the stack
1591 at the start).
1592
1593 + It's an old-style class object (the type of the class object is
1594 ClassType).
1595
1596 + The class object does not have a __getinitargs__ attribute.
1597
1598 then we want to create an old-style class instance without invoking
1599 its __init__() method (pickle has waffled on this over the years; not
1600 calling __init__() is current wisdom). In this case, an instance of
1601 an old-style dummy class is created, and then we try to rebind its
1602 __class__ attribute to the desired class object. If this succeeds,
1603 the new instance object is pushed on the stack, and we're done. In
1604 restricted execution mode it can fail (assignment to __class__ is
1605 disallowed), and I'm not really sure what happens then -- it looks
1606 like the code ends up calling the class object's __init__ anyway,
1607 via falling into the next case.
1608
1609 Else (the argtuple is not empty, it's not an old-style class object,
1610 or the class object does have a __getinitargs__ attribute), the code
1611 first insists that the class object have a __safe_for_unpickling__
1612 attribute. Unlike as for the __safe_for_unpickling__ check in REDUCE,
1613 it doesn't matter whether this attribute has a true or false value, it
Guido van Rossumecb11042003-01-29 06:24:30 +00001614 only matters whether it exists (XXX this is a bug; cPickle
1615 requires the attribute to be true). If __safe_for_unpickling__
1616 doesn't exist, UnpicklingError is raised.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001617
1618 Else (the class object does have a __safe_for_unpickling__ attr),
1619 the class object obtained from INST's arguments is applied to the
1620 argtuple obtained from the stack, and the resulting instance object
1621 is pushed on the stack.
Tim Peters2b93c4c2003-01-30 16:35:08 +00001622
1623 NOTE: checks for __safe_for_unpickling__ went away in Python 2.3.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001624 """),
1625
1626 I(name='OBJ',
1627 code='o',
1628 arg=None,
1629 stack_before=[markobject, anyobject, stackslice],
1630 stack_after=[anyobject],
1631 proto=1,
1632 doc="""Build a class instance.
1633
1634 This is the protocol 1 version of protocol 0's INST opcode, and is
1635 very much like it. The major difference is that the class object
1636 is taken off the stack, allowing it to be retrieved from the memo
1637 repeatedly if several instances of the same class are created. This
1638 can be much more efficient (in both time and space) than repeatedly
1639 embedding the module and class names in INST opcodes.
1640
1641 Unlike INST, OBJ takes no arguments from the opcode stream. Instead
1642 the class object is taken off the stack, immediately above the
1643 topmost markobject:
1644
1645 Stack before: ... markobject classobject stackslice
1646 Stack after: ... new_instance_object
1647
1648 As for INST, the remainder of the stack above the markobject is
1649 gathered into an argument tuple, and then the logic seems identical,
Guido van Rossumecb11042003-01-29 06:24:30 +00001650 except that no __safe_for_unpickling__ check is done (XXX this is
1651 a bug; cPickle does test __safe_for_unpickling__). See INST for
1652 the gory details.
Tim Peters2b93c4c2003-01-30 16:35:08 +00001653
1654 NOTE: In Python 2.3, INST and OBJ are identical except for how they
1655 get the class object. That was always the intent; the implementations
1656 had diverged for accidental reasons.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001657 """),
1658
Tim Petersfdc03462003-01-28 04:56:33 +00001659 I(name='NEWOBJ',
1660 code='\x81',
1661 arg=None,
1662 stack_before=[anyobject, anyobject],
1663 stack_after=[anyobject],
1664 proto=2,
1665 doc="""Build an object instance.
1666
1667 The stack before should be thought of as containing a class
1668 object followed by an argument tuple (the tuple being the stack
1669 top). Call these cls and args. They are popped off the stack,
1670 and the value returned by cls.__new__(cls, *args) is pushed back
1671 onto the stack.
1672 """),
1673
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001674 # Machine control.
