| # |
| # The ndarray object from _testbuffer.c is a complete implementation of |
| # a PEP-3118 buffer provider. It is independent from NumPy's ndarray |
| # and the tests don't require NumPy. |
| # |
| # If NumPy is present, some tests check both ndarray implementations |
| # against each other. |
| # |
| # Most ndarray tests also check that memoryview(ndarray) behaves in |
| # the same way as the original. Thus, a substantial part of the |
| # memoryview tests is now in this module. |
| # |
| |
| import unittest |
| from test import support |
| from itertools import permutations, product |
| from random import randrange, sample, choice |
| from sysconfig import get_config_var |
| from platform import architecture |
| import warnings |
| import sys, array, io |
| from decimal import Decimal |
| from fractions import Fraction |
| |
| try: |
| from _testbuffer import * |
| except ImportError: |
| ndarray = None |
| |
| try: |
| import struct |
| except ImportError: |
| struct = None |
| |
| try: |
| with warnings.catch_warnings(): |
| from numpy import ndarray as numpy_array |
| except ImportError: |
| numpy_array = None |
| |
| |
| SHORT_TEST = True |
| |
| |
| # ====================================================================== |
| # Random lists by format specifier |
| # ====================================================================== |
| |
| # Native format chars and their ranges. |
| NATIVE = { |
| '?':0, 'c':0, 'b':0, 'B':0, |
| 'h':0, 'H':0, 'i':0, 'I':0, |
| 'l':0, 'L':0, 'n':0, 'N':0, |
| 'f':0, 'd':0, 'P':0 |
| } |
| |
| if struct: |
| try: |
| # Add "qQ" if present in native mode. |
| struct.pack('Q', 2**64-1) |
| NATIVE['q'] = 0 |
| NATIVE['Q'] = 0 |
| except struct.error: |
| pass |
| |
| # Standard format chars and their ranges. |
| STANDARD = { |
| '?':(0, 2), 'c':(0, 1<<8), |
| 'b':(-(1<<7), 1<<7), 'B':(0, 1<<8), |
| 'h':(-(1<<15), 1<<15), 'H':(0, 1<<16), |
| 'i':(-(1<<31), 1<<31), 'I':(0, 1<<32), |
| 'l':(-(1<<31), 1<<31), 'L':(0, 1<<32), |
| 'q':(-(1<<63), 1<<63), 'Q':(0, 1<<64), |
| 'f':(-(1<<63), 1<<63), 'd':(-(1<<1023), 1<<1023) |
| } |
| |
| def native_type_range(fmt): |
| """Return range of a native type.""" |
| if fmt == 'c': |
| lh = (0, 256) |
| elif fmt == '?': |
| lh = (0, 2) |
| elif fmt == 'f': |
| lh = (-(1<<63), 1<<63) |
| elif fmt == 'd': |
| lh = (-(1<<1023), 1<<1023) |
| else: |
| for exp in (128, 127, 64, 63, 32, 31, 16, 15, 8, 7): |
| try: |
| struct.pack(fmt, (1<<exp)-1) |
| break |
| except struct.error: |
| pass |
| lh = (-(1<<exp), 1<<exp) if exp & 1 else (0, 1<<exp) |
| return lh |
| |
| fmtdict = { |
| '':NATIVE, |
| '@':NATIVE, |
| '<':STANDARD, |
| '>':STANDARD, |
| '=':STANDARD, |
| '!':STANDARD |
| } |
| |
| if struct: |
| for fmt in fmtdict['@']: |
| fmtdict['@'][fmt] = native_type_range(fmt) |
| |
| MEMORYVIEW = NATIVE.copy() |
| ARRAY = NATIVE.copy() |
| for k in NATIVE: |
| if not k in "bBhHiIlLfd": |
| del ARRAY[k] |
| |
| BYTEFMT = NATIVE.copy() |
| for k in NATIVE: |
| if not k in "Bbc": |
| del BYTEFMT[k] |
| |
| fmtdict['m'] = MEMORYVIEW |
| fmtdict['@m'] = MEMORYVIEW |
| fmtdict['a'] = ARRAY |
| fmtdict['b'] = BYTEFMT |
| fmtdict['@b'] = BYTEFMT |
| |
| # Capabilities of the test objects: |
| MODE = 0 |
| MULT = 1 |
| cap = { # format chars # multiplier |
| 'ndarray': (['', '@', '<', '>', '=', '!'], ['', '1', '2', '3']), |
| 'array': (['a'], ['']), |
| 'numpy': ([''], ['']), |
| 'memoryview': (['@m', 'm'], ['']), |
| 'bytefmt': (['@b', 'b'], ['']), |
| } |
| |
| def randrange_fmt(mode, char, obj): |
| """Return random item for a type specified by a mode and a single |
| format character.""" |
| x = randrange(*fmtdict[mode][char]) |
| if char == 'c': |
| x = bytes(chr(x), 'latin1') |
| if char == '?': |
| x = bool(x) |
| if char == 'f' or char == 'd': |
| x = struct.pack(char, x) |
| x = struct.unpack(char, x)[0] |
| if obj == 'numpy' and x == b'\x00': |
| # http://projects.scipy.org/numpy/ticket/1925 |
| x = b'\x01' |
| return x |
| |
| def gen_item(fmt, obj): |
| """Return single random item.""" |
| mode, chars = fmt.split('#') |
| x = [] |
| for c in chars: |
| x.append(randrange_fmt(mode, c, obj)) |
| return x[0] if len(x) == 1 else tuple(x) |
| |
| def gen_items(n, fmt, obj): |
| """Return a list of random items (or a scalar).""" |
| if n == 0: |
| return gen_item(fmt, obj) |
| lst = [0] * n |
| for i in range(n): |
| lst[i] = gen_item(fmt, obj) |
| return lst |
| |
| def struct_items(n, obj): |
| mode = choice(cap[obj][MODE]) |
| xfmt = mode + '#' |
| fmt = mode.strip('amb') |
| nmemb = randrange(2, 10) # number of struct members |
| for _ in range(nmemb): |
| char = choice(tuple(fmtdict[mode])) |
| multiplier = choice(cap[obj][MULT]) |
| xfmt += (char * int(multiplier if multiplier else 1)) |
| fmt += (multiplier + char) |
| items = gen_items(n, xfmt, obj) |
| item = gen_item(xfmt, obj) |
| return fmt, items, item |
| |
| def randitems(n, obj='ndarray', mode=None, char=None): |
| """Return random format, items, item.""" |
| if mode is None: |
| mode = choice(cap[obj][MODE]) |
| if char is None: |
| char = choice(tuple(fmtdict[mode])) |
| multiplier = choice(cap[obj][MULT]) |
| fmt = mode + '#' + char * int(multiplier if multiplier else 1) |
| items = gen_items(n, fmt, obj) |
| item = gen_item(fmt, obj) |
| fmt = mode.strip('amb') + multiplier + char |
| return fmt, items, item |
| |
| def iter_mode(n, obj='ndarray'): |
| """Iterate through supported mode/char combinations.""" |
| for mode in cap[obj][MODE]: |
| for char in fmtdict[mode]: |
| yield randitems(n, obj, mode, char) |
| |
| def iter_format(nitems, testobj='ndarray'): |
| """Yield (format, items, item) for all possible modes and format |
| characters plus one random compound format string.""" |
| for t in iter_mode(nitems, testobj): |
| yield t |
| if testobj != 'ndarray': |
| raise StopIteration |
| yield struct_items(nitems, testobj) |
| |
| |
| def is_byte_format(fmt): |
| return 'c' in fmt or 'b' in fmt or 'B' in fmt |
| |
| def is_memoryview_format(fmt): |
| """format suitable for memoryview""" |
| x = len(fmt) |
| return ((x == 1 or (x == 2 and fmt[0] == '@')) and |
| fmt[x-1] in MEMORYVIEW) |
| |
| NON_BYTE_FORMAT = [c for c in fmtdict['@'] if not is_byte_format(c)] |
| |
| |
| # ====================================================================== |
| # Multi-dimensional tolist(), slicing and slice assignments |
| # ====================================================================== |
| |
| def atomp(lst): |
| """Tuple items (representing structs) are regarded as atoms.""" |
| return not isinstance(lst, list) |
| |
| def listp(lst): |
| return isinstance(lst, list) |
| |
| def prod(lst): |
| """Product of list elements.""" |
| if len(lst) == 0: |
| return 0 |
| x = lst[0] |
| for v in lst[1:]: |
| x *= v |
| return x |
| |
| def strides_from_shape(ndim, shape, itemsize, layout): |
| """Calculate strides of a contiguous array. Layout is 'C' or |
| 'F' (Fortran).""" |
| if ndim == 0: |
| return () |
| if layout == 'C': |
| strides = list(shape[1:]) + [itemsize] |
| for i in range(ndim-2, -1, -1): |
| strides[i] *= strides[i+1] |
| else: |
| strides = [itemsize] + list(shape[:-1]) |
| for i in range(1, ndim): |
| strides[i] *= strides[i-1] |
| return strides |
| |
| def _ca(items, s): |
| """Convert flat item list to the nested list representation of a |
| multidimensional C array with shape 's'.""" |
| if atomp(items): |
| return items |
| if len(s) == 0: |
| return items[0] |
| lst = [0] * s[0] |
| stride = len(items) // s[0] if s[0] else 0 |
| for i in range(s[0]): |
| start = i*stride |
| lst[i] = _ca(items[start:start+stride], s[1:]) |
| return lst |
| |
| def _fa(items, s): |
| """Convert flat item list to the nested list representation of a |
| multidimensional Fortran array with shape 's'.""" |
| if atomp(items): |
| return items |
| if len(s) == 0: |
| return items[0] |
| lst = [0] * s[0] |
| stride = s[0] |
| for i in range(s[0]): |
| lst[i] = _fa(items[i::stride], s[1:]) |
| return lst |
| |
| def carray(items, shape): |
| if listp(items) and not 0 in shape and prod(shape) != len(items): |
| raise ValueError("prod(shape) != len(items)") |
| return _ca(items, shape) |
| |
| def farray(items, shape): |
| if listp(items) and not 0 in shape and prod(shape) != len(items): |
| raise ValueError("prod(shape) != len(items)") |
| return _fa(items, shape) |
| |
| def indices(shape): |
| """Generate all possible tuples of indices.""" |
| iterables = [range(v) for v in shape] |
| return product(*iterables) |
| |
| def getindex(ndim, ind, strides): |
| """Convert multi-dimensional index to the position in the flat list.""" |
| ret = 0 |
| for i in range(ndim): |
| ret += strides[i] * ind[i] |
| return ret |
| |
| def transpose(src, shape): |
| """Transpose flat item list that is regarded as a multi-dimensional |
| matrix defined by shape: dest...[k][j][i] = src[i][j][k]... """ |
| if not shape: |
| return src |
| ndim = len(shape) |
| sstrides = strides_from_shape(ndim, shape, 1, 'C') |
| dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C') |
| dest = [0] * len(src) |
| for ind in indices(shape): |
| fr = getindex(ndim, ind, sstrides) |
| to = getindex(ndim, ind[::-1], dstrides) |
| dest[to] = src[fr] |
| return dest |
| |
| def _flatten(lst): |
| """flatten list""" |
| if lst == []: |
| return lst |
| if atomp(lst): |
| return [lst] |
| return _flatten(lst[0]) + _flatten(lst[1:]) |
| |
| def flatten(lst): |
| """flatten list or return scalar""" |
| if atomp(lst): # scalar |
| return lst |
| return _flatten(lst) |
| |
| def slice_shape(lst, slices): |
| """Get the shape of lst after slicing: slices is a list of slice |
| objects.""" |
| if atomp(lst): |
| return [] |
| return [len(lst[slices[0]])] + slice_shape(lst[0], slices[1:]) |
| |
| def multislice(lst, slices): |
| """Multi-dimensional slicing: slices is a list of slice objects.""" |
| if atomp(lst): |
| return lst |
| return [multislice(sublst, slices[1:]) for sublst in lst[slices[0]]] |
| |
| def m_assign(llst, rlst, lslices, rslices): |
| """Multi-dimensional slice assignment: llst and rlst are the operands, |
| lslices and rslices are lists of slice objects. llst and rlst must |
| have the same structure. |
| |
| For a two-dimensional example, this is not implemented in Python: |
| |
| llst[0:3:2, 0:3:2] = rlst[1:3:1, 1:3:1] |
| |
| Instead we write: |
| |
| lslices = [slice(0,3,2), slice(0,3,2)] |
| rslices = [slice(1,3,1), slice(1,3,1)] |
| multislice_assign(llst, rlst, lslices, rslices) |
| """ |
| if atomp(rlst): |
| return rlst |
| rlst = [m_assign(l, r, lslices[1:], rslices[1:]) |
| for l, r in zip(llst[lslices[0]], rlst[rslices[0]])] |
| llst[lslices[0]] = rlst |
| return llst |
| |
| def cmp_structure(llst, rlst, lslices, rslices): |
| """Compare the structure of llst[lslices] and rlst[rslices].""" |
| lshape = slice_shape(llst, lslices) |
| rshape = slice_shape(rlst, rslices) |
| if (len(lshape) != len(rshape)): |
| return -1 |
| for i in range(len(lshape)): |
| if lshape[i] != rshape[i]: |
| return -1 |
| if lshape[i] == 0: |
| return 0 |
| return 0 |
| |
| def multislice_assign(llst, rlst, lslices, rslices): |
| """Return llst after assigning: llst[lslices] = rlst[rslices]""" |
| if cmp_structure(llst, rlst, lslices, rslices) < 0: |
| raise ValueError("lvalue and rvalue have different structures") |
| return m_assign(llst, rlst, lslices, rslices) |
| |
| |
| # ====================================================================== |
| # Random structures |
| # ====================================================================== |
| |
| # |
| # PEP-3118 is very permissive with respect to the contents of a |
| # Py_buffer. In particular: |
| # |
| # - shape can be zero |
| # - strides can be any integer, including zero |
| # - offset can point to any location in the underlying |
| # memory block, provided that it is a multiple of |
| # itemsize. |
| # |
| # The functions in this section test and verify random structures |
| # in full generality. A structure is valid iff it fits in the |
| # underlying memory block. |
| # |
| # The structure 't' (short for 'tuple') is fully defined by: |
| # |
| # t = (memlen, itemsize, ndim, shape, strides, offset) |
| # |
| |
| def verify_structure(memlen, itemsize, ndim, shape, strides, offset): |
| """Verify that the parameters represent a valid array within |
| the bounds of the allocated memory: |
| char *mem: start of the physical memory block |
| memlen: length of the physical memory block |
| offset: (char *)buf - mem |
| """ |
| if offset % itemsize: |
| return False |
| if offset < 0 or offset+itemsize > memlen: |
| return False |
| if any(v % itemsize for v in strides): |
| return False |
| |
| if ndim <= 0: |
| return ndim == 0 and not shape and not strides |
| if 0 in shape: |
| return True |
| |
| imin = sum(strides[j]*(shape[j]-1) for j in range(ndim) |
| if strides[j] <= 0) |
| imax = sum(strides[j]*(shape[j]-1) for j in range(ndim) |
| if strides[j] > 0) |
| |
| return 0 <= offset+imin and offset+imax+itemsize <= memlen |
| |
| def get_item(lst, indices): |
| for i in indices: |
| lst = lst[i] |
| return lst |
| |
| def memory_index(indices, t): |
| """Location of an item in the underlying memory.""" |
| memlen, itemsize, ndim, shape, strides, offset = t |
| p = offset |
| for i in range(ndim): |
| p += strides[i]*indices[i] |
| return p |
| |
| def is_overlapping(t): |
| """The structure 't' is overlapping if at least one memory location |
