Whitespace normalization, via reindent.py.
diff --git a/Lib/lib-old/poly.py b/Lib/lib-old/poly.py
index f89bd14..fe6a1dc 100644
--- a/Lib/lib-old/poly.py
+++ b/Lib/lib-old/poly.py
@@ -6,47 +6,47 @@
 # taken out by normalize().
 
 def normalize(p): # Strip unnecessary zero coefficients
-	n = len(p)
-	while n:
-		if p[n-1]: return p[:n]
-		n = n-1
-	return []
+    n = len(p)
+    while n:
+        if p[n-1]: return p[:n]
+        n = n-1
+    return []
 
 def plus(a, b):
-	if len(a) < len(b): a, b = b, a # make sure a is the longest
-	res = a[:] # make a copy
-	for i in range(len(b)):
-		res[i] = res[i] + b[i]
-	return normalize(res)
+    if len(a) < len(b): a, b = b, a # make sure a is the longest
+    res = a[:] # make a copy
+    for i in range(len(b)):
+        res[i] = res[i] + b[i]
+    return normalize(res)
 
 def minus(a, b):
-	neg_b = map(lambda x: -x, b[:])
-	return plus(a, neg_b)
+    neg_b = map(lambda x: -x, b[:])
+    return plus(a, neg_b)
 
 def one(power, coeff): # Representation of coeff * x**power
-	res = []
-	for i in range(power): res.append(0)
-	return res + [coeff]
+    res = []
+    for i in range(power): res.append(0)
+    return res + [coeff]
 
 def times(a, b):
-	res = []
-	for i in range(len(a)):
-		for j in range(len(b)):
-			res = plus(res, one(i+j, a[i]*b[j]))
-	return res
+    res = []
+    for i in range(len(a)):
+        for j in range(len(b)):
+            res = plus(res, one(i+j, a[i]*b[j]))
+    return res
 
 def power(a, n): # Raise polynomial a to the positive integral power n
-	if n == 0: return [1]
-	if n == 1: return a
-	if n/2*2 == n:
-		b = power(a, n/2)
-		return times(b, b)
-	return times(power(a, n-1), a)
+    if n == 0: return [1]
+    if n == 1: return a
+    if n/2*2 == n:
+        b = power(a, n/2)
+        return times(b, b)
+    return times(power(a, n-1), a)
 
 def der(a): # First derivative
-	res = a[1:]
-	for i in range(len(res)):
-		res[i] = res[i] * (i+1)
-	return res
+    res = a[1:]
+    for i in range(len(res)):
+        res[i] = res[i] * (i+1)
+    return res
 
 # Computing a primitive function would require rational arithmetic...