1675
Tim Petersfdc03462003-01-28 04:56:33 +00001676 I(name='PROTO',
1677 code='\x80',
1678 arg=uint1,
1679 stack_before=[],
1680 stack_after=[],
1681 proto=2,
1682 doc="""Protocol version indicator.
1683
1684 For protocol 2 and above, a pickle must start with this opcode.
1685 The argument is the protocol version, an int in range(2, 256).
1686 """),
1687
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001688 I(name='STOP',
1689 code='.',
1690 arg=None,
1691 stack_before=[anyobject],
1692 stack_after=[],
1693 proto=0,
1694 doc="""Stop the unpickling machine.
1695
1696 Every pickle ends with this opcode. The object at the top of the stack
1697 is popped, and that's the result of unpickling. The stack should be
1698 empty then.
1699 """),
1700
1701 # Ways to deal with persistent IDs.
1702
1703 I(name='PERSID',
1704 code='P',
1705 arg=stringnl_noescape,
1706 stack_before=[],
1707 stack_after=[anyobject],
1708 proto=0,
1709 doc="""Push an object identified by a persistent ID.
1710
1711 The pickle module doesn't define what a persistent ID means. PERSID's
1712 argument is a newline-terminated str-style (no embedded escapes, no
1713 bracketing quote characters) string, which *is* "the persistent ID".
1714 The unpickler passes this string to self.persistent_load(). Whatever
1715 object that returns is pushed on the stack. There is no implementation
1716 of persistent_load() in Python's unpickler: it must be supplied by an
1717 unpickler subclass.
1718 """),
1719
1720 I(name='BINPERSID',
1721 code='Q',
1722 arg=None,
1723 stack_before=[anyobject],
1724 stack_after=[anyobject],
1725 proto=1,
1726 doc="""Push an object identified by a persistent ID.
1727
1728 Like PERSID, except the persistent ID is popped off the stack (instead
1729 of being a string embedded in the opcode bytestream). The persistent
1730 ID is passed to self.persistent_load(), and whatever object that
1731 returns is pushed on the stack. See PERSID for more detail.
1732 """),
1733]
1734del I
1735
1736# Verify uniqueness of .name and .code members.
1737name2i = {}
1738code2i = {}
1739
1740for i, d in enumerate(opcodes):
1741 if d.name in name2i:
1742 raise ValueError("repeated name %r at indices %d and %d" %
1743 (d.name, name2i[d.name], i))
1744 if d.code in code2i:
1745 raise ValueError("repeated code %r at indices %d and %d" %
1746 (d.code, code2i[d.code], i))
1747
1748 name2i[d.name] = i
1749 code2i[d.code] = i
1750
1751del name2i, code2i, i, d
1752
1753##############################################################################
1754# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1755# Also ensure we've got the same stuff as pickle.py, although the
1756# introspection here is dicey.
1757
1758code2op = {}
1759for d in opcodes:
1760 code2op[d.code] = d
1761del d
1762
1763def assure_pickle_consistency(verbose=False):
1764 import pickle, re
1765
1766 copy = code2op.copy()
1767 for name in pickle.__all__:
1768 if not re.match("[A-Z][A-Z0-9_]+$", name):
1769 if verbose:
1770 print "skipping %r: it doesn't look like an opcode name" % name
1771 continue
1772 picklecode = getattr(pickle, name)
1773 if not isinstance(picklecode, str) or len(picklecode) != 1:
1774 if verbose:
1775 print ("skipping %r: value %r doesn't look like a pickle "
1776 "code" % (name, picklecode))
1777 continue
1778 if picklecode in copy:
1779 if verbose:
1780 print "checking name %r w/ code %r for consistency" % (
1781 name, picklecode)
1782 d = copy[picklecode]
1783 if d.name != name:
1784 raise ValueError("for pickle code %r, pickle.py uses name %r "
1785 "but we're using name %r" % (picklecode,
1786 name,
1787 d.name))
1788 # Forget this one. Any left over in copy at the end are a problem
1789 # of a different kind.