| is visited twice while iterating through all possible tuples of |
| indices.""" |
| memlen, itemsize, ndim, shape, strides, offset = t |
| visited = 1<<memlen |
| for ind in indices(shape): |
| i = memory_index(ind, t) |
| bit = 1<<i |
| if visited & bit: |
| return True |
| visited |= bit |
| return False |
| |
| def rand_structure(itemsize, valid, maxdim=5, maxshape=16, shape=()): |
| """Return random structure: |
| (memlen, itemsize, ndim, shape, strides, offset) |
| If 'valid' is true, the returned structure is valid, otherwise invalid. |
| If 'shape' is given, use that instead of creating a random shape. |
| """ |
| if not shape: |
| ndim = randrange(maxdim+1) |
| if (ndim == 0): |
| if valid: |
| return itemsize, itemsize, ndim, (), (), 0 |
| else: |
| nitems = randrange(1, 16+1) |
| memlen = nitems * itemsize |
| offset = -itemsize if randrange(2) == 0 else memlen |
| return memlen, itemsize, ndim, (), (), offset |
| |
| minshape = 2 |
| n = randrange(100) |
| if n >= 95 and valid: |
| minshape = 0 |
| elif n >= 90: |
| minshape = 1 |
| shape = [0] * ndim |
| |
| for i in range(ndim): |
| shape[i] = randrange(minshape, maxshape+1) |
| else: |
| ndim = len(shape) |
| |
| maxstride = 5 |
| n = randrange(100) |
| zero_stride = True if n >= 95 and n & 1 else False |
| |
| strides = [0] * ndim |
| strides[ndim-1] = itemsize * randrange(-maxstride, maxstride+1) |
| if not zero_stride and strides[ndim-1] == 0: |
| strides[ndim-1] = itemsize |
| |
| for i in range(ndim-2, -1, -1): |
| maxstride *= shape[i+1] if shape[i+1] else 1 |
| if zero_stride: |
| strides[i] = itemsize * randrange(-maxstride, maxstride+1) |
| else: |
| strides[i] = ((1,-1)[randrange(2)] * |
| itemsize * randrange(1, maxstride+1)) |
| |
| imin = imax = 0 |
| if not 0 in shape: |
| imin = sum(strides[j]*(shape[j]-1) for j in range(ndim) |
| if strides[j] <= 0) |
| imax = sum(strides[j]*(shape[j]-1) for j in range(ndim) |
| if strides[j] > 0) |
| |
| nitems = imax - imin |
| if valid: |
| offset = -imin * itemsize |
| memlen = offset + (imax+1) * itemsize |
| else: |
| memlen = (-imin + imax) * itemsize |
| offset = -imin-itemsize if randrange(2) == 0 else memlen |
| return memlen, itemsize, ndim, shape, strides, offset |
| |
| def randslice_from_slicelen(slicelen, listlen): |
| """Create a random slice of len slicelen that fits into listlen.""" |
| maxstart = listlen - slicelen |
| start = randrange(maxstart+1) |
| maxstep = (listlen - start) // slicelen if slicelen else 1 |
| step = randrange(1, maxstep+1) |
| stop = start + slicelen * step |
| s = slice(start, stop, step) |
| _, _, _, control = slice_indices(s, listlen) |
| if control != slicelen: |
| raise RuntimeError |
| return s |
| |
| def randslice_from_shape(ndim, shape): |
| """Create two sets of slices for an array x with shape 'shape' |
| such that shapeof(x[lslices]) == shapeof(x[rslices]).""" |
| lslices = [0] * ndim |
| rslices = [0] * ndim |
| for n in range(ndim): |
| l = shape[n] |
| slicelen = randrange(1, l+1) if l > 0 else 0 |
| lslices[n] = randslice_from_slicelen(slicelen, l) |
| rslices[n] = randslice_from_slicelen(slicelen, l) |
| return tuple(lslices), tuple(rslices) |
| |
| def rand_aligned_slices(maxdim=5, maxshape=16): |
| """Create (lshape, rshape, tuple(lslices), tuple(rslices)) such that |
| shapeof(x[lslices]) == shapeof(y[rslices]), where x is an array |
| with shape 'lshape' and y is an array with shape 'rshape'.""" |
| ndim = randrange(1, maxdim+1) |
| minshape = 2 |
| n = randrange(100) |
| if n >= 95: |
| minshape = 0 |
| elif n >= 90: |
| minshape = 1 |
| all_random = True if randrange(100) >= 80 else False |
| lshape = [0]*ndim; rshape = [0]*ndim |
| lslices = [0]*ndim; rslices = [0]*ndim |
| |
| for n in range(ndim): |
| small = randrange(minshape, maxshape+1) |
| big = randrange(minshape, maxshape+1) |
| if big < small: |
| big, small = small, big |
| |
| # Create a slice that fits the smaller value. |
| if all_random: |
| start = randrange(-small, small+1) |
| stop = randrange(-small, small+1) |
| step = (1,-1)[randrange(2)] * randrange(1, small+2) |
| s_small = slice(start, stop, step) |
| _, _, _, slicelen = slice_indices(s_small, small) |
| else: |
| slicelen = randrange(1, small+1) if small > 0 else 0 |
| s_small = randslice_from_slicelen(slicelen, small) |
| |
| # Create a slice of the same length for the bigger value. |
| s_big = randslice_from_slicelen(slicelen, big) |
| if randrange(2) == 0: |
| rshape[n], lshape[n] = big, small |
| rslices[n], lslices[n] = s_big, s_small |
| else: |
| rshape[n], lshape[n] = small, big |
| rslices[n], lslices[n] = s_small, s_big |
| |
| return lshape, rshape, tuple(lslices), tuple(rslices) |
| |
| def randitems_from_structure(fmt, t): |
| """Return a list of random items for structure 't' with format |
| 'fmtchar'.""" |
| memlen, itemsize, _, _, _, _ = t |
| return gen_items(memlen//itemsize, '#'+fmt, 'numpy') |
| |
| def ndarray_from_structure(items, fmt, t, flags=0): |
| """Return ndarray from the tuple returned by rand_structure()""" |
| memlen, itemsize, ndim, shape, strides, offset = t |
| return ndarray(items, shape=shape, strides=strides, format=fmt, |
| offset=offset, flags=ND_WRITABLE|flags) |
| |
| def numpy_array_from_structure(items, fmt, t): |
| """Return numpy_array from the tuple returned by rand_structure()""" |
| memlen, itemsize, ndim, shape, strides, offset = t |
| buf = bytearray(memlen) |
| for j, v in enumerate(items): |
| struct.pack_into(fmt, buf, j*itemsize, v) |
| return numpy_array(buffer=buf, shape=shape, strides=strides, |
| dtype=fmt, offset=offset) |
| |
| |
| # ====================================================================== |
| # memoryview casts |
| # ====================================================================== |
| |
| def cast_items(exporter, fmt, itemsize, shape=None): |
| """Interpret the raw memory of 'exporter' as a list of items with |
| size 'itemsize'. If shape=None, the new structure is assumed to |
| be 1-D with n * itemsize = bytelen. If shape is given, the usual |
| constraint for contiguous arrays prod(shape) * itemsize = bytelen |
| applies. On success, return (items, shape). If the constraints |
| cannot be met, return (None, None). If a chunk of bytes is interpreted |
| as NaN as a result of float conversion, return ('nan', None).""" |
| bytelen = exporter.nbytes |
| if shape: |
| if prod(shape) * itemsize != bytelen: |
| return None, shape |
| elif shape == []: |
| if exporter.ndim == 0 or itemsize != bytelen: |
| return None, shape |
| else: |
| n, r = divmod(bytelen, itemsize) |
| shape = [n] |
| if r != 0: |
| return None, shape |
| |
| mem = exporter.tobytes() |
| byteitems = [mem[i:i+itemsize] for i in range(0, len(mem), itemsize)] |
| |
| items = [] |
| for v in byteitems: |
| item = struct.unpack(fmt, v)[0] |
| if item != item: |
| return 'nan', shape |
| items.append(item) |
| |
| return (items, shape) if shape != [] else (items[0], shape) |
| |
| def gencastshapes(): |
| """Generate shapes to test casting.""" |
| for n in range(32): |
| yield [n] |
| ndim = randrange(4, 6) |
| minshape = 1 if randrange(100) > 80 else 2 |
| yield [randrange(minshape, 5) for _ in range(ndim)] |
| ndim = randrange(2, 4) |
| minshape = 1 if randrange(100) > 80 else 2 |
| yield [randrange(minshape, 5) for _ in range(ndim)] |
| |
| |
| # ====================================================================== |
| # Actual tests |
| # ====================================================================== |
| |
| def genslices(n): |
| """Generate all possible slices for a single dimension.""" |
| return product(range(-n, n+1), range(-n, n+1), range(-n, n+1)) |
| |
| def genslices_ndim(ndim, shape): |
| """Generate all possible slice tuples for 'shape'.""" |
| iterables = [genslices(shape[n]) for n in range(ndim)] |
| return product(*iterables) |
| |
| def rslice(n, allow_empty=False): |
| """Generate random slice for a single dimension of length n. |
| If zero=True, the slices may be empty, otherwise they will |
| be non-empty.""" |
| minlen = 0 if allow_empty or n == 0 else 1 |
| slicelen = randrange(minlen, n+1) |
| return randslice_from_slicelen(slicelen, n) |
| |
| def rslices(n, allow_empty=False): |
| """Generate random slices for a single dimension.""" |
| for _ in range(5): |
| yield rslice(n, allow_empty) |
| |
| def rslices_ndim(ndim, shape, iterations=5): |
| """Generate random slice tuples for 'shape'.""" |
| # non-empty slices |
| for _ in range(iterations): |
| yield tuple(rslice(shape[n]) for n in range(ndim)) |
| # possibly empty slices |
| for _ in range(iterations): |
| yield tuple(rslice(shape[n], allow_empty=True) for n in range(ndim)) |
| # invalid slices |
| yield tuple(slice(0,1,0) for _ in range(ndim)) |
| |
| def rpermutation(iterable, r=None): |
| pool = tuple(iterable) |
| r = len(pool) if r is None else r |
| yield tuple(sample(pool, r)) |
| |
| def ndarray_print(nd): |
| """Print ndarray for debugging.""" |
| try: |
| x = nd.tolist() |
| except (TypeError, NotImplementedError): |
| x = nd.tobytes() |
| if isinstance(nd, ndarray): |
| offset = nd.offset |
| flags = nd.flags |
| else: |
| offset = 'unknown' |
| flags = 'unknown' |
| print("ndarray(%s, shape=%s, strides=%s, suboffsets=%s, offset=%s, " |
| "format='%s', itemsize=%s, flags=%s)" % |
| (x, nd.shape, nd.strides, nd.suboffsets, offset, |
| nd.format, nd.itemsize, flags)) |
| sys.stdout.flush() |
| |
| |
| ITERATIONS = 100 |
| MAXDIM = 5 |
| MAXSHAPE = 10 |
| |
| if SHORT_TEST: |
| ITERATIONS = 10 |
| MAXDIM = 3 |
| MAXSHAPE = 4 |
| genslices = rslices |
| genslices_ndim = rslices_ndim |
| permutations = rpermutation |
| |
| |
| @unittest.skipUnless(struct, 'struct module required for this test.') |
| @unittest.skipUnless(ndarray, 'ndarray object required for this test') |
| class TestBufferProtocol(unittest.TestCase): |
| |
| def setUp(self): |
| self.sizeof_void_p = get_config_var('SIZEOF_VOID_P') |
| if not self.sizeof_void_p: |
| self.sizeof_void_p = 8 if architecture()[0] == '64bit' else 4 |
| |
| def verify(self, result, obj=-1, |
| itemsize={1}, fmt=-1, readonly={1}, |
| ndim={1}, shape=-1, strides=-1, |
| lst=-1, sliced=False, cast=False): |
| # Verify buffer contents against expected values. Default values |
| # are deliberately initialized to invalid types. |
| if shape: |
| expected_len = prod(shape)*itemsize |
| else: |
| if not fmt: # array has been implicitly cast to unsigned bytes |
| expected_len = len(lst) |
| else: # ndim = 0 |
| expected_len = itemsize |
| |
| # Reconstruct suboffsets from strides. Support for slicing |
| # could be added, but is currently only needed for test_getbuf(). |
| suboffsets = () |
| if result.suboffsets: |
| self.assertGreater(ndim, 0) |
| |
| suboffset0 = 0 |
| for n in range(1, ndim): |
| if shape[n] == 0: |
| break |
| if strides[n] <= 0: |
| suboffset0 += -strides[n] * (shape[n]-1) |
| |
| suboffsets = [suboffset0] + [-1 for v in range(ndim-1)] |
| |
| # Not correct if slicing has occurred in the first dimension. |
| stride0 = self.sizeof_void_p |
| if strides[0] < 0: |
| stride0 = -stride0 |
| strides = [stride0] + list(strides[1:]) |
| |
| self.assertIs(result.obj, obj) |
| self.assertEqual(result.nbytes, expected_len) |
| self.assertEqual(result.itemsize, itemsize) |
| self.assertEqual(result.format, fmt) |
| self.assertEqual(result.readonly, readonly) |
| self.assertEqual(result.ndim, ndim) |
| self.assertEqual(result.shape, tuple(shape)) |
| if not (sliced and suboffsets): |
| self.assertEqual(result.strides, tuple(strides)) |
| self.assertEqual(result.suboffsets, tuple(suboffsets)) |
| |
| if isinstance(result, ndarray) or is_memoryview_format(fmt): |
| rep = result.tolist() if fmt else result.tobytes() |
| self.assertEqual(rep, lst) |
| |
| if not fmt: # array has been cast to unsigned bytes, |
| return # the remaining tests won't work. |
| |
| # PyBuffer_GetPointer() is the definition how to access an item. |
| # If PyBuffer_GetPointer(indices) is correct for all possible |
| # combinations of indices, the buffer is correct. |
| # |
| # Also test tobytes() against the flattened 'lst', with all items |
| # packed to bytes. |
| if not cast: # casts chop up 'lst' in different ways |
| b = bytearray() |
| buf_err = None |
| for ind in indices(shape): |
| try: |
| item1 = get_pointer(result, ind) |
| item2 = get_item(lst, ind) |
| if isinstance(item2, tuple): |
| x = struct.pack(fmt, *item2) |
| else: |
| x = struct.pack(fmt, item2) |
| b.extend(x) |
| except BufferError: |
| buf_err = True # re-exporter does not provide full buffer |
| break |
| self.assertEqual(item1, item2) |
| |
| if not buf_err: |
| # test tobytes() |
| self.assertEqual(result.tobytes(), b) |
| |
| if not buf_err and is_memoryview_format(fmt): |
| |
| # lst := expected multi-dimensional logical representation |
| # flatten(lst) := elements in C-order |
| ff = fmt if fmt else 'B' |
| flattened = flatten(lst) |
| |
| # Rules for 'A': if the array is already contiguous, return |
| # the array unaltered. Otherwise, return a contiguous 'C' |
| # representation. |
| for order in ['C', 'F', 'A']: |
| expected = result |
| if order == 'F': |
| if not is_contiguous(result, 'A') or \ |
| is_contiguous(result, 'C'): |
| # For constructing the ndarray, convert the |
| # flattened logical representation to Fortran order. |
| trans = transpose(flattened, shape) |
| expected = ndarray(trans, shape=shape, format=ff, |
| flags=ND_FORTRAN) |
| else: # 'C', 'A' |
| if not is_contiguous(result, 'A') or \ |
