Whitespace normalization, via reindent.py.
diff --git a/Lib/lib-old/poly.py b/Lib/lib-old/poly.py
index f89bd14..fe6a1dc 100644
--- a/Lib/lib-old/poly.py
+++ b/Lib/lib-old/poly.py
@@ -6,47 +6,47 @@
# taken out by normalize().
def normalize(p): # Strip unnecessary zero coefficients
- n = len(p)
- while n:
- if p[n-1]: return p[:n]
- n = n-1
- return []
+ n = len(p)
+ while n:
+ if p[n-1]: return p[:n]
+ n = n-1
+ return []
def plus(a, b):
- if len(a) < len(b): a, b = b, a # make sure a is the longest
- res = a[:] # make a copy
- for i in range(len(b)):
- res[i] = res[i] + b[i]
- return normalize(res)
+ if len(a) < len(b): a, b = b, a # make sure a is the longest
+ res = a[:] # make a copy
+ for i in range(len(b)):
+ res[i] = res[i] + b[i]
+ return normalize(res)
def minus(a, b):
- neg_b = map(lambda x: -x, b[:])
- return plus(a, neg_b)
+ neg_b = map(lambda x: -x, b[:])
+ return plus(a, neg_b)
def one(power, coeff): # Representation of coeff * x**power
- res = []
- for i in range(power): res.append(0)
- return res + [coeff]
+ res = []
+ for i in range(power): res.append(0)
+ return res + [coeff]
def times(a, b):
- res = []
- for i in range(len(a)):
- for j in range(len(b)):
- res = plus(res, one(i+j, a[i]*b[j]))
- return res
+ res = []
+ for i in range(len(a)):
+ for j in range(len(b)):
+ res = plus(res, one(i+j, a[i]*b[j]))
+ return res
def power(a, n): # Raise polynomial a to the positive integral power n
- if n == 0: return [1]
- if n == 1: return a
- if n/2*2 == n:
- b = power(a, n/2)
- return times(b, b)
- return times(power(a, n-1), a)
+ if n == 0: return [1]
+ if n == 1: return a
+ if n/2*2 == n:
+ b = power(a, n/2)
+ return times(b, b)
+ return times(power(a, n-1), a)
def der(a): # First derivative
- res = a[1:]
- for i in range(len(res)):
- res[i] = res[i] * (i+1)
- return res
+ res = a[1:]
+ for i in range(len(res)):
+ res[i] = res[i] * (i+1)
+ return res
# Computing a primitive function would require rational arithmetic...