1790 del copy[picklecode]
1791 else:
1792 raise ValueError("pickle.py appears to have a pickle opcode with "
1793 "name %r and code %r, but we don't" %
1794 (name, picklecode))
1795 if copy:
1796 msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1797 for code, d in copy.items():
1798 msg.append(" name %r with code %r" % (d.name, code))
1799 raise ValueError("\n".join(msg))
1800
1801assure_pickle_consistency()
Tim Petersc0c12b52003-01-29 00:56:17 +00001802del assure_pickle_consistency
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001803
1804##############################################################################
1805# A pickle opcode generator.
1806
1807def genops(pickle):
Guido van Rossuma72ded92003-01-27 19:40:47 +00001808 """Generate all the opcodes in a pickle.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001809
1810 'pickle' is a file-like object, or string, containing the pickle.
1811
1812 Each opcode in the pickle is generated, from the current pickle position,
1813 stopping after a STOP opcode is delivered. A triple is generated for
1814 each opcode:
1815
1816 opcode, arg, pos
1817
1818 opcode is an OpcodeInfo record, describing the current opcode.
1819
1820 If the opcode has an argument embedded in the pickle, arg is its decoded
1821 value, as a Python object. If the opcode doesn't have an argument, arg
1822 is None.
1823
1824 If the pickle has a tell() method, pos was the value of pickle.tell()
1825 before reading the current opcode. If the pickle is a string object,
1826 it's wrapped in a StringIO object, and the latter's tell() result is
1827 used. Else (the pickle doesn't have a tell(), and it's not obvious how
1828 to query its current position) pos is None.
1829 """
1830
1831 import cStringIO as StringIO
1832
1833 if isinstance(pickle, str):
1834 pickle = StringIO.StringIO(pickle)
1835
1836 if hasattr(pickle, "tell"):
1837 getpos = pickle.tell
1838 else:
1839 getpos = lambda: None
1840
1841 while True:
1842 pos = getpos()
1843 code = pickle.read(1)
1844 opcode = code2op.get(code)
1845 if opcode is None:
1846 if code == "":
1847 raise ValueError("pickle exhausted before seeing STOP")
1848 else:
1849 raise ValueError("at position %s, opcode %r unknown" % (
1850 pos is None and "<unknown>" or pos,
1851 code))
1852 if opcode.arg is None:
1853 arg = None
1854 else:
1855 arg = opcode.arg.reader(pickle)
1856 yield opcode, arg, pos
1857 if code == '.':
1858 assert opcode.name == 'STOP'
1859 break
1860
1861##############################################################################
Raymond Hettingerda614dc2008-02-10 20:35:16 +00001862# A pickle optimizer.
1863
1864def optimize(p):
1865 'Optimize a pickle string by removing unused PUT opcodes'
1866 gets = set() # set of args used by a GET opcode
1867 puts = [] # (arg, startpos, stoppos) for the PUT opcodes
1868 prevpos = None # set to pos if previous opcode was a PUT
1869 for opcode, arg, pos in genops(p):
1870 if prevpos is not None:
1871 puts.append((prevarg, prevpos, pos))
1872 prevpos = None
1873 if 'PUT' in opcode.name:
1874 prevarg, prevpos = arg, pos
1875 elif 'GET' in opcode.name:
1876 gets.add(arg)
1877
1878 # Copy the pickle string except for PUTS without a corresponding GET
1879 s = []
1880 i = 0
1881 for arg, start, stop in puts:
1882 j = stop if (arg in gets) else start
1883 s.append(p[i:j])
1884 i = stop
1885 s.append(p[i:])
1886 return ''.join(s)
1887
1888##############################################################################
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001889# A symbolic pickle disassembler.
1890
Tim Peters62235e72003-02-05 19:55:53 +00001891def dis(pickle, out=None, memo=None, indentlevel=4):
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001892 """Produce a symbolic disassembly of a pickle.