| is_contiguous(result, 'F') and order == 'C': |
| # The flattened list is already in C-order. |
| expected = ndarray(flattened, shape=shape, format=ff) |
| contig = get_contiguous(result, PyBUF_READ, order) |
| contig = get_contiguous(result, PyBUF_READ, order) |
| self.assertEqual(contig.tobytes(), b) |
| self.assertTrue(cmp_contig(contig, expected)) |
| |
| if is_memoryview_format(fmt): |
| try: |
| m = memoryview(result) |
| except BufferError: # re-exporter does not provide full information |
| return |
| ex = result.obj if isinstance(result, memoryview) else result |
| self.assertIs(m.obj, ex) |
| self.assertEqual(m.nbytes, expected_len) |
| self.assertEqual(m.itemsize, itemsize) |
| self.assertEqual(m.format, fmt) |
| self.assertEqual(m.readonly, readonly) |
| self.assertEqual(m.ndim, ndim) |
| self.assertEqual(m.shape, tuple(shape)) |
| if not (sliced and suboffsets): |
| self.assertEqual(m.strides, tuple(strides)) |
| self.assertEqual(m.suboffsets, tuple(suboffsets)) |
| |
| n = 1 if ndim == 0 else len(lst) |
| self.assertEqual(len(m), n) |
| |
| rep = result.tolist() if fmt else result.tobytes() |
| self.assertEqual(rep, lst) |
| self.assertEqual(m, result) |
| |
| def verify_getbuf(self, orig_ex, ex, req, sliced=False): |
| def simple_fmt(ex): |
| return ex.format == '' or ex.format == 'B' |
| def match(req, flag): |
| return ((req&flag) == flag) |
| |
| if (# writable request to read-only exporter |
| (ex.readonly and match(req, PyBUF_WRITABLE)) or |
| # cannot match explicit contiguity request |
| (match(req, PyBUF_C_CONTIGUOUS) and not ex.c_contiguous) or |
| (match(req, PyBUF_F_CONTIGUOUS) and not ex.f_contiguous) or |
| (match(req, PyBUF_ANY_CONTIGUOUS) and not ex.contiguous) or |
| # buffer needs suboffsets |
| (not match(req, PyBUF_INDIRECT) and ex.suboffsets) or |
| # buffer without strides must be C-contiguous |
| (not match(req, PyBUF_STRIDES) and not ex.c_contiguous) or |
| # PyBUF_SIMPLE|PyBUF_FORMAT and PyBUF_WRITABLE|PyBUF_FORMAT |
| (not match(req, PyBUF_ND) and match(req, PyBUF_FORMAT))): |
| |
| self.assertRaises(BufferError, ndarray, ex, getbuf=req) |
| return |
| |
| if isinstance(ex, ndarray) or is_memoryview_format(ex.format): |
| lst = ex.tolist() |
| else: |
| nd = ndarray(ex, getbuf=PyBUF_FULL_RO) |
| lst = nd.tolist() |
| |
| # The consumer may have requested default values or a NULL format. |
| ro = 0 if match(req, PyBUF_WRITABLE) else ex.readonly |
| fmt = ex.format |
| itemsize = ex.itemsize |
| ndim = ex.ndim |
| if not match(req, PyBUF_FORMAT): |
| # itemsize refers to the original itemsize before the cast. |
| # The equality product(shape) * itemsize = len still holds. |
| # The equality calcsize(format) = itemsize does _not_ hold. |
| fmt = '' |
| lst = orig_ex.tobytes() # Issue 12834 |
| if not match(req, PyBUF_ND): |
| ndim = 1 |
| shape = orig_ex.shape if match(req, PyBUF_ND) else () |
| strides = orig_ex.strides if match(req, PyBUF_STRIDES) else () |
| |
| nd = ndarray(ex, getbuf=req) |
| self.verify(nd, obj=ex, |
| itemsize=itemsize, fmt=fmt, readonly=ro, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst, sliced=sliced) |
| |
| def test_ndarray_getbuf(self): |
| requests = ( |
| # distinct flags |
| PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE, |
| PyBUF_C_CONTIGUOUS, PyBUF_F_CONTIGUOUS, PyBUF_ANY_CONTIGUOUS, |
| # compound requests |
| PyBUF_FULL, PyBUF_FULL_RO, |
| PyBUF_RECORDS, PyBUF_RECORDS_RO, |
| PyBUF_STRIDED, PyBUF_STRIDED_RO, |
| PyBUF_CONTIG, PyBUF_CONTIG_RO, |
| ) |
| # items and format |
| items_fmt = ( |
| ([True if x % 2 else False for x in range(12)], '?'), |
| ([1,2,3,4,5,6,7,8,9,10,11,12], 'b'), |
| ([1,2,3,4,5,6,7,8,9,10,11,12], 'B'), |
| ([(2**31-x) if x % 2 else (-2**31+x) for x in range(12)], 'l') |
| ) |
| # shape, strides, offset |
| structure = ( |
| ([], [], 0), |
| ([12], [], 0), |
| ([12], [-1], 11), |
| ([6], [2], 0), |
| ([6], [-2], 11), |
| ([3, 4], [], 0), |
| ([3, 4], [-4, -1], 11), |
| ([2, 2], [4, 1], 4), |
| ([2, 2], [-4, -1], 8) |
| ) |
| # ndarray creation flags |
| ndflags = ( |
| 0, ND_WRITABLE, ND_FORTRAN, ND_FORTRAN|ND_WRITABLE, |
| ND_PIL, ND_PIL|ND_WRITABLE |
| ) |
| # flags that can actually be used as flags |
| real_flags = (0, PyBUF_WRITABLE, PyBUF_FORMAT, |
| PyBUF_WRITABLE|PyBUF_FORMAT) |
| |
| for items, fmt in items_fmt: |
| itemsize = struct.calcsize(fmt) |
| for shape, strides, offset in structure: |
| strides = [v * itemsize for v in strides] |
| offset *= itemsize |
| for flags in ndflags: |
| |
| if strides and (flags&ND_FORTRAN): |
| continue |
| if not shape and (flags&ND_PIL): |
| continue |
| |
| _items = items if shape else items[0] |
| ex1 = ndarray(_items, format=fmt, flags=flags, |
| shape=shape, strides=strides, offset=offset) |
| ex2 = ex1[::-2] if shape else None |
| |
| m1 = memoryview(ex1) |
| if ex2: |
| m2 = memoryview(ex2) |
| if ex1.ndim == 0 or (ex1.ndim == 1 and shape and strides): |
| self.assertEqual(m1, ex1) |
| if ex2 and ex2.ndim == 1 and shape and strides: |
| self.assertEqual(m2, ex2) |
| |
| for req in requests: |
| for bits in real_flags: |
| self.verify_getbuf(ex1, ex1, req|bits) |
| self.verify_getbuf(ex1, m1, req|bits) |
| if ex2: |
| self.verify_getbuf(ex2, ex2, req|bits, |
| sliced=True) |
| self.verify_getbuf(ex2, m2, req|bits, |
| sliced=True) |
| |
| items = [1,2,3,4,5,6,7,8,9,10,11,12] |
| |
| # ND_GETBUF_FAIL |
| ex = ndarray(items, shape=[12], flags=ND_GETBUF_FAIL) |
| self.assertRaises(BufferError, ndarray, ex) |
| |
| # Request complex structure from a simple exporter. In this |
| # particular case the test object is not PEP-3118 compliant. |
| base = ndarray([9], [1]) |
| ex = ndarray(base, getbuf=PyBUF_SIMPLE) |
| self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_WRITABLE) |
| self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ND) |
| self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_STRIDES) |
| self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_C_CONTIGUOUS) |
| self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_F_CONTIGUOUS) |
| self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ANY_CONTIGUOUS) |
| nd = ndarray(ex, getbuf=PyBUF_SIMPLE) |
| |
| def test_ndarray_exceptions(self): |
| nd = ndarray([9], [1]) |
| ndm = ndarray([9], [1], flags=ND_VAREXPORT) |
| |
| # Initialization of a new ndarray or mutation of an existing array. |
| for c in (ndarray, nd.push, ndm.push): |
| # Invalid types. |
| self.assertRaises(TypeError, c, {1,2,3}) |
| self.assertRaises(TypeError, c, [1,2,'3']) |
| self.assertRaises(TypeError, c, [1,2,(3,4)]) |
| self.assertRaises(TypeError, c, [1,2,3], shape={3}) |
| self.assertRaises(TypeError, c, [1,2,3], shape=[3], strides={1}) |
| self.assertRaises(TypeError, c, [1,2,3], shape=[3], offset=[]) |
| self.assertRaises(TypeError, c, [1], shape=[1], format={}) |
| self.assertRaises(TypeError, c, [1], shape=[1], flags={}) |
| self.assertRaises(TypeError, c, [1], shape=[1], getbuf={}) |
| |
| # ND_FORTRAN flag is only valid without strides. |
| self.assertRaises(TypeError, c, [1], shape=[1], strides=[1], |
| flags=ND_FORTRAN) |
| |
| # ND_PIL flag is only valid with ndim > 0. |
| self.assertRaises(TypeError, c, [1], shape=[], flags=ND_PIL) |
| |
| # Invalid items. |
| self.assertRaises(ValueError, c, [], shape=[1]) |
| self.assertRaises(ValueError, c, ['XXX'], shape=[1], format="L") |
| # Invalid combination of items and format. |
| self.assertRaises(struct.error, c, [1000], shape=[1], format="B") |
| self.assertRaises(ValueError, c, [1,(2,3)], shape=[2], format="B") |
| self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="QL") |
| |
| # Invalid ndim. |
| n = ND_MAX_NDIM+1 |
| self.assertRaises(ValueError, c, [1]*n, shape=[1]*n) |
| |
| # Invalid shape. |
| self.assertRaises(ValueError, c, [1], shape=[-1]) |
| self.assertRaises(ValueError, c, [1,2,3], shape=['3']) |
| self.assertRaises(OverflowError, c, [1], shape=[2**128]) |
| # prod(shape) * itemsize != len(items) |
| self.assertRaises(ValueError, c, [1,2,3,4,5], shape=[2,2], offset=3) |
| |
| # Invalid strides. |
| self.assertRaises(ValueError, c, [1,2,3], shape=[3], strides=['1']) |
| self.assertRaises(OverflowError, c, [1], shape=[1], |
| strides=[2**128]) |
| |
| # Invalid combination of strides and shape. |
| self.assertRaises(ValueError, c, [1,2], shape=[2,1], strides=[1]) |
| # Invalid combination of strides and format. |
| self.assertRaises(ValueError, c, [1,2,3,4], shape=[2], strides=[3], |
| format="L") |
| |
| # Invalid offset. |
| self.assertRaises(ValueError, c, [1,2,3], shape=[3], offset=4) |
| self.assertRaises(ValueError, c, [1,2,3], shape=[1], offset=3, |
| format="L") |
| |
| # Invalid format. |
| self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="") |
| self.assertRaises(struct.error, c, [(1,2,3)], shape=[1], |
| format="@#$") |
| |
| # Striding out of the memory bounds. |
| items = [1,2,3,4,5,6,7,8,9,10] |
| self.assertRaises(ValueError, c, items, shape=[2,3], |
| strides=[-3, -2], offset=5) |
| |
| # Constructing consumer: format argument invalid. |
| self.assertRaises(TypeError, c, bytearray(), format="Q") |
| |
| # Constructing original base object: getbuf argument invalid. |
| self.assertRaises(TypeError, c, [1], shape=[1], getbuf=PyBUF_FULL) |
| |
| # Shape argument is mandatory for original base objects. |
| self.assertRaises(TypeError, c, [1]) |
| |
| |
| # PyBUF_WRITABLE request to read-only provider. |
| self.assertRaises(BufferError, ndarray, b'123', getbuf=PyBUF_WRITABLE) |
| |
| # ND_VAREXPORT can only be specified during construction. |
| nd = ndarray([9], [1], flags=ND_VAREXPORT) |
| self.assertRaises(ValueError, nd.push, [1], [1], flags=ND_VAREXPORT) |
| |
| # Invalid operation for consumers: push/pop |
| nd = ndarray(b'123') |
| self.assertRaises(BufferError, nd.push, [1], [1]) |
| self.assertRaises(BufferError, nd.pop) |
| |
| # ND_VAREXPORT not set: push/pop fail with exported buffers |
| nd = ndarray([9], [1]) |
| nd.push([1], [1]) |
| m = memoryview(nd) |
| self.assertRaises(BufferError, nd.push, [1], [1]) |
| self.assertRaises(BufferError, nd.pop) |
| m.release() |
| nd.pop() |
| |
| # Single remaining buffer: pop fails |
| self.assertRaises(BufferError, nd.pop) |
| del nd |
| |
| # get_pointer() |
| self.assertRaises(TypeError, get_pointer, {}, [1,2,3]) |
| self.assertRaises(TypeError, get_pointer, b'123', {}) |
| |
| nd = ndarray(list(range(100)), shape=[1]*100) |
| self.assertRaises(ValueError, get_pointer, nd, [5]) |
| |
| nd = ndarray(list(range(12)), shape=[3,4]) |
| self.assertRaises(ValueError, get_pointer, nd, [2,3,4]) |
| self.assertRaises(ValueError, get_pointer, nd, [3,3]) |
| self.assertRaises(ValueError, get_pointer, nd, [-3,3]) |
| self.assertRaises(OverflowError, get_pointer, nd, [1<<64,3]) |
| |
| # tolist() needs format |
| ex = ndarray([1,2,3], shape=[3], format='L') |
| nd = ndarray(ex, getbuf=PyBUF_SIMPLE) |
| self.assertRaises(ValueError, nd.tolist) |
| |
| # memoryview_from_buffer() |
| ex1 = ndarray([1,2,3], shape=[3], format='L') |
| ex2 = ndarray(ex1) |
| nd = ndarray(ex2) |
| self.assertRaises(TypeError, nd.memoryview_from_buffer) |
| |
| nd = ndarray([(1,)*200], shape=[1], format='L'*200) |
| self.assertRaises(TypeError, nd.memoryview_from_buffer) |
| |
| n = ND_MAX_NDIM |
| nd = ndarray(list(range(n)), shape=[1]*n) |
| self.assertRaises(ValueError, nd.memoryview_from_buffer) |
| |
| # get_contiguous() |
| nd = ndarray([1], shape=[1]) |
| self.assertRaises(TypeError, get_contiguous, 1, 2, 3, 4, 5) |
| self.assertRaises(TypeError, get_contiguous, nd, "xyz", 'C') |
| self.assertRaises(OverflowError, get_contiguous, nd, 2**64, 'C') |
| self.assertRaises(TypeError, get_contiguous, nd, PyBUF_READ, 961) |
| self.assertRaises(UnicodeEncodeError, get_contiguous, nd, PyBUF_READ, |
| '\u2007') |
| |
| # cmp_contig() |
| nd = ndarray([1], shape=[1]) |
| self.assertRaises(TypeError, cmp_contig, 1, 2, 3, 4, 5) |
| self.assertRaises(TypeError, cmp_contig, {}, nd) |
| self.assertRaises(TypeError, cmp_contig, nd, {}) |
| |
| # is_contiguous() |
| nd = ndarray([1], shape=[1]) |
| self.assertRaises(TypeError, is_contiguous, 1, 2, 3, 4, 5) |
| self.assertRaises(TypeError, is_contiguous, {}, 'A') |
| self.assertRaises(TypeError, is_contiguous, nd, 201) |
| |
| def test_ndarray_linked_list(self): |
| for perm in permutations(range(5)): |
| m = [0]*5 |
| nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT) |
| m[0] = memoryview(nd) |
| |
| for i in range(1, 5): |
| nd.push([1,2,3], shape=[3]) |
| m[i] = memoryview(nd) |
| |
| for i in range(5): |
| m[perm[i]].release() |
| |
| self.assertRaises(BufferError, nd.pop) |
| del nd |
| |
| def test_ndarray_format_scalar(self): |
| # ndim = 0: scalar |
| for fmt, scalar, _ in iter_format(0): |
| itemsize = struct.calcsize(fmt) |
| nd = ndarray(scalar, shape=(), format=fmt) |
| self.verify(nd, obj=None, |
| itemsize=itemsize, fmt=fmt, readonly=1, |
| ndim=0, shape=(), strides=(), |
| lst=scalar) |
| |
| def test_ndarray_format_shape(self): |
| # ndim = 1, shape = [n] |
| nitems = randrange(1, 10) |
| for fmt, items, _ in iter_format(nitems): |
| itemsize = struct.calcsize(fmt) |
| for flags in (0, ND_PIL): |
| nd = ndarray(items, shape=[nitems], format=fmt, flags=flags) |
| self.verify(nd, obj=None, |
| itemsize=itemsize, fmt=fmt, readonly=1, |
| ndim=1, shape=(nitems,), strides=(itemsize,), |
| lst=items) |
| |
| def test_ndarray_format_strides(self): |
| # ndim = 1, strides |
| nitems = randrange(1, 30) |
| for fmt, items, _ in iter_format(nitems): |