1893
1894 'pickle' is a file-like object, or string, containing a (at least one)
1895 pickle. The pickle is disassembled from the current position, through
1896 the first STOP opcode encountered.
1897
1898 Optional arg 'out' is a file-like object to which the disassembly is
1899 printed. It defaults to sys.stdout.
1900
Tim Peters62235e72003-02-05 19:55:53 +00001901 Optional arg 'memo' is a Python dict, used as the pickle's memo. It
1902 may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1903 Passing the same memo object to another dis() call then allows disassembly
1904 to proceed across multiple pickles that were all created by the same
1905 pickler with the same memo. Ordinarily you don't need to worry about this.
1906
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001907 Optional arg indentlevel is the number of blanks by which to indent
1908 a new MARK level. It defaults to 4.
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001909
1910 In addition to printing the disassembly, some sanity checks are made:
1911
1912 + All embedded opcode arguments "make sense".
1913
1914 + Explicit and implicit pop operations have enough items on the stack.
1915
1916 + When an opcode implicitly refers to a markobject, a markobject is
1917 actually on the stack.
1918
1919 + A memo entry isn't referenced before it's defined.
1920
1921 + The markobject isn't stored in the memo.
1922
1923 + A memo entry isn't redefined.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001924 """
1925
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001926 # Most of the hair here is for sanity checks, but most of it is needed
1927 # anyway to detect when a protocol 0 POP takes a MARK off the stack
1928 # (which in turn is needed to indent MARK blocks correctly).
1929
1930 stack = [] # crude emulation of unpickler stack
Tim Peters62235e72003-02-05 19:55:53 +00001931 if memo is None:
Ezio Melottif5469cf2013-08-17 15:43:51 +03001932 memo = {} # crude emulation of unpickler memo
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001933 maxproto = -1 # max protocol number seen
1934 markstack = [] # bytecode positions of MARK opcodes
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001935 indentchunk = ' ' * indentlevel
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001936 errormsg = None
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001937 for opcode, arg, pos in genops(pickle):
1938 if pos is not None:
1939 print >> out, "%5d:" % pos,
1940
Tim Petersd0f7c862003-01-28 15:27:57 +00001941 line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1942 indentchunk * len(markstack),
1943 opcode.name)
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001944
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001945 maxproto = max(maxproto, opcode.proto)
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001946 before = opcode.stack_before # don't mutate
1947 after = opcode.stack_after # don't mutate
Tim Peters43277d62003-01-30 15:02:12 +00001948 numtopop = len(before)
1949
1950 # See whether a MARK should be popped.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001951 markmsg = None
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001952 if markobject in before or (opcode.name == "POP" and
1953 stack and
1954 stack[-1] is markobject):
1955 assert markobject not in after
Tim Peters43277d62003-01-30 15:02:12 +00001956 if __debug__:
1957 if markobject in before:
1958 assert before[-1] is stackslice
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001959 if markstack:
1960 markpos = markstack.pop()
1961 if markpos is None:
1962 markmsg = "(MARK at unknown opcode offset)"
1963 else:
1964 markmsg = "(MARK at %d)" % markpos
1965 # Pop everything at and after the topmost markobject.
1966 while stack[-1] is not markobject:
1967 stack.pop()
1968 stack.pop()
Tim Peters43277d62003-01-30 15:02:12 +00001969 # Stop later code from popping too much.
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001970 try:
Tim Peters43277d62003-01-30 15:02:12 +00001971 numtopop = before.index(markobject)
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001972 except ValueError:
1973 assert opcode.name == "POP"
Tim Peters43277d62003-01-30 15:02:12 +00001974 numtopop = 0
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001975 else:
1976 errormsg = markmsg = "no MARK exists on stack"
1977
1978 # Check for correct memo usage.
1979 if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
Tim Peters43277d62003-01-30 15:02:12 +00001980 assert arg is not None
Tim Petersc1c2b3e2003-01-29 20:12:21 +00001981 if arg in memo:
1982 errormsg = "memo key %r already defined" % arg
1983 elif not stack:
1984 errormsg = "stack is empty -- can't store into memo"
1985 elif stack[-1] is markobject:
1986 errormsg = "can't store markobject in the memo"
1987 else:
1988 memo[arg] = stack[-1]
1989
1990 elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
1991 if arg in memo:
1992 assert len(after) == 1
1993 after = [memo[arg]] # for better stack emulation
1994 else:
1995 errormsg = "memo key %r has never been stored into" % arg
Tim Peters8ecfc8e2003-01-27 18:51:48 +00001996
1997 if arg is not None or markmsg:
1998 # make a mild effort to align arguments
1999 line += ' ' * (10 - len(opcode.name))
2000 if arg is not None:
2001 line += ' ' + repr(arg)
2002 if markmsg:
2003 line += ' ' + markmsg
2004 print >> out, line
2005
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002006 if errormsg:
2007 # Note that we delayed complaining until the offending opcode
2008 # was printed.
2009 raise ValueError(errormsg)
2010
2011 # Emulate the stack effects.
Tim Peters43277d62003-01-30 15:02:12 +00002012 if len(stack) < numtopop:
2013 raise ValueError("tries to pop %d items from stack with "
2014 "only %d items" % (numtopop, len(stack)))
2015 if numtopop:
2016 del stack[-numtopop:]
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002017 if markobject in after:
Tim Peters43277d62003-01-30 15:02:12 +00002018 assert markobject not in before
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002019 markstack.append(pos)
2020
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002021 stack.extend(after)
2022
2023 print >> out, "highest protocol among opcodes =", maxproto
2024 if stack:
2025 raise ValueError("stack not empty after STOP: %r" % stack)
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002026
Tim Peters90718a42005-02-15 16:22:34 +00002027# For use in the doctest, simply as an example of a class to pickle.
2028class _Example:
2029 def __init__(self, value):
2030 self.value = value
2031
Guido van Rossum03e35322003-01-28 15:37:13 +00002032_dis_test = r"""
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002033>>> import pickle
2034>>> x = [1, 2, (3, 4), {'abc': u"def"}]
Guido van Rossum57028352003-01-28 15:09:10 +00002035>>> pkl = pickle.dumps(x, 0)
2036>>> dis(pkl)
Tim Petersd0f7c862003-01-28 15:27:57 +00002037 0: ( MARK
2038 1: l LIST (MARK at 0)
2039 2: p PUT 0
2040 5: I INT 1
2041 8: a APPEND
2042 9: I INT 2
2043 12: a APPEND
2044 13: ( MARK
2045 14: I INT 3
2046 17: I INT 4
2047 20: t TUPLE (MARK at 13)
2048 21: p PUT 1
2049 24: a APPEND
2050 25: ( MARK
2051 26: d DICT (MARK at 25)
2052 27: p PUT 2
2053 30: S STRING 'abc'
2054 37: p PUT 3
2055 40: V UNICODE u'def'
2056 45: p PUT 4
2057 48: s SETITEM
2058 49: a APPEND
2059 50: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002060highest protocol among opcodes = 0
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002061
2062Try again with a "binary" pickle.
2063
Guido van Rossum57028352003-01-28 15:09:10 +00002064>>> pkl = pickle.dumps(x, 1)
2065>>> dis(pkl)
Tim Petersd0f7c862003-01-28 15:27:57 +00002066 0: ] EMPTY_LIST
2067 1: q BINPUT 0
2068 3: ( MARK
2069 4: K BININT1 1
2070 6: K BININT1 2
2071 8: ( MARK
2072 9: K BININT1 3
2073 11: K BININT1 4
2074 13: t TUPLE (MARK at 8)
2075 14: q BINPUT 1
2076 16: } EMPTY_DICT
2077 17: q BINPUT 2
2078 19: U SHORT_BINSTRING 'abc'
2079 24: q BINPUT 3
2080 26: X BINUNICODE u'def'
2081 34: q BINPUT 4
2082 36: s SETITEM
2083 37: e APPENDS (MARK at 3)
2084 38: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002085highest protocol among opcodes = 1
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002086
2087Exercise the INST/OBJ/BUILD family.