| itemsize = struct.calcsize(fmt) |
| for step in range(-5, 5): |
| if step == 0: |
| continue |
| |
| shape = [len(items[::step])] |
| strides = [step*itemsize] |
| offset = itemsize*(nitems-1) if step < 0 else 0 |
| |
| for flags in (0, ND_PIL): |
| nd = ndarray(items, shape=shape, strides=strides, |
| format=fmt, offset=offset, flags=flags) |
| self.verify(nd, obj=None, |
| itemsize=itemsize, fmt=fmt, readonly=1, |
| ndim=1, shape=shape, strides=strides, |
| lst=items[::step]) |
| |
| def test_ndarray_fortran(self): |
| items = [1,2,3,4,5,6,7,8,9,10,11,12] |
| ex = ndarray(items, shape=(3, 4), strides=(1, 3)) |
| nd = ndarray(ex, getbuf=PyBUF_F_CONTIGUOUS|PyBUF_FORMAT) |
| self.assertEqual(nd.tolist(), farray(items, (3, 4))) |
| |
| def test_ndarray_multidim(self): |
| for ndim in range(5): |
| shape_t = [randrange(2, 10) for _ in range(ndim)] |
| nitems = prod(shape_t) |
| for shape in permutations(shape_t): |
| |
| fmt, items, _ = randitems(nitems) |
| itemsize = struct.calcsize(fmt) |
| |
| for flags in (0, ND_PIL): |
| if ndim == 0 and flags == ND_PIL: |
| continue |
| |
| # C array |
| nd = ndarray(items, shape=shape, format=fmt, flags=flags) |
| |
| strides = strides_from_shape(ndim, shape, itemsize, 'C') |
| lst = carray(items, shape) |
| self.verify(nd, obj=None, |
| itemsize=itemsize, fmt=fmt, readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| if is_memoryview_format(fmt): |
| # memoryview: reconstruct strides |
| ex = ndarray(items, shape=shape, format=fmt) |
| nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT) |
| self.assertTrue(nd.strides == ()) |
| mv = nd.memoryview_from_buffer() |
| self.verify(mv, obj=None, |
| itemsize=itemsize, fmt=fmt, readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| # Fortran array |
| nd = ndarray(items, shape=shape, format=fmt, |
| flags=flags|ND_FORTRAN) |
| |
| strides = strides_from_shape(ndim, shape, itemsize, 'F') |
| lst = farray(items, shape) |
| self.verify(nd, obj=None, |
| itemsize=itemsize, fmt=fmt, readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| def test_ndarray_index_invalid(self): |
| # not writable |
| nd = ndarray([1], shape=[1]) |
| self.assertRaises(TypeError, nd.__setitem__, 1, 8) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertRaises(TypeError, mv.__setitem__, 1, 8) |
| |
| # cannot be deleted |
| nd = ndarray([1], shape=[1], flags=ND_WRITABLE) |
| self.assertRaises(TypeError, nd.__delitem__, 1) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertRaises(TypeError, mv.__delitem__, 1) |
| |
| # overflow |
| nd = ndarray([1], shape=[1], flags=ND_WRITABLE) |
| self.assertRaises(OverflowError, nd.__getitem__, 1<<64) |
| self.assertRaises(OverflowError, nd.__setitem__, 1<<64, 8) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertRaises(IndexError, mv.__getitem__, 1<<64) |
| self.assertRaises(IndexError, mv.__setitem__, 1<<64, 8) |
| |
| # format |
| items = [1,2,3,4,5,6,7,8] |
| nd = ndarray(items, shape=[len(items)], format="B", flags=ND_WRITABLE) |
| self.assertRaises(struct.error, nd.__setitem__, 2, 300) |
| self.assertRaises(ValueError, nd.__setitem__, 1, (100, 200)) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertRaises(ValueError, mv.__setitem__, 2, 300) |
| self.assertRaises(TypeError, mv.__setitem__, 1, (100, 200)) |
| |
| items = [(1,2), (3,4), (5,6)] |
| nd = ndarray(items, shape=[len(items)], format="LQ", flags=ND_WRITABLE) |
| self.assertRaises(ValueError, nd.__setitem__, 2, 300) |
| self.assertRaises(struct.error, nd.__setitem__, 1, (b'\x001', 200)) |
| |
| def test_ndarray_index_scalar(self): |
| # scalar |
| nd = ndarray(1, shape=(), flags=ND_WRITABLE) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| |
| x = nd[()]; self.assertEqual(x, 1) |
| x = nd[...]; self.assertEqual(x.tolist(), nd.tolist()) |
| |
| x = mv[()]; self.assertEqual(x, 1) |
| x = mv[...]; self.assertEqual(x.tolist(), nd.tolist()) |
| |
| self.assertRaises(TypeError, nd.__getitem__, 0) |
| self.assertRaises(TypeError, mv.__getitem__, 0) |
| self.assertRaises(TypeError, nd.__setitem__, 0, 8) |
| self.assertRaises(TypeError, mv.__setitem__, 0, 8) |
| |
| self.assertEqual(nd.tolist(), 1) |
| self.assertEqual(mv.tolist(), 1) |
| |
| nd[()] = 9; self.assertEqual(nd.tolist(), 9) |
| mv[()] = 9; self.assertEqual(mv.tolist(), 9) |
| |
| nd[...] = 5; self.assertEqual(nd.tolist(), 5) |
| mv[...] = 5; self.assertEqual(mv.tolist(), 5) |
| |
| def test_ndarray_index_null_strides(self): |
| ex = ndarray(list(range(2*4)), shape=[2, 4], flags=ND_WRITABLE) |
| nd = ndarray(ex, getbuf=PyBUF_CONTIG) |
| |
| # Sub-views are only possible for full exporters. |
| self.assertRaises(BufferError, nd.__getitem__, 1) |
| # Same for slices. |
| self.assertRaises(BufferError, nd.__getitem__, slice(3,5,1)) |
| |
| def test_ndarray_index_getitem_single(self): |
| # getitem |
| for fmt, items, _ in iter_format(5): |
| nd = ndarray(items, shape=[5], format=fmt) |
| for i in range(-5, 5): |
| self.assertEqual(nd[i], items[i]) |
| |
| self.assertRaises(IndexError, nd.__getitem__, -6) |
| self.assertRaises(IndexError, nd.__getitem__, 5) |
| |
| if is_memoryview_format(fmt): |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| for i in range(-5, 5): |
| self.assertEqual(mv[i], items[i]) |
| |
| self.assertRaises(IndexError, mv.__getitem__, -6) |
| self.assertRaises(IndexError, mv.__getitem__, 5) |
| |
| # getitem with null strides |
| for fmt, items, _ in iter_format(5): |
| ex = ndarray(items, shape=[5], flags=ND_WRITABLE, format=fmt) |
| nd = ndarray(ex, getbuf=PyBUF_CONTIG|PyBUF_FORMAT) |
| |
| for i in range(-5, 5): |
| self.assertEqual(nd[i], items[i]) |
| |
| if is_memoryview_format(fmt): |
| mv = nd.memoryview_from_buffer() |
| self.assertIs(mv.__eq__(nd), NotImplemented) |
| for i in range(-5, 5): |
| self.assertEqual(mv[i], items[i]) |
| |
| # getitem with null format |
| items = [1,2,3,4,5] |
| ex = ndarray(items, shape=[5]) |
| nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO) |
| for i in range(-5, 5): |
| self.assertEqual(nd[i], items[i]) |
| |
| # getitem with null shape/strides/format |
| items = [1,2,3,4,5] |
| ex = ndarray(items, shape=[5]) |
| nd = ndarray(ex, getbuf=PyBUF_SIMPLE) |
| |
| for i in range(-5, 5): |
| self.assertEqual(nd[i], items[i]) |
| |
| def test_ndarray_index_setitem_single(self): |
| # assign single value |
| for fmt, items, single_item in iter_format(5): |
| nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) |
| for i in range(5): |
| items[i] = single_item |
| nd[i] = single_item |
| self.assertEqual(nd.tolist(), items) |
| |
| self.assertRaises(IndexError, nd.__setitem__, -6, single_item) |
| self.assertRaises(IndexError, nd.__setitem__, 5, single_item) |
| |
| if not is_memoryview_format(fmt): |
| continue |
| |
| nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| for i in range(5): |
| items[i] = single_item |
| mv[i] = single_item |
| self.assertEqual(mv.tolist(), items) |
| |
| self.assertRaises(IndexError, mv.__setitem__, -6, single_item) |
| self.assertRaises(IndexError, mv.__setitem__, 5, single_item) |
| |
| |
| # assign single value: lobject = robject |
| for fmt, items, single_item in iter_format(5): |
| nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) |
| for i in range(-5, 4): |
| items[i] = items[i+1] |
| nd[i] = nd[i+1] |
| self.assertEqual(nd.tolist(), items) |
| |
| if not is_memoryview_format(fmt): |
| continue |
| |
| nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| for i in range(-5, 4): |
| items[i] = items[i+1] |
| mv[i] = mv[i+1] |
| self.assertEqual(mv.tolist(), items) |
| |
| def test_ndarray_index_getitem_multidim(self): |
| shape_t = (2, 3, 5) |
| nitems = prod(shape_t) |
| for shape in permutations(shape_t): |
| |
| fmt, items, _ = randitems(nitems) |
| |
| for flags in (0, ND_PIL): |
| # C array |
| nd = ndarray(items, shape=shape, format=fmt, flags=flags) |
| lst = carray(items, shape) |
| |
| for i in range(-shape[0], shape[0]): |
| self.assertEqual(lst[i], nd[i].tolist()) |
| for j in range(-shape[1], shape[1]): |
| self.assertEqual(lst[i][j], nd[i][j].tolist()) |
| for k in range(-shape[2], shape[2]): |
| self.assertEqual(lst[i][j][k], nd[i][j][k]) |
| |
| # Fortran array |
| nd = ndarray(items, shape=shape, format=fmt, |
| flags=flags|ND_FORTRAN) |
| lst = farray(items, shape) |
| |
| for i in range(-shape[0], shape[0]): |
| self.assertEqual(lst[i], nd[i].tolist()) |
| for j in range(-shape[1], shape[1]): |
| self.assertEqual(lst[i][j], nd[i][j].tolist()) |
| for k in range(shape[2], shape[2]): |
| self.assertEqual(lst[i][j][k], nd[i][j][k]) |
| |
| def test_ndarray_sequence(self): |
| nd = ndarray(1, shape=()) |
| self.assertRaises(TypeError, eval, "1 in nd", locals()) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertRaises(TypeError, eval, "1 in mv", locals()) |
| |
| for fmt, items, _ in iter_format(5): |
| nd = ndarray(items, shape=[5], format=fmt) |
| for i, v in enumerate(nd): |
| self.assertEqual(v, items[i]) |
| self.assertTrue(v in nd) |
| |
| if is_memoryview_format(fmt): |
| mv = memoryview(nd) |
| for i, v in enumerate(mv): |
| self.assertEqual(v, items[i]) |
| self.assertTrue(v in mv) |
| |
| def test_ndarray_slice_invalid(self): |
| items = [1,2,3,4,5,6,7,8] |
| |
| # rvalue is not an exporter |
| xl = ndarray(items, shape=[8], flags=ND_WRITABLE) |
| ml = memoryview(xl) |
| self.assertRaises(TypeError, xl.__setitem__, slice(0,8,1), items) |
| self.assertRaises(TypeError, ml.__setitem__, slice(0,8,1), items) |
| |
| # rvalue is not a full exporter |
| xl = ndarray(items, shape=[8], flags=ND_WRITABLE) |
| ex = ndarray(items, shape=[8], flags=ND_WRITABLE) |
| xr = ndarray(ex, getbuf=PyBUF_ND) |
| self.assertRaises(BufferError, xl.__setitem__, slice(0,8,1), xr) |
| |
| # zero step |
| nd = ndarray(items, shape=[8], format="L", flags=ND_WRITABLE) |
| mv = memoryview(nd) |
| self.assertRaises(ValueError, nd.__getitem__, slice(0,1,0)) |
| self.assertRaises(ValueError, mv.__getitem__, slice(0,1,0)) |
| |
| nd = ndarray(items, shape=[2,4], format="L", flags=ND_WRITABLE) |
| mv = memoryview(nd) |
| |
| self.assertRaises(ValueError, nd.__getitem__, |
| (slice(0,1,1), slice(0,1,0))) |
| self.assertRaises(ValueError, nd.__getitem__, |
| (slice(0,1,0), slice(0,1,1))) |
| self.assertRaises(TypeError, nd.__getitem__, "@%$") |
| self.assertRaises(TypeError, nd.__getitem__, ("@%$", slice(0,1,1))) |
| self.assertRaises(TypeError, nd.__getitem__, (slice(0,1,1), {})) |
| |
| # memoryview: not implemented |
| self.assertRaises(NotImplementedError, mv.__getitem__, |
| (slice(0,1,1), slice(0,1,0))) |
| self.assertRaises(TypeError, mv.__getitem__, "@%$") |
| |
| # differing format |
| xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE) |
| xr = ndarray(items, shape=[8], format="b") |
| ml = memoryview(xl) |
| mr = memoryview(xr) |
| self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8]) |
| self.assertEqual(xl.tolist(), items) |
| self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8]) |
| self.assertEqual(ml.tolist(), items) |
| |
| # differing itemsize |
| xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE) |
| yr = ndarray(items, shape=[8], format="L") |
| ml = memoryview(xl) |
| mr = memoryview(xr) |
| self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8]) |
| self.assertEqual(xl.tolist(), items) |
| self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8]) |
| self.assertEqual(ml.tolist(), items) |
| |
| # differing ndim |
| xl = ndarray(items, shape=[2, 4], format="b", flags=ND_WRITABLE) |
| xr = ndarray(items, shape=[8], format="b") |
| ml = memoryview(xl) |
| mr = memoryview(xr) |
| self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8]) |
| self.assertEqual(xl.tolist(), [[1,2,3,4], [5,6,7,8]]) |
| self.assertRaises(NotImplementedError, ml.__setitem__, slice(0,1,1), |
| mr[7:8]) |
| |
| # differing shape |
| xl = ndarray(items, shape=[8], format="b", flags=ND_WRITABLE) |
| xr = ndarray(items, shape=[8], format="b") |
| ml = memoryview(xl) |
| mr = memoryview(xr) |
| self.assertRaises(ValueError, xl.__setitem__, slice(0,2,1), xr[7:8]) |
| self.assertEqual(xl.tolist(), items) |
| self.assertRaises(ValueError, ml.__setitem__, slice(0,2,1), mr[7:8]) |
| self.assertEqual(ml.tolist(), items) |
| |
| # _testbuffer.c module functions |
| self.assertRaises(TypeError, slice_indices, slice(0,1,2), {}) |
| self.assertRaises(TypeError, slice_indices, "###########", 1) |
| self.assertRaises(ValueError, slice_indices, slice(0,1,0), 4) |
| |
| x = ndarray(items, shape=[8], format="b", flags=ND_PIL) |
| self.assertRaises(TypeError, x.add_suboffsets) |
| |
| ex = ndarray(items, shape=[8], format="B") |
| x = ndarray(ex, getbuf=PyBUF_SIMPLE) |
| self.assertRaises(TypeError, x.add_suboffsets) |
| |
| def test_ndarray_slice_zero_shape(self): |
| items = [1,2,3,4,5,6,7,8,9,10,11,12] |
| |
| x = ndarray(items, shape=[12], format="L", flags=ND_WRITABLE) |
| y = ndarray(items, shape=[12], format="L") |
| x[4:4] = y[9:9] |
| self.assertEqual(x.tolist(), items) |
| |
| ml = memoryview(x) |
| mr = memoryview(y) |
| self.assertEqual(ml, x) |
| self.assertEqual(ml, y) |
| ml[4:4] = mr[9:9] |
| self.assertEqual(ml.tolist(), items) |
| |
| x = ndarray(items, shape=[3, 4], format="L", flags=ND_WRITABLE) |
| y = ndarray(items, shape=[4, 3], format="L") |
| x[1:2, 2:2] = y[1:2, 3:3] |
| self.assertEqual(x.tolist(), carray(items, [3, 4])) |
| |
| def test_ndarray_slice_multidim(self): |
| shape_t = (2, 3, 5) |
| ndim = len(shape_t) |
| nitems = prod(shape_t) |
| for shape in permutations(shape_t): |
| |
| fmt, items, _ = randitems(nitems) |
| itemsize = struct.calcsize(fmt) |
| |
| for flags in (0, ND_PIL): |
| nd = ndarray(items, shape=shape, format=fmt, flags=flags) |
| lst = carray(items, shape) |
| |
| for slices in rslices_ndim(ndim, shape): |
| |
| listerr = None |
| try: |
| sliced = multislice(lst, slices) |
| except Exception as e: |
| listerr = e.__class__ |
| |
| nderr = None |
| try: |
| ndsliced = nd[slices] |
| except Exception as e: |
| nderr = e.__class__ |
| |
| if nderr or listerr: |
| self.assertIs(nderr, listerr) |
| else: |
| self.assertEqual(ndsliced.tolist(), sliced) |
| |
| def test_ndarray_slice_redundant_suboffsets(self): |
| shape_t = (2, 3, 5, 2) |
| ndim = len(shape_t) |
| nitems = prod(shape_t) |
| for shape in permutations(shape_t): |
| |
| fmt, items, _ = randitems(nitems) |
| itemsize = struct.calcsize(fmt) |
| |
| nd = ndarray(items, shape=shape, format=fmt) |
| nd.add_suboffsets() |
| ex = ndarray(items, shape=shape, format=fmt) |
| ex.add_suboffsets() |
| mv = memoryview(ex) |
| lst = carray(items, shape) |
| |
| for slices in rslices_ndim(ndim, shape): |
| |
| listerr = None |
| try: |
| sliced = multislice(lst, slices) |
| except Exception as e: |
| listerr = e.__class__ |
| |
| nderr = None |
| try: |
| ndsliced = nd[slices] |
| except Exception as e: |
| nderr = e.__class__ |
| |
| if nderr or listerr: |
| self.assertIs(nderr, listerr) |
| else: |
| self.assertEqual(ndsliced.tolist(), sliced) |
| |
| def test_ndarray_slice_assign_single(self): |
| for fmt, items, _ in iter_format(5): |
| for lslice in genslices(5): |
| for rslice in genslices(5): |
| for flags in (0, ND_PIL): |
| |
| f = flags|ND_WRITABLE |
| nd = ndarray(items, shape=[5], format=fmt, flags=f) |
| ex = ndarray(items, shape=[5], format=fmt, flags=f) |
| mv = memoryview(ex) |
| |
| lsterr = None |
| diff_structure = None |
| lst = items[:] |
| try: |
| lval = lst[lslice] |
| rval = lst[rslice] |
| lst[lslice] = lst[rslice] |
| diff_structure = len(lval) != len(rval) |
| except Exception as e: |
| lsterr = e.__class__ |
| |
| nderr = None |
| try: |
| nd[lslice] = nd[rslice] |
| except Exception as e: |
| nderr = e.__class__ |
| |
| if diff_structure: # ndarray cannot change shape |
| self.assertIs(nderr, ValueError) |
| else: |
| self.assertEqual(nd.tolist(), lst) |
| self.assertIs(nderr, lsterr) |
| |
| if not is_memoryview_format(fmt): |
| continue |
| |
| mverr = None |
| try: |
| mv[lslice] = mv[rslice] |
| except Exception as e: |
| mverr = e.__class__ |
| |
| if diff_structure: # memoryview cannot change shape |
| self.assertIs(mverr, ValueError) |
| else: |
| self.assertEqual(mv.tolist(), lst) |
| self.assertEqual(mv, nd) |
| self.assertIs(mverr, lsterr) |
| self.verify(mv, obj=ex, |
| itemsize=nd.itemsize, fmt=fmt, readonly=0, |
| ndim=nd.ndim, shape=nd.shape, strides=nd.strides, |
| lst=nd.tolist()) |
| |
| def test_ndarray_slice_assign_multidim(self): |
| shape_t = (2, 3, 5) |
| ndim = len(shape_t) |
| nitems = prod(shape_t) |
| for shape in permutations(shape_t): |
| |
| fmt, items, _ = randitems(nitems) |
| |
| for flags in (0, ND_PIL): |
| for _ in range(ITERATIONS): |
| lslices, rslices = randslice_from_shape(ndim, shape) |
| |
| nd = ndarray(items, shape=shape, format=fmt, |
| flags=flags|ND_WRITABLE) |
| lst = carray(items, shape) |
| |
| listerr = None |
| try: |
| result = multislice_assign(lst, lst, lslices, rslices) |
| except Exception as e: |
| listerr = e.__class__ |
| |
| nderr = None |
| try: |
| nd[lslices] = nd[rslices] |
| except Exception as e: |
| nderr = e.__class__ |
| |
| if nderr or listerr: |
| self.assertIs(nderr, listerr) |
| else: |
| self.assertEqual(nd.tolist(), result) |
| |
| def test_ndarray_random(self): |
| # construction of valid arrays |
| for _ in range(ITERATIONS): |
| for fmt in fmtdict['@']: |
| itemsize = struct.calcsize(fmt) |
| |
| t = rand_structure(itemsize, True, maxdim=MAXDIM, |
| maxshape=MAXSHAPE) |
| self.assertTrue(verify_structure(*t)) |
| items = randitems_from_structure(fmt, t) |
| |
| x = ndarray_from_structure(items, fmt, t) |
| xlist = x.tolist() |
| |
| mv = memoryview(x) |
| if is_memoryview_format(fmt): |
| mvlist = mv.tolist() |
| self.assertEqual(mvlist, xlist) |
| |
| if t[2] > 0: |
| # ndim > 0: test against suboffsets representation. |
| y = ndarray_from_structure(items, fmt, t, flags=ND_PIL) |
| ylist = y.tolist() |
| self.assertEqual(xlist, ylist) |
| |
| mv = memoryview(y) |
| if is_memoryview_format(fmt): |
| self.assertEqual(mv, y) |
| mvlist = mv.tolist() |
| self.assertEqual(mvlist, ylist) |
| |
| if numpy_array: |
| shape = t[3] |
| if 0 in shape: |
| continue # http://projects.scipy.org/numpy/ticket/1910 |
| z = numpy_array_from_structure(items, fmt, t) |
| self.verify(x, obj=None, |
| itemsize=z.itemsize, fmt=fmt, readonly=0, |
| ndim=z.ndim, shape=z.shape, strides=z.strides, |
| lst=z.tolist()) |
| |
| def test_ndarray_random_invalid(self): |
| # exceptions during construction of invalid arrays |
| for _ in range(ITERATIONS): |
| for fmt in fmtdict['@']: |
| itemsize = struct.calcsize(fmt) |
| |
| t = rand_structure(itemsize, False, maxdim=MAXDIM, |
| maxshape=MAXSHAPE) |
| self.assertFalse(verify_structure(*t)) |
| items = randitems_from_structure(fmt, t) |
| |
| nderr = False |
| try: |
| x = ndarray_from_structure(items, fmt, t) |
| except Exception as e: |
| nderr = e.__class__ |
| self.assertTrue(nderr) |
| |
| if numpy_array: |
| numpy_err = False |
| try: |
| y = numpy_array_from_structure(items, fmt, t) |
| except Exception as e: |
| numpy_err = e.__class__ |
| |
| if 0: # http://projects.scipy.org/numpy/ticket/1910 |
| self.assertTrue(numpy_err) |
| |
| def test_ndarray_random_slice_assign(self): |
| # valid slice assignments |
| for _ in range(ITERATIONS): |
| for fmt in fmtdict['@']: |
| itemsize = struct.calcsize(fmt) |
| |
| lshape, rshape, lslices, rslices = \ |
| rand_aligned_slices(maxdim=MAXDIM, maxshape=MAXSHAPE) |
| tl = rand_structure(itemsize, True, shape=lshape) |
| tr = rand_structure(itemsize, True, shape=rshape) |
| self.assertTrue(verify_structure(*tl)) |
| self.assertTrue(verify_structure(*tr)) |
| litems = randitems_from_structure(fmt, tl) |
| ritems = randitems_from_structure(fmt, tr) |
| |
| xl = ndarray_from_structure(litems, fmt, tl) |
| xr = ndarray_from_structure(ritems, fmt, tr) |
| xl[lslices] = xr[rslices] |
| xllist = xl.tolist() |
| xrlist = xr.tolist() |
| |
| ml = memoryview(xl) |
| mr = memoryview(xr) |
| self.assertEqual(ml.tolist(), xllist) |
| self.assertEqual(mr.tolist(), xrlist) |
| |
| if tl[2] > 0 and tr[2] > 0: |
| # ndim > 0: test against suboffsets representation. |
| yl = ndarray_from_structure(litems, fmt, tl, flags=ND_PIL) |
| yr = ndarray_from_structure(ritems, fmt, tr, flags=ND_PIL) |
| yl[lslices] = yr[rslices] |
| yllist = yl.tolist() |
| yrlist = yr.tolist() |
| self.assertEqual(xllist, yllist) |
| self.assertEqual(xrlist, yrlist) |
| |
| ml = memoryview(yl) |
| mr = memoryview(yr) |
| self.assertEqual(ml.tolist(), yllist) |
| self.assertEqual(mr.tolist(), yrlist) |
| |
| if numpy_array: |
| if 0 in lshape or 0 in rshape: |
| continue # http://projects.scipy.org/numpy/ticket/1910 |
| |
| zl = numpy_array_from_structure(litems, fmt, tl) |
| zr = numpy_array_from_structure(ritems, fmt, tr) |
| zl[lslices] = zr[rslices] |
| |
| if not is_overlapping(tl) and not is_overlapping(tr): |
| # Slice assignment of overlapping structures |
| # is undefined in NumPy. |
| self.verify(xl, obj=None, |
| itemsize=zl.itemsize, fmt=fmt, readonly=0, |
| ndim=zl.ndim, shape=zl.shape, |
| strides=zl.strides, lst=zl.tolist()) |
| |
| self.verify(xr, obj=None, |
| itemsize=zr.itemsize, fmt=fmt, readonly=0, |
| ndim=zr.ndim, shape=zr.shape, |
| strides=zr.strides, lst=zr.tolist()) |
| |
| def test_ndarray_re_export(self): |
| items = [1,2,3,4,5,6,7,8,9,10,11,12] |
| |
| nd = ndarray(items, shape=[3,4], flags=ND_PIL) |
| ex = ndarray(nd) |
| |
| self.assertTrue(ex.flags & ND_PIL) |
| self.assertIs(ex.obj, nd) |
| self.assertEqual(ex.suboffsets, (0, -1)) |
| self.assertFalse(ex.c_contiguous) |
| self.assertFalse(ex.f_contiguous) |
| self.assertFalse(ex.contiguous) |
| |
| def test_ndarray_zero_shape(self): |
| # zeros in shape |
| for flags in (0, ND_PIL): |
| nd = ndarray([1,2,3], shape=[0], flags=flags) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertEqual(nd.tolist(), []) |
| self.assertEqual(mv.tolist(), []) |
| |
| nd = ndarray([1,2,3], shape=[0,3,3], flags=flags) |
| self.assertEqual(nd.tolist(), []) |
| |
| nd = ndarray([1,2,3], shape=[3,0,3], flags=flags) |
| self.assertEqual(nd.tolist(), [[], [], []]) |
| |
| nd = ndarray([1,2,3], shape=[3,3,0], flags=flags) |
| self.assertEqual(nd.tolist(), |
| [[[], [], []], [[], [], []], [[], [], []]]) |
| |
| def test_ndarray_zero_strides(self): |
| # zero strides |
| for flags in (0, ND_PIL): |
| nd = ndarray([1], shape=[5], strides=[0], flags=flags) |
| mv = memoryview(nd) |
| self.assertEqual(mv, nd) |
| self.assertEqual(nd.tolist(), [1, 1, 1, 1, 1]) |
| self.assertEqual(mv.tolist(), [1, 1, 1, 1, 1]) |
| |
| def test_ndarray_offset(self): |
| nd = ndarray(list(range(20)), shape=[3], offset=7) |
| self.assertEqual(nd.offset, 7) |
| self.assertEqual(nd.tolist(), [7,8,9]) |
| |
| def test_ndarray_memoryview_from_buffer(self): |
| for flags in (0, ND_PIL): |
| nd = ndarray(list(range(3)), shape=[3], flags=flags) |
| m = nd.memoryview_from_buffer() |
| self.assertEqual(m, nd) |
| |
| def test_ndarray_get_pointer(self): |
| for flags in (0, ND_PIL): |
| nd = ndarray(list(range(3)), shape=[3], flags=flags) |
| for i in range(3): |
| self.assertEqual(nd[i], get_pointer(nd, [i])) |
| |
| def test_ndarray_tolist_null_strides(self): |
| ex = ndarray(list(range(20)), shape=[2,2,5]) |
| |
| nd = ndarray(ex, getbuf=PyBUF_ND|PyBUF_FORMAT) |
| self.assertEqual(nd.tolist(), ex.tolist()) |
| |
| m = memoryview(ex) |
| self.assertEqual(m.tolist(), ex.tolist()) |
| |
| def test_ndarray_cmp_contig(self): |
| |
| self.assertFalse(cmp_contig(b"123", b"456")) |
| |
| x = ndarray(list(range(12)), shape=[3,4]) |
| y = ndarray(list(range(12)), shape=[4,3]) |
| self.assertFalse(cmp_contig(x, y)) |
| |
| x = ndarray([1], shape=[1], format="B") |
| self.assertTrue(cmp_contig(x, b'\x01')) |
| self.assertTrue(cmp_contig(b'\x01', x)) |
| |
| def test_ndarray_hash(self): |
| |
| a = array.array('L', [1,2,3]) |
| nd = ndarray(a) |
| self.assertRaises(ValueError, hash, nd) |
| |
| # one-dimensional |
| b = bytes(list(range(12))) |
| |
| nd = ndarray(list(range(12)), shape=[12]) |
| self.assertEqual(hash(nd), hash(b)) |
| |
| # C-contiguous |
| nd = ndarray(list(range(12)), shape=[3,4]) |
| self.assertEqual(hash(nd), hash(b)) |
| |
| nd = ndarray(list(range(12)), shape=[3,2,2]) |
| self.assertEqual(hash(nd), hash(b)) |
| |
| # Fortran contiguous |
| b = bytes(transpose(list(range(12)), shape=[4,3])) |
| nd = ndarray(list(range(12)), shape=[3,4], flags=ND_FORTRAN) |
| self.assertEqual(hash(nd), hash(b)) |
| |
| b = bytes(transpose(list(range(12)), shape=[2,3,2])) |
| nd = ndarray(list(range(12)), shape=[2,3,2], flags=ND_FORTRAN) |
| self.assertEqual(hash(nd), hash(b)) |
| |
| # suboffsets |
| b = bytes(list(range(12))) |
| nd = ndarray(list(range(12)), shape=[2,2,3], flags=ND_PIL) |
| self.assertEqual(hash(nd), hash(b)) |
| |
| # non-byte formats |
| nd = ndarray(list(range(12)), shape=[2,2,3], format='L') |
| self.assertEqual(hash(nd), hash(nd.tobytes())) |
| |
| def test_memoryview_construction(self): |
| |
| items_shape = [(9, []), ([1,2,3], [3]), (list(range(2*3*5)), [2,3,5])] |
| |
| # NumPy style, C-contiguous: |
| for items, shape in items_shape: |
| |
| # From PEP-3118 compliant exporter: |
| ex = ndarray(items, shape=shape) |
| m = memoryview(ex) |
| self.assertTrue(m.c_contiguous) |
| self.assertTrue(m.contiguous) |
| |
| ndim = len(shape) |
| strides = strides_from_shape(ndim, shape, 1, 'C') |
| lst = carray(items, shape) |
| |
| self.verify(m, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| # From memoryview: |
| m2 = memoryview(m) |
| self.verify(m2, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| # PyMemoryView_FromBuffer(): no strides |
| nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT) |
| self.assertEqual(nd.strides, ()) |
| m = nd.memoryview_from_buffer() |
| self.verify(m, obj=None, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| # PyMemoryView_FromBuffer(): no format, shape, strides |
| nd = ndarray(ex, getbuf=PyBUF_SIMPLE) |
| self.assertEqual(nd.format, '') |
| self.assertEqual(nd.shape, ()) |
| self.assertEqual(nd.strides, ()) |
| m = nd.memoryview_from_buffer() |
| |
| lst = [items] if ndim == 0 else items |
| self.verify(m, obj=None, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=1, shape=[ex.nbytes], strides=(1,), |
| lst=lst) |
| |
| # NumPy style, Fortran contiguous: |
| for items, shape in items_shape: |
| |
| # From PEP-3118 compliant exporter: |
| ex = ndarray(items, shape=shape, flags=ND_FORTRAN) |
| m = memoryview(ex) |
| self.assertTrue(m.f_contiguous) |
| self.assertTrue(m.contiguous) |
| |
| ndim = len(shape) |
| strides = strides_from_shape(ndim, shape, 1, 'F') |
| lst = farray(items, shape) |
| |
| self.verify(m, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| # From memoryview: |
| m2 = memoryview(m) |
| self.verify(m2, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst) |
| |
| # PIL style: |
| for items, shape in items_shape[1:]: |
| |
| # From PEP-3118 compliant exporter: |
| ex = ndarray(items, shape=shape, flags=ND_PIL) |
| m = memoryview(ex) |
| |
| ndim = len(shape) |
| lst = carray(items, shape) |
| |
| self.verify(m, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=ex.strides, |
| lst=lst) |
| |
| # From memoryview: |
| m2 = memoryview(m) |
| self.verify(m2, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=ndim, shape=shape, strides=ex.strides, |
| lst=lst) |
| |
| # Invalid number of arguments: |
| self.assertRaises(TypeError, memoryview, b'9', 'x') |
| # Not a buffer provider: |
| self.assertRaises(TypeError, memoryview, {}) |
| # Non-compliant buffer provider: |
| ex = ndarray([1,2,3], shape=[3]) |
| nd = ndarray(ex, getbuf=PyBUF_SIMPLE) |
| self.assertRaises(BufferError, memoryview, nd) |
| nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT) |
| self.assertRaises(BufferError, memoryview, nd) |
| |
| # ndim > 64 |
| nd = ndarray([1]*128, shape=[1]*128, format='L') |
| self.assertRaises(ValueError, memoryview, nd) |
| self.assertRaises(ValueError, nd.memoryview_from_buffer) |
| self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'C') |
| self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'F') |
| self.assertRaises(ValueError, get_contiguous, nd[::-1], PyBUF_READ, 'C') |
| |
| def test_memoryview_cast_zero_shape(self): |
| # Casts are undefined if shape contains zeros. These arrays are |
| # regarded as C-contiguous by Numpy and PyBuffer_GetContiguous(), |
| # so they are not caught by the test for C-contiguity in memory_cast(). |
| items = [1,2,3] |
| for shape in ([0,3,3], [3,0,3], [0,3,3]): |
| ex = ndarray(items, shape=shape) |
| self.assertTrue(ex.c_contiguous) |
| msrc = memoryview(ex) |
| self.assertRaises(TypeError, msrc.cast, 'c') |
| |
| def test_memoryview_struct_module(self): |
| |
| class INT(object): |
| def __init__(self, val): |
| self.val = val |
| def __int__(self): |
| return self.val |
| |
| class IDX(object): |
| def __init__(self, val): |
| self.val = val |
| def __index__(self): |
| return self.val |
| |
| def f(): return 7 |
| |
| values = [INT(9), IDX(9), |
| 2.2+3j, Decimal("-21.1"), 12.2, Fraction(5, 2), |
| [1,2,3], {4,5,6}, {7:8}, (), (9,), |
| True, False, None, NotImplemented, |
| b'a', b'abc', bytearray(b'a'), bytearray(b'abc'), |
| 'a', 'abc', r'a', r'abc', |
| f, lambda x: x] |
| |
| for fmt, items, item in iter_format(10, 'memoryview'): |
| ex = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE) |
| nd = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| struct.pack_into(fmt, nd, 0, item) |
| m[0] = item |
| self.assertEqual(m[0], nd[0]) |
| |
| itemsize = struct.calcsize(fmt) |
| if 'P' in fmt: |
| continue |
| |
| for v in values: |
| struct_err = None |
| try: |
| struct.pack_into(fmt, nd, itemsize, v) |
| except struct.error: |
| struct_err = struct.error |
| |
| mv_err = None |
| try: |
| m[1] = v |
| except (TypeError, ValueError) as e: |
| mv_err = e.__class__ |
| |
| if struct_err or mv_err: |
| self.assertIsNot(struct_err, None) |
| self.assertIsNot(mv_err, None) |
| else: |
| self.assertEqual(m[1], nd[1]) |
| |
| def test_memoryview_cast_zero_strides(self): |
| # Casts are undefined if strides contains zeros. These arrays are |
| # (sometimes!) regarded as C-contiguous by Numpy, but not by |
| # PyBuffer_GetContiguous(). |
| ex = ndarray([1,2,3], shape=[3], strides=[0]) |
| self.assertFalse(ex.c_contiguous) |
| msrc = memoryview(ex) |
| self.assertRaises(TypeError, msrc.cast, 'c') |
| |
| def test_memoryview_cast_invalid(self): |
| # invalid format |
| for sfmt in NON_BYTE_FORMAT: |
| sformat = '@' + sfmt if randrange(2) else sfmt |
| ssize = struct.calcsize(sformat) |
| for dfmt in NON_BYTE_FORMAT: |
| dformat = '@' + dfmt if randrange(2) else dfmt |
| dsize = struct.calcsize(dformat) |
| ex = ndarray(list(range(32)), shape=[32//ssize], format=sformat) |
| msrc = memoryview(ex) |
| self.assertRaises(TypeError, msrc.cast, dfmt, [32//dsize]) |
| |
| for sfmt, sitems, _ in iter_format(1): |
| ex = ndarray(sitems, shape=[1], format=sfmt) |
| msrc = memoryview(ex) |
| for dfmt, _, _ in iter_format(1): |
| if (not is_memoryview_format(sfmt) or |
| not is_memoryview_format(dfmt)): |
| self.assertRaises(ValueError, msrc.cast, dfmt, |
| [32//dsize]) |
| else: |
| if not is_byte_format(sfmt) and not is_byte_format(dfmt): |
| self.assertRaises(TypeError, msrc.cast, dfmt, |
| [32//dsize]) |
| |
| # invalid shape |
| size_h = struct.calcsize('h') |
| size_d = struct.calcsize('d') |
| ex = ndarray(list(range(2*2*size_d)), shape=[2,2,size_d], format='h') |
| msrc = memoryview(ex) |
| self.assertRaises(TypeError, msrc.cast, shape=[2,2,size_h], format='d') |
| |
| ex = ndarray(list(range(120)), shape=[1,2,3,4,5]) |
| m = memoryview(ex) |
| |
| # incorrect number of args |
| self.assertRaises(TypeError, m.cast) |
| self.assertRaises(TypeError, m.cast, 1, 2, 3) |
| |
| # incorrect dest format type |
| self.assertRaises(TypeError, m.cast, {}) |
| |
| # incorrect dest format |
| self.assertRaises(ValueError, m.cast, "X") |
| self.assertRaises(ValueError, m.cast, "@X") |
| self.assertRaises(ValueError, m.cast, "@XY") |
| |
| # dest format not implemented |
| self.assertRaises(ValueError, m.cast, "=B") |
| self.assertRaises(ValueError, m.cast, "!L") |
| self.assertRaises(ValueError, m.cast, "<P") |
| self.assertRaises(ValueError, m.cast, ">l") |
| self.assertRaises(ValueError, m.cast, "BI") |
| self.assertRaises(ValueError, m.cast, "xBI") |
| |
| # src format not implemented |
| ex = ndarray([(1,2), (3,4)], shape=[2], format="II") |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.__getitem__, 0) |
| self.assertRaises(NotImplementedError, m.__setitem__, 0, 8) |
| self.assertRaises(NotImplementedError, m.tolist) |
| |
| # incorrect shape type |
| ex = ndarray(list(range(120)), shape=[1,2,3,4,5]) |
| m = memoryview(ex) |
| self.assertRaises(TypeError, m.cast, "B", shape={}) |
| |
| # incorrect shape elements |
| ex = ndarray(list(range(120)), shape=[2*3*4*5]) |
| m = memoryview(ex) |
| self.assertRaises(OverflowError, m.cast, "B", shape=[2**64]) |
| self.assertRaises(ValueError, m.cast, "B", shape=[-1]) |
| self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,-1]) |
| self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,0]) |
| self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5,6,7,'x']) |
| |
| # N-D -> N-D cast |
| ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3,5,7,11]) |
| m = memoryview(ex) |
| self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5]) |
| |
| # cast with ndim > 64 |
| nd = ndarray(list(range(128)), shape=[128], format='I') |
| m = memoryview(nd) |
| self.assertRaises(ValueError, m.cast, 'I', [1]*128) |
| |
| # view->len not a multiple of itemsize |
| ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11]) |
| m = memoryview(ex) |
| self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5]) |
| |
| # product(shape) * itemsize != buffer size |
| ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11]) |
| m = memoryview(ex) |
| self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5]) |
| |
| # product(shape) * itemsize overflow |
| nd = ndarray(list(range(128)), shape=[128], format='I') |
| m1 = memoryview(nd) |
| nd = ndarray(list(range(128)), shape=[128], format='B') |
| m2 = memoryview(nd) |
| if sys.maxsize == 2**63-1: |
| self.assertRaises(TypeError, m1.cast, 'B', |
| [7, 7, 73, 127, 337, 92737, 649657]) |
| self.assertRaises(ValueError, m1.cast, 'B', |
| [2**20, 2**20, 2**10, 2**10, 2**3]) |
| self.assertRaises(ValueError, m2.cast, 'I', |
| [2**20, 2**20, 2**10, 2**10, 2**1]) |
| else: |
| self.assertRaises(TypeError, m1.cast, 'B', |
| [1, 2147483647]) |
| self.assertRaises(ValueError, m1.cast, 'B', |
| [2**10, 2**10, 2**5, 2**5, 2**1]) |
| self.assertRaises(ValueError, m2.cast, 'I', |
| [2**10, 2**10, 2**5, 2**3, 2**1]) |
| |
| def test_memoryview_cast(self): |
| bytespec = ( |
| ('B', lambda ex: list(ex.tobytes())), |
| ('b', lambda ex: [x-256 if x > 127 else x for x in list(ex.tobytes())]), |
| ('c', lambda ex: [bytes(chr(x), 'latin-1') for x in list(ex.tobytes())]), |
| ) |
| |
| def iter_roundtrip(ex, m, items, fmt): |
| srcsize = struct.calcsize(fmt) |
| for bytefmt, to_bytelist in bytespec: |
| |
| m2 = m.cast(bytefmt) |
| lst = to_bytelist(ex) |
| self.verify(m2, obj=ex, |
| itemsize=1, fmt=bytefmt, readonly=0, |
| ndim=1, shape=[31*srcsize], strides=(1,), |
| lst=lst, cast=True) |
| |
| m3 = m2.cast(fmt) |
| self.assertEqual(m3, ex) |
| lst = ex.tolist() |
| self.verify(m3, obj=ex, |
| itemsize=srcsize, fmt=fmt, readonly=0, |
| ndim=1, shape=[31], strides=(srcsize,), |
| lst=lst, cast=True) |
| |
| # cast from ndim = 0 to ndim = 1 |
| srcsize = struct.calcsize('I') |
| ex = ndarray(9, shape=[], format='I') |
| destitems, destshape = cast_items(ex, 'B', 1) |
| m = memoryview(ex) |
| m2 = m.cast('B') |
| self.verify(m2, obj=ex, |
| itemsize=1, fmt='B', readonly=1, |
| ndim=1, shape=destshape, strides=(1,), |
| lst=destitems, cast=True) |
| |
| # cast from ndim = 1 to ndim = 0 |
| destsize = struct.calcsize('I') |
| ex = ndarray([9]*destsize, shape=[destsize], format='B') |
| destitems, destshape = cast_items(ex, 'I', destsize, shape=[]) |
| m = memoryview(ex) |
| m2 = m.cast('I', shape=[]) |
| self.verify(m2, obj=ex, |
| itemsize=destsize, fmt='I', readonly=1, |
| ndim=0, shape=(), strides=(), |
| lst=destitems, cast=True) |
| |
| # array.array: roundtrip to/from bytes |
| for fmt, items, _ in iter_format(31, 'array'): |
| ex = array.array(fmt, items) |
| m = memoryview(ex) |
| iter_roundtrip(ex, m, items, fmt) |
| |
| # ndarray: roundtrip to/from bytes |
| for fmt, items, _ in iter_format(31, 'memoryview'): |
| ex = ndarray(items, shape=[31], format=fmt, flags=ND_WRITABLE) |
| m = memoryview(ex) |
| iter_roundtrip(ex, m, items, fmt) |
| |
| def test_memoryview_cast_1D_ND(self): |
| # Cast between C-contiguous buffers. At least one buffer must |
| # be 1D, at least one format must be 'c', 'b' or 'B'. |
| for _tshape in gencastshapes(): |
| for char in fmtdict['@']: |
| tfmt = ('', '@')[randrange(2)] + char |
| tsize = struct.calcsize(tfmt) |
| n = prod(_tshape) * tsize |
| obj = 'memoryview' if is_byte_format(tfmt) else 'bytefmt' |
| for fmt, items, _ in iter_format(n, obj): |
| size = struct.calcsize(fmt) |
| shape = [n] if n > 0 else [] |
| tshape = _tshape + [size] |
| |
| ex = ndarray(items, shape=shape, format=fmt) |
| m = memoryview(ex) |
| |
| titems, tshape = cast_items(ex, tfmt, tsize, shape=tshape) |
| |
| if titems is None: |
| self.assertRaises(TypeError, m.cast, tfmt, tshape) |
| continue |
| if titems == 'nan': |
| continue # NaNs in lists are a recipe for trouble. |
| |
| # 1D -> ND |
| nd = ndarray(titems, shape=tshape, format=tfmt) |
| |
| m2 = m.cast(tfmt, shape=tshape) |
| ndim = len(tshape) |
| strides = nd.strides |
| lst = nd.tolist() |
| self.verify(m2, obj=ex, |
| itemsize=tsize, fmt=tfmt, readonly=1, |
| ndim=ndim, shape=tshape, strides=strides, |
| lst=lst, cast=True) |
| |
| # ND -> 1D |
| m3 = m2.cast(fmt) |
| m4 = m2.cast(fmt, shape=shape) |
| ndim = len(shape) |
| strides = ex.strides |
| lst = ex.tolist() |
| |
| self.verify(m3, obj=ex, |
| itemsize=size, fmt=fmt, readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst, cast=True) |
| |
| self.verify(m4, obj=ex, |
| itemsize=size, fmt=fmt, readonly=1, |
| ndim=ndim, shape=shape, strides=strides, |
| lst=lst, cast=True) |
| |
| def test_memoryview_tolist(self): |
| |
| # Most tolist() tests are in self.verify() etc. |
| |
| a = array.array('h', list(range(-6, 6))) |
| m = memoryview(a) |
| self.assertEqual(m, a) |
| self.assertEqual(m.tolist(), a.tolist()) |
| |
| a = a[2::3] |
| m = m[2::3] |
| self.assertEqual(m, a) |
| self.assertEqual(m.tolist(), a.tolist()) |
| |
| ex = ndarray(list(range(2*3*5*7*11)), shape=[11,2,7,3,5], format='L') |
| m = memoryview(ex) |
| self.assertEqual(m.tolist(), ex.tolist()) |
| |
| ex = ndarray([(2, 5), (7, 11)], shape=[2], format='lh') |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.tolist) |
| |
| ex = ndarray([b'12345'], shape=[1], format="s") |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.tolist) |
| |
| ex = ndarray([b"a",b"b",b"c",b"d",b"e",b"f"], shape=[2,3], format='s') |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.tolist) |
| |
| def test_memoryview_repr(self): |
| m = memoryview(bytearray(9)) |
| r = m.__repr__() |
| self.assertTrue(r.startswith("<memory")) |
| |
| m.release() |
| r = m.__repr__() |
| self.assertTrue(r.startswith("<released")) |
| |
| def test_memoryview_sequence(self): |
| |
| for fmt in ('d', 'f'): |
| inf = float(3e400) |
| ex = array.array(fmt, [1.0, inf, 3.0]) |
| m = memoryview(ex) |
| self.assertIn(1.0, m) |
| self.assertIn(5e700, m) |
| self.assertIn(3.0, m) |
| |
| ex = ndarray(9.0, [], format='f') |
| m = memoryview(ex) |
| self.assertRaises(TypeError, eval, "9.0 in m", locals()) |
| |
| def test_memoryview_index(self): |
| |
| # ndim = 0 |
| ex = ndarray(12.5, shape=[], format='d') |
| m = memoryview(ex) |
| self.assertEqual(m[()], 12.5) |
| self.assertEqual(m[...], m) |
| self.assertEqual(m[...], ex) |
| self.assertRaises(TypeError, m.__getitem__, 0) |
| |
| ex = ndarray((1,2,3), shape=[], format='iii') |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.__getitem__, ()) |
| |
| # range |
| ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| self.assertRaises(IndexError, m.__getitem__, 2**64) |
| self.assertRaises(TypeError, m.__getitem__, 2.0) |
| self.assertRaises(TypeError, m.__getitem__, 0.0) |
| |
| # out of bounds |
| self.assertRaises(IndexError, m.__getitem__, -8) |
| self.assertRaises(IndexError, m.__getitem__, 8) |
| |
| # Not implemented: multidimensional sub-views |
| ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| self.assertRaises(NotImplementedError, m.__getitem__, 0) |
| self.assertRaises(NotImplementedError, m.__setitem__, 0, 9) |
| self.assertRaises(NotImplementedError, m.__getitem__, 0) |
| |
| def test_memoryview_assign(self): |
| |
| # ndim = 0 |
| ex = ndarray(12.5, shape=[], format='f', flags=ND_WRITABLE) |
| m = memoryview(ex) |
| m[()] = 22.5 |
| self.assertEqual(m[()], 22.5) |
| m[...] = 23.5 |
| self.assertEqual(m[()], 23.5) |
| self.assertRaises(TypeError, m.__setitem__, 0, 24.7) |
| |
| # read-only |
| ex = ndarray(list(range(7)), shape=[7]) |
| m = memoryview(ex) |
| self.assertRaises(TypeError, m.__setitem__, 2, 10) |
| |
| # range |
| ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| self.assertRaises(IndexError, m.__setitem__, 2**64, 9) |
| self.assertRaises(TypeError, m.__setitem__, 2.0, 10) |
| self.assertRaises(TypeError, m.__setitem__, 0.0, 11) |
| |
| # out of bounds |
| self.assertRaises(IndexError, m.__setitem__, -8, 20) |
| self.assertRaises(IndexError, m.__setitem__, 8, 25) |
| |
| # pack_single() success: |
| for fmt in fmtdict['@']: |
| if fmt == 'c' or fmt == '?': |
| continue |
| ex = ndarray([1,2,3], shape=[3], format=fmt, flags=ND_WRITABLE) |
| m = memoryview(ex) |
| i = randrange(-3, 3) |
| m[i] = 8 |
| self.assertEqual(m[i], 8) |
| self.assertEqual(m[i], ex[i]) |
| |
| ex = ndarray([b'1', b'2', b'3'], shape=[3], format='c', |
| flags=ND_WRITABLE) |
| m = memoryview(ex) |
| m[2] = b'9' |
| self.assertEqual(m[2], b'9') |
| |
| ex = ndarray([True, False, True], shape=[3], format='?', |
| flags=ND_WRITABLE) |
| m = memoryview(ex) |
| m[1] = True |
| self.assertEqual(m[1], True) |
| |
| # pack_single() exceptions: |
| nd = ndarray([b'x'], shape=[1], format='c', flags=ND_WRITABLE) |
| m = memoryview(nd) |
| self.assertRaises(TypeError, m.__setitem__, 0, 100) |
| |
| ex = ndarray(list(range(120)), shape=[1,2,3,4,5], flags=ND_WRITABLE) |
| m1 = memoryview(ex) |
| |
| for fmt, _range in fmtdict['@'].items(): |
| if (fmt == '?'): # PyObject_IsTrue() accepts anything |
| continue |
| if fmt == 'c': # special case tested above |
| continue |
| m2 = m1.cast(fmt) |
| lo, hi = _range |
| if fmt == 'd' or fmt == 'f': |
| lo, hi = -2**1024, 2**1024 |
| if fmt != 'P': # PyLong_AsVoidPtr() accepts negative numbers |
| self.assertRaises(ValueError, m2.__setitem__, 0, lo-1) |
| self.assertRaises(TypeError, m2.__setitem__, 0, "xyz") |
| self.assertRaises(ValueError, m2.__setitem__, 0, hi) |
| |
| # invalid item |
| m2 = m1.cast('c') |
| self.assertRaises(ValueError, m2.__setitem__, 0, b'\xff\xff') |
| |
| # format not implemented |
| ex = ndarray(list(range(1)), shape=[1], format="xL", flags=ND_WRITABLE) |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.__setitem__, 0, 1) |
| |
| ex = ndarray([b'12345'], shape=[1], format="s", flags=ND_WRITABLE) |
| m = memoryview(ex) |
| self.assertRaises(NotImplementedError, m.__setitem__, 0, 1) |
| |
| # Not implemented: multidimensional sub-views |
| ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| self.assertRaises(NotImplementedError, m.__setitem__, 0, [2, 3]) |
| |
| def test_memoryview_slice(self): |
| |
| ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| # zero step |
| self.assertRaises(ValueError, m.__getitem__, slice(0,2,0)) |
| self.assertRaises(ValueError, m.__setitem__, slice(0,2,0), |
| bytearray([1,2])) |
| |
| # invalid slice key |
| self.assertRaises(TypeError, m.__getitem__, ()) |
| |
| # multidimensional slices |
| ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE) |
| m = memoryview(ex) |
| |
| self.assertRaises(NotImplementedError, m.__getitem__, |
| (slice(0,2,1), slice(0,2,1))) |
| self.assertRaises(NotImplementedError, m.__setitem__, |
| (slice(0,2,1), slice(0,2,1)), bytearray([1,2])) |
| |
| # invalid slice tuple |
| self.assertRaises(TypeError, m.__getitem__, (slice(0,2,1), {})) |
| self.assertRaises(TypeError, m.__setitem__, (slice(0,2,1), {}), |
| bytearray([1,2])) |
| |
| # rvalue is not an exporter |
| self.assertRaises(TypeError, m.__setitem__, slice(0,1,1), [1]) |
| |
| # non-contiguous slice assignment |
| for flags in (0, ND_PIL): |
| ex1 = ndarray(list(range(12)), shape=[12], strides=[-1], offset=11, |
| flags=ND_WRITABLE|flags) |
| ex2 = ndarray(list(range(24)), shape=[12], strides=[2], flags=flags) |
| m1 = memoryview(ex1) |
| m2 = memoryview(ex2) |
| |
| ex1[2:5] = ex1[2:5] |
| m1[2:5] = m2[2:5] |
| |
| self.assertEqual(m1, ex1) |
| self.assertEqual(m2, ex2) |
| |
| ex1[1:3][::-1] = ex2[0:2][::1] |
| m1[1:3][::-1] = m2[0:2][::1] |
| |
| self.assertEqual(m1, ex1) |
| self.assertEqual(m2, ex2) |
| |
| ex1[4:1:-2][::-1] = ex1[1:4:2][::1] |
| m1[4:1:-2][::-1] = m1[1:4:2][::1] |
| |
| self.assertEqual(m1, ex1) |
| self.assertEqual(m2, ex2) |
| |
| def test_memoryview_array(self): |
| |
| def cmptest(testcase, a, b, m, singleitem): |
| for i, _ in enumerate(a): |
| ai = a[i] |
| mi = m[i] |
| testcase.assertEqual(ai, mi) |
| a[i] = singleitem |
| if singleitem != ai: |
| testcase.assertNotEqual(a, m) |
| testcase.assertNotEqual(a, b) |
| else: |
| testcase.assertEqual(a, m) |
| testcase.assertEqual(a, b) |
| m[i] = singleitem |
| testcase.assertEqual(a, m) |
| testcase.assertEqual(b, m) |
| a[i] = ai |
| m[i] = mi |
| |
| for n in range(1, 5): |
| for fmt, items, singleitem in iter_format(n, 'array'): |
| for lslice in genslices(n): |
| for rslice in genslices(n): |
| |
| a = array.array(fmt, items) |
| b = array.array(fmt, items) |
| m = memoryview(b) |
| |
| self.assertEqual(m, a) |
| self.assertEqual(m.tolist(), a.tolist()) |
| self.assertEqual(m.tobytes(), a.tobytes()) |
| self.assertEqual(len(m), len(a)) |
| |
| cmptest(self, a, b, m, singleitem) |
| |
| array_err = None |
| have_resize = None |
| try: |
| al = a[lslice] |
| ar = a[rslice] |
| a[lslice] = a[rslice] |
| have_resize = len(al) != len(ar) |
| except Exception as e: |
| array_err = e.__class__ |
| |
| m_err = None |
| try: |
| m[lslice] = m[rslice] |
| except Exception as e: |
| m_err = e.__class__ |
| |
| if have_resize: # memoryview cannot change shape |
| self.assertIs(m_err, ValueError) |
| elif m_err or array_err: |
| self.assertIs(m_err, array_err) |
| else: |
| self.assertEqual(m, a) |
| self.assertEqual(m.tolist(), a.tolist()) |
| self.assertEqual(m.tobytes(), a.tobytes()) |
| cmptest(self, a, b, m, singleitem) |
| |
| def test_memoryview_compare(self): |
| |
| a = array.array('L', [1, 2, 3]) |
| b = array.array('L', [1, 2, 7]) |
| |
| # Ordering comparisons raise: |
| v = memoryview(a) |
| w = memoryview(b) |
| for attr in ('__lt__', '__le__', '__gt__', '__ge__'): |
| self.assertIs(getattr(v, attr)(w), NotImplemented) |
| self.assertIs(getattr(a, attr)(v), NotImplemented) |
| |
| # Released views compare equal to themselves: |
| v = memoryview(a) |
| v.release() |
| self.assertEqual(v, v) |
| self.assertNotEqual(v, a) |
| self.assertNotEqual(a, v) |
| |
| v = memoryview(a) |
| w = memoryview(a) |
| w.release() |
| self.assertNotEqual(v, w) |
| self.assertNotEqual(w, v) |
| |
| # Operand does not implement the buffer protocol: |
| v = memoryview(a) |
| self.assertNotEqual(v, [1, 2, 3]) |
| |
| # Different formats: |
| c = array.array('l', [1, 2, 3]) |
| v = memoryview(a) |
| self.assertNotEqual(v, c) |
| self.assertNotEqual(c, v) |
| |
| # Not implemented formats. Ugly, but inevitable. This is the same as |
| # issue #2531: equality is also used for membership testing and must |
| # return a result. |
| a = ndarray([(1, 1.5), (2, 2.7)], shape=[2], format='ld') |
| v = memoryview(a) |
| self.assertNotEqual(v, a) |
| self.assertNotEqual(a, v) |
| |
| a = ndarray([b'12345'], shape=[1], format="s") |
| v = memoryview(a) |
| self.assertNotEqual(v, a) |
| self.assertNotEqual(a, v) |
| |
| nd = ndarray([(1,1,1), (2,2,2), (3,3,3)], shape=[3], format='iii') |
| v = memoryview(nd) |
| self.assertNotEqual(v, nd) |
| self.assertNotEqual(nd, v) |
| |
| # '@' prefix can be dropped: |
| nd1 = ndarray([1,2,3], shape=[3], format='@i') |
| nd2 = ndarray([1,2,3], shape=[3], format='i') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| self.assertEqual(v, w) |
| self.assertEqual(w, v) |
| self.assertEqual(v, nd2) |
| self.assertEqual(nd2, v) |
| self.assertEqual(w, nd1) |
| self.assertEqual(nd1, w) |
| |
| # ndim = 0 |
| nd1 = ndarray(1729, shape=[], format='@L') |
| nd2 = ndarray(1729, shape=[], format='L', flags=ND_WRITABLE) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| self.assertEqual(v, w) |
| self.assertEqual(w, v) |
| self.assertEqual(v, nd2) |
| self.assertEqual(nd2, v) |
| self.assertEqual(w, nd1) |
| self.assertEqual(nd1, w) |
| |
| self.assertFalse(v.__ne__(w)) |
| self.assertFalse(w.__ne__(v)) |
| |
| w[()] = 1728 |
| self.assertNotEqual(v, w) |
| self.assertNotEqual(w, v) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(nd2, v) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(nd1, w) |
| |
| self.assertFalse(v.__eq__(w)) |
| self.assertFalse(w.__eq__(v)) |
| |
| nd = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL) |
| ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL) |
| m = memoryview(ex) |
| |
| self.assertEqual(m, nd) |
| m[9] = 100 |
| self.assertNotEqual(m, nd) |
| |
| # ndim = 1: contiguous |
| nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h') |
| nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='@h') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # ndim = 1: non-contiguous |
| nd1 = ndarray([-529, -625, -729], shape=[3], format='@h') |
| nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd2[::2]) |
| self.assertEqual(w[::2], nd1) |
| self.assertEqual(v, w[::2]) |
| self.assertEqual(v[::-1], w[::-2]) |
| |
| # ndim = 1: non-contiguous, suboffsets |
| nd1 = ndarray([-529, -625, -729], shape=[3], format='@h') |
| nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h', |
| flags=ND_PIL) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd2[::2]) |
| self.assertEqual(w[::2], nd1) |
| self.assertEqual(v, w[::2]) |
| self.assertEqual(v[::-1], w[::-2]) |
| |
| # ndim = 1: zeros in shape |
| nd1 = ndarray([900, 961], shape=[0], format='@h') |
| nd2 = ndarray([-900, -961], shape=[0], format='@h') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertEqual(v, nd2) |
| self.assertEqual(w, nd1) |
| self.assertEqual(v, w) |
| |
| # ndim = 1: zero strides |
| nd1 = ndarray([900, 900, 900, 900], shape=[4], format='@L') |
| nd2 = ndarray([900], shape=[4], strides=[0], format='L') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertEqual(v, nd2) |
| self.assertEqual(w, nd1) |
| self.assertEqual(v, w) |
| |
| n = 10 |
| for char in fmtdict['@m']: |
| fmt, items, singleitem = randitems(n, 'memoryview', '@', char) |
| for flags in (0, ND_PIL): |
| nd = ndarray(items, shape=[n], format=fmt, flags=flags) |
| m = memoryview(nd) |
| self.assertEqual(m, nd) |
| |
| nd = nd[::-3] |
| m = memoryview(nd) |
| self.assertEqual(m, nd) |
| |
| ##### ndim > 1: C-contiguous |
| # different values |
| nd1 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='@h') |
| nd2 = ndarray(list(range(0, 30)), shape=[3, 2, 5], format='@h') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different shape |
| nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L') |
| nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='L') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different format |
| nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L') |
| nd2 = ndarray(list(range(30)), shape=[2, 3, 5], format='l') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| ##### ndim > 1: Fortran contiguous |
| # different values |
| nd1 = ndarray(list(range(-15, 15)), shape=[5, 2, 3], format='@h', |
| flags=ND_FORTRAN) |
| nd2 = ndarray(list(range(0, 30)), shape=[5, 2, 3], format='@h', |
| flags=ND_FORTRAN) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different shape |
| nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='l', |
| flags=ND_FORTRAN) |
| nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l', |
| flags=ND_FORTRAN) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different format |
| nd1 = ndarray(list(range(30)), shape=[5, 2, 3], format='@h', |
| flags=ND_FORTRAN) |
| nd2 = ndarray(list(range(30)), shape=[5, 2, 3], format='@b', |
| flags=ND_FORTRAN) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| ##### ndim > 1: mixed C/Fortran contiguous |
| lst1 = list(range(-15, 15)) |
| lst2 = transpose(lst1, [3, 2, 5]) |
| nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l') |
| nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertEqual(v, w) |
| |
| ##### ndim > 1: non-contiguous |
| # different values |
| ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I') |
| nd1 = ex1[3:1:-1, ::-2] |
| ex2 = ndarray(list(range(40)), shape=[5, 8], format='I') |
| nd2 = ex2[1:3:1, ::-2] |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different shape |
| ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b') |
| nd1 = ex1[1:3:, ::-2] |
| nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b') |
| nd2 = ex2[1:3:, ::-2] |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different format |
| ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i') |
| nd1 = ex1[1:3:, ::-2] |
| nd2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I') |
| nd2 = ex2[1:3:, ::-2] |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| ##### ndim > 1: zeros in shape |
| nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i') |
| nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # ndim > 1: zero strides |
| nd1 = ndarray([900]*80, shape=[4, 5, 4], format='@L') |
| nd2 = ndarray([900], shape=[4, 5, 4], strides=[0, 0, 0], format='L') |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertEqual(v, nd2) |
| self.assertEqual(w, nd1) |
| self.assertEqual(v, w) |
| self.assertEqual(v.tolist(), w.tolist()) |
| |
| ##### ndim > 1: suboffsets |
| ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I') |
| nd1 = ex1[3:1:-1, ::-2] |
| ex2 = ndarray(list(range(40)), shape=[5, 8], format='I', flags=ND_PIL) |
| nd2 = ex2[1:3:1, ::-2] |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different shape |
| ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b', flags=ND_PIL) |
| nd1 = ex1[1:3:, ::-2] |
| nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b') |
| nd2 = ex2[1:3:, ::-2] |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # different format |
| ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i', flags=ND_PIL) |
| nd1 = ex1[1:3:, ::-2] |
| nd2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I', flags=ND_PIL) |
| nd2 = ex2[1:3:, ::-2] |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertNotEqual(v, nd2) |
| self.assertNotEqual(w, nd1) |
| self.assertNotEqual(v, w) |
| |
| # initialize mixed C/Fortran + suboffsets |
| lst1 = list(range(-15, 15)) |
| lst2 = transpose(lst1, [3, 2, 5]) |
| nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l', flags=ND_PIL) |
| nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN|ND_PIL) |
| v = memoryview(nd1) |
| w = memoryview(nd2) |
| |
| self.assertEqual(v, nd1) |
| self.assertEqual(w, nd2) |
| self.assertEqual(v, w) |
| |
| def test_memoryview_check_released(self): |
| |
| a = array.array('d', [1.1, 2.2, 3.3]) |
| |
| m = memoryview(a) |
| m.release() |
| |
| # PyMemoryView_FromObject() |
| self.assertRaises(ValueError, memoryview, m) |
| # memoryview.cast() |
| self.assertRaises(ValueError, m.cast, 'c') |
| # getbuffer() |
| self.assertRaises(ValueError, ndarray, m) |
| # memoryview.tolist() |
| self.assertRaises(ValueError, m.tolist) |
| # memoryview.tobytes() |
| self.assertRaises(ValueError, m.tobytes) |
| # sequence |
| self.assertRaises(ValueError, eval, "1.0 in m", locals()) |
| # subscript |
| self.assertRaises(ValueError, m.__getitem__, 0) |
| # assignment |
| self.assertRaises(ValueError, m.__setitem__, 0, 1) |
| |
| for attr in ('obj', 'nbytes', 'readonly', 'itemsize', 'format', 'ndim', |
| 'shape', 'strides', 'suboffsets', 'c_contiguous', |
| 'f_contiguous', 'contiguous'): |
| self.assertRaises(ValueError, m.__getattribute__, attr) |
| |
| # richcompare |
| b = array.array('d', [1.1, 2.2, 3.3]) |
| m1 = memoryview(a) |
| m2 = memoryview(b) |
| |
| self.assertEqual(m1, m2) |
| m1.release() |
| self.assertNotEqual(m1, m2) |
| self.assertNotEqual(m1, a) |
| self.assertEqual(m1, m1) |
| |
| def test_memoryview_tobytes(self): |
| # Many implicit tests are already in self.verify(). |
| |
| nd = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h') |
| |
| m = memoryview(nd) |
| self.assertEqual(m.tobytes(), nd.tobytes()) |
| |
| def test_memoryview_get_contiguous(self): |
| # Many implicit tests are already in self.verify(). |
| |
| # no buffer interface |
| self.assertRaises(TypeError, get_contiguous, {}, PyBUF_READ, 'F') |
| |
| # writable request to read-only object |
| self.assertRaises(BufferError, get_contiguous, b'x', PyBUF_WRITE, 'C') |
| |
| # writable request to non-contiguous object |
| nd = ndarray([1, 2, 3], shape=[2], strides=[2]) |
| self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'A') |
| |
| # scalar, read-only request from read-only exporter |
| nd = ndarray(9, shape=(), format="L") |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m[()], 9) |
| |
| # scalar, read-only request from writable exporter |
| nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE) |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m[()], 9) |
| |
| # scalar, writable request |
| for order in ['C', 'F', 'A']: |
| nd[()] = 9 |
| m = get_contiguous(nd, PyBUF_WRITE, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m[()], 9) |
| |
| m[()] = 10 |
| self.assertEqual(m[()], 10) |
| self.assertEqual(nd[()], 10) |
| |
| # zeros in shape |
| nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE) |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertRaises(IndexError, m.__getitem__, 0) |
| self.assertEqual(m, nd) |
| self.assertEqual(m.tolist(), []) |
| |
| nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L", |
| flags=ND_WRITABLE) |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(ndarray(m).tolist(), [[], []]) |
| |
| # one-dimensional |
| nd = ndarray([1], shape=[1], format="h", flags=ND_WRITABLE) |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_WRITE, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m.tolist(), nd.tolist()) |
| |
| nd = ndarray([1, 2, 3], shape=[3], format="b", flags=ND_WRITABLE) |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_WRITE, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m.tolist(), nd.tolist()) |
| |
| # one-dimensional, non-contiguous |
| nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE) |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m.tolist(), nd.tolist()) |
| self.assertRaises(TypeError, m.__setitem__, 1, 20) |
| self.assertEqual(m[1], 3) |
| self.assertEqual(nd[1], 3) |
| |
| nd = nd[::-1] |
| for order in ['C', 'F', 'A']: |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(m, nd) |
| self.assertEqual(m.tolist(), nd.tolist()) |
| self.assertRaises(TypeError, m.__setitem__, 1, 20) |
| self.assertEqual(m[1], 1) |
| self.assertEqual(nd[1], 1) |
| |
| # multi-dimensional, contiguous input |
| nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE) |
| for order in ['C', 'A']: |
| m = get_contiguous(nd, PyBUF_WRITE, order) |
| self.assertEqual(ndarray(m).tolist(), nd.tolist()) |
| |
| self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'F') |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(ndarray(m).tolist(), nd.tolist()) |
| |
| nd = ndarray(list(range(12)), shape=[3, 4], |
| flags=ND_WRITABLE|ND_FORTRAN) |
| for order in ['F', 'A']: |
| m = get_contiguous(nd, PyBUF_WRITE, order) |
| self.assertEqual(ndarray(m).tolist(), nd.tolist()) |
| |
| self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'C') |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(ndarray(m).tolist(), nd.tolist()) |
| |
| # multi-dimensional, non-contiguous input |
| nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL) |
| for order in ['C', 'F', 'A']: |
| self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, |
| order) |
| m = get_contiguous(nd, PyBUF_READ, order) |
| self.assertEqual(ndarray(m).tolist(), nd.tolist()) |
| |
| # flags |
| nd = ndarray([1,2,3,4,5], shape=[3], strides=[2]) |
| m = get_contiguous(nd, PyBUF_READ, 'C') |
| self.assertTrue(m.c_contiguous) |
| |
| def test_memoryview_serializing(self): |
| |
| # C-contiguous |
| size = struct.calcsize('i') |
| a = array.array('i', [1,2,3,4,5]) |
| m = memoryview(a) |
| buf = io.BytesIO(m) |
| b = bytearray(5*size) |
| buf.readinto(b) |
| self.assertEqual(m.tobytes(), b) |
| |
| # C-contiguous, multi-dimensional |
| size = struct.calcsize('L') |
| nd = ndarray(list(range(12)), shape=[2,3,2], format="L") |
| m = memoryview(nd) |
| buf = io.BytesIO(m) |
| b = bytearray(2*3*2*size) |
| buf.readinto(b) |
| self.assertEqual(m.tobytes(), b) |
| |
| # Fortran contiguous, multi-dimensional |
| #size = struct.calcsize('L') |
| #nd = ndarray(list(range(12)), shape=[2,3,2], format="L", |
| # flags=ND_FORTRAN) |
| #m = memoryview(nd) |
| #buf = io.BytesIO(m) |
| #b = bytearray(2*3*2*size) |
| #buf.readinto(b) |
| #self.assertEqual(m.tobytes(), b) |
| |
| def test_memoryview_hash(self): |
| |
| # bytes exporter |
| b = bytes(list(range(12))) |
| m = memoryview(b) |
| self.assertEqual(hash(b), hash(m)) |
| |
| # C-contiguous |
| mc = m.cast('c', shape=[3,4]) |
| self.assertEqual(hash(mc), hash(b)) |
| |
| # non-contiguous |
| mx = m[::-2] |
| b = bytes(list(range(12))[::-2]) |
| self.assertEqual(hash(mx), hash(b)) |
| |
| # Fortran contiguous |
| nd = ndarray(list(range(30)), shape=[3,2,5], flags=ND_FORTRAN) |
| m = memoryview(nd) |
| self.assertEqual(hash(m), hash(nd)) |
| |
| # multi-dimensional slice |
| nd = ndarray(list(range(30)), shape=[3,2,5]) |
| x = nd[::2, ::, ::-1] |
| m = memoryview(x) |
| self.assertEqual(hash(m), hash(x)) |
| |
| # multi-dimensional slice with suboffsets |
| nd = ndarray(list(range(30)), shape=[2,5,3], flags=ND_PIL) |
| x = nd[::2, ::, ::-1] |
| m = memoryview(x) |
| self.assertEqual(hash(m), hash(x)) |
| |
| # non-byte formats |
| nd = ndarray(list(range(12)), shape=[2,2,3], format='L') |
| m = memoryview(nd) |
| self.assertEqual(hash(m), hash(nd.tobytes())) |
| |
| nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='h') |
| m = memoryview(nd) |
| self.assertEqual(hash(m), hash(nd.tobytes())) |
| |
| def test_memoryview_release(self): |
| |
| # Create re-exporter from getbuffer(memoryview), then release the view. |
| a = bytearray([1,2,3]) |
| m = memoryview(a) |
| nd = ndarray(m) # re-exporter |
| self.assertRaises(BufferError, m.release) |
| del nd |
| m.release() |
| |
| a = bytearray([1,2,3]) |
| m = memoryview(a) |
| nd1 = ndarray(m, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| self.assertIs(nd2.obj, m) |
| self.assertRaises(BufferError, m.release) |
| del nd1, nd2 |
| m.release() |
| |
| # chained views |
| a = bytearray([1,2,3]) |
| m1 = memoryview(a) |
| m2 = memoryview(m1) |
| nd = ndarray(m2) # re-exporter |
| m1.release() |
| self.assertRaises(BufferError, m2.release) |
| del nd |
| m2.release() |
| |
| a = bytearray([1,2,3]) |
| m1 = memoryview(a) |
| m2 = memoryview(m1) |
| nd1 = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| self.assertIs(nd2.obj, m2) |
| m1.release() |
| self.assertRaises(BufferError, m2.release) |
| del nd1, nd2 |
| m2.release() |
| |
| # Allow changing layout while buffers are exported. |
| nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT) |
| m1 = memoryview(nd) |
| |
| nd.push([4,5,6,7,8], shape=[5]) # mutate nd |
| m2 = memoryview(nd) |
| |
| x = memoryview(m1) |
| self.assertEqual(x.tolist(), m1.tolist()) |
| |
| y = memoryview(m2) |
| self.assertEqual(y.tolist(), m2.tolist()) |
| self.assertEqual(y.tolist(), nd.tolist()) |
| m2.release() |
| y.release() |
| |
| nd.pop() # pop the current view |
| self.assertEqual(x.tolist(), nd.tolist()) |
| |
| del nd |
| m1.release() |
| x.release() |
| |
| # If multiple memoryviews share the same managed buffer, implicit |
| # release() in the context manager's __exit__() method should still |
| # work. |
| def catch22(b): |
| with memoryview(b) as m2: |
| pass |
| |
| x = bytearray(b'123') |
| with memoryview(x) as m1: |
| catch22(m1) |
| self.assertEqual(m1[0], ord(b'1')) |
| |
| x = ndarray(list(range(12)), shape=[2,2,3], format='l') |
| y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| self.assertIs(z.obj, x) |
| with memoryview(z) as m: |
| catch22(m) |
| self.assertEqual(m[0:1].tolist(), [[[0, 1, 2], [3, 4, 5]]]) |
| |
| # Test garbage collection. |
| for flags in (0, ND_REDIRECT): |
| x = bytearray(b'123') |
| with memoryview(x) as m1: |
| del x |
| y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags) |
| with memoryview(y) as m2: |
| del y |
| z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags) |
| with memoryview(z) as m3: |
| del z |
| catch22(m3) |
| catch22(m2) |
| catch22(m1) |
| self.assertEqual(m1[0], ord(b'1')) |
| self.assertEqual(m2[1], ord(b'2')) |
| self.assertEqual(m3[2], ord(b'3')) |
| del m3 |
| del m2 |
| del m1 |
| |
| x = bytearray(b'123') |
| with memoryview(x) as m1: |
| del x |
| y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags) |
| with memoryview(y) as m2: |
| del y |
| z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags) |
| with memoryview(z) as m3: |
| del z |
| catch22(m1) |
| catch22(m2) |
| catch22(m3) |
| self.assertEqual(m1[0], ord(b'1')) |
| self.assertEqual(m2[1], ord(b'2')) |
| self.assertEqual(m3[2], ord(b'3')) |
| del m1, m2, m3 |
| |
| # memoryview.release() fails if the view has exported buffers. |
| x = bytearray(b'123') |
| with self.assertRaises(BufferError): |
| with memoryview(x) as m: |
| ex = ndarray(m) |
| m[0] == ord(b'1') |
| |
| def test_memoryview_redirect(self): |
| |
| nd = ndarray([1.0 * x for x in range(12)], shape=[12], format='d') |
| a = array.array('d', [1.0 * x for x in range(12)]) |
| |
| for x in (nd, a): |
| y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| m = memoryview(z) |
| |
| self.assertIs(y.obj, x) |
| self.assertIs(z.obj, x) |
| self.assertIs(m.obj, x) |
| |
| self.assertEqual(m, x) |
| self.assertEqual(m, y) |
| self.assertEqual(m, z) |
| |
| self.assertEqual(m[1:3], x[1:3]) |
| self.assertEqual(m[1:3], y[1:3]) |
| self.assertEqual(m[1:3], z[1:3]) |
| del y, z |
| self.assertEqual(m[1:3], x[1:3]) |
| |
| def test_memoryview_from_static_exporter(self): |
| |
| fmt = 'B' |
| lst = [0,1,2,3,4,5,6,7,8,9,10,11] |
| |
| # exceptions |
| self.assertRaises(TypeError, staticarray, 1, 2, 3) |
| |
| # view.obj==x |
| x = staticarray() |
| y = memoryview(x) |
| self.verify(y, obj=x, |
| itemsize=1, fmt=fmt, readonly=1, |
| ndim=1