2088
Mark Dickinson10085c62009-01-24 21:08:38 +00002089>>> import pickletools
2090>>> dis(pickle.dumps(pickletools.dis, 0))
2091 0: c GLOBAL 'pickletools dis'
2092 17: p PUT 0
2093 20: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002094highest protocol among opcodes = 0
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002095
Tim Peters90718a42005-02-15 16:22:34 +00002096>>> from pickletools import _Example
2097>>> x = [_Example(42)] * 2
Guido van Rossumf29d3d62003-01-27 22:47:53 +00002098>>> dis(pickle.dumps(x, 0))
Tim Petersd0f7c862003-01-28 15:27:57 +00002099 0: ( MARK
2100 1: l LIST (MARK at 0)
2101 2: p PUT 0
2102 5: ( MARK
Tim Peters90718a42005-02-15 16:22:34 +00002103 6: i INST 'pickletools _Example' (MARK at 5)
Tim Petersd0f7c862003-01-28 15:27:57 +00002104 28: p PUT 1
2105 31: ( MARK
2106 32: d DICT (MARK at 31)
2107 33: p PUT 2
Tim Peters90718a42005-02-15 16:22:34 +00002108 36: S STRING 'value'
2109 45: p PUT 3
2110 48: I INT 42
2111 52: s SETITEM
2112 53: b BUILD
2113 54: a APPEND
2114 55: g GET 1
2115 58: a APPEND
2116 59: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002117highest protocol among opcodes = 0
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002118
2119>>> dis(pickle.dumps(x, 1))
Tim Petersd0f7c862003-01-28 15:27:57 +00002120 0: ] EMPTY_LIST
2121 1: q BINPUT 0
2122 3: ( MARK
2123 4: ( MARK
Tim Peters90718a42005-02-15 16:22:34 +00002124 5: c GLOBAL 'pickletools _Example'
Tim Petersd0f7c862003-01-28 15:27:57 +00002125 27: q BINPUT 1
2126 29: o OBJ (MARK at 4)
2127 30: q BINPUT 2
2128 32: } EMPTY_DICT
2129 33: q BINPUT 3
Tim Peters90718a42005-02-15 16:22:34 +00002130 35: U SHORT_BINSTRING 'value'
2131 42: q BINPUT 4
2132 44: K BININT1 42
2133 46: s SETITEM
2134 47: b BUILD
2135 48: h BINGET 2
2136 50: e APPENDS (MARK at 3)
2137 51: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002138highest protocol among opcodes = 1
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002139
2140Try "the canonical" recursive-object test.
2141
2142>>> L = []
2143>>> T = L,
2144>>> L.append(T)
2145>>> L[0] is T
2146True
2147>>> T[0] is L
2148True
2149>>> L[0][0] is L
2150True
2151>>> T[0][0] is T
2152True
Guido van Rossumf29d3d62003-01-27 22:47:53 +00002153>>> dis(pickle.dumps(L, 0))
Tim Petersd0f7c862003-01-28 15:27:57 +00002154 0: ( MARK
2155 1: l LIST (MARK at 0)
2156 2: p PUT 0
2157 5: ( MARK
2158 6: g GET 0
2159 9: t TUPLE (MARK at 5)
2160 10: p PUT 1
2161 13: a APPEND
2162 14: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002163highest protocol among opcodes = 0
2164
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002165>>> dis(pickle.dumps(L, 1))
Tim Petersd0f7c862003-01-28 15:27:57 +00002166 0: ] EMPTY_LIST
2167 1: q BINPUT 0
2168 3: ( MARK
2169 4: h BINGET 0
2170 6: t TUPLE (MARK at 3)
2171 7: q BINPUT 1
2172 9: a APPEND
2173 10: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002174highest protocol among opcodes = 1
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002175
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002176Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2177has to emulate the stack in order to realize that the POP opcode at 16 gets
2178rid of the MARK at 0.
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002179
Guido van Rossumf29d3d62003-01-27 22:47:53 +00002180>>> dis(pickle.dumps(T, 0))
Tim Petersd0f7c862003-01-28 15:27:57 +00002181 0: ( MARK
2182 1: ( MARK
2183 2: l LIST (MARK at 1)
2184 3: p PUT 0
2185 6: ( MARK
2186 7: g GET 0
2187 10: t TUPLE (MARK at 6)
2188 11: p PUT 1
2189 14: a APPEND
2190 15: 0 POP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002191 16: 0 POP (MARK at 0)
2192 17: g GET 1
2193 20: . STOP
2194highest protocol among opcodes = 0
2195
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002196>>> dis(pickle.dumps(T, 1))
Tim Petersd0f7c862003-01-28 15:27:57 +00002197 0: ( MARK
2198 1: ] EMPTY_LIST
2199 2: q BINPUT 0
2200 4: ( MARK
2201 5: h BINGET 0
2202 7: t TUPLE (MARK at 4)
2203 8: q BINPUT 1
2204 10: a APPEND
2205 11: 1 POP_MARK (MARK at 0)
2206 12: h BINGET 1
2207 14: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002208highest protocol among opcodes = 1
Tim Petersd0f7c862003-01-28 15:27:57 +00002209
2210Try protocol 2.
2211
2212>>> dis(pickle.dumps(L, 2))
2213 0: \x80 PROTO 2
2214 2: ] EMPTY_LIST
2215 3: q BINPUT 0
2216 5: h BINGET 0
2217 7: \x85 TUPLE1
2218 8: q BINPUT 1
2219 10: a APPEND
2220 11: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002221highest protocol among opcodes = 2
Tim Petersd0f7c862003-01-28 15:27:57 +00002222
2223>>> dis(pickle.dumps(T, 2))
2224 0: \x80 PROTO 2
2225 2: ] EMPTY_LIST
2226 3: q BINPUT 0
2227 5: h BINGET 0
2228 7: \x85 TUPLE1
2229 8: q BINPUT 1
2230 10: a APPEND
2231 11: 0 POP
2232 12: h BINGET 1
2233 14: . STOP
Tim Petersc1c2b3e2003-01-29 20:12:21 +00002234highest protocol among opcodes = 2
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002235"""
2236
Tim Peters62235e72003-02-05 19:55:53 +00002237_memo_test = r"""
2238>>> import pickle
2239>>> from StringIO import StringIO
2240>>> f = StringIO()
2241>>> p = pickle.Pickler(f, 2)
2242>>> x = [1, 2, 3]
2243>>> p.dump(x)
2244>>> p.dump(x)
2245>>> f.seek(0)
2246>>> memo = {}
2247>>> dis(f, memo=memo)
2248 0: \x80 PROTO 2
2249 2: ] EMPTY_LIST
2250 3: q BINPUT 0
2251 5: ( MARK
2252 6: K BININT1 1
2253 8: K BININT1 2
2254 10: K BININT1 3
2255 12: e APPENDS (MARK at 5)
2256 13: . STOP
2257highest protocol among opcodes = 2
2258>>> dis(f, memo=memo)
2259 14: \x80 PROTO 2
2260 16: h BINGET 0
2261 18: . STOP
2262highest protocol among opcodes = 2
2263"""
2264
Guido van Rossum57028352003-01-28 15:09:10 +00002265__test__ = {'disassembler_test': _dis_test,
Tim Peters62235e72003-02-05 19:55:53 +00002266 'disassembler_memo_test': _memo_test,
Tim Peters8ecfc8e2003-01-27 18:51:48 +00002267 }
2268
2269def _test():
2270 import doctest
2271 return doctest.testmod()
2272
2273if __name__ == "__main__":
2274 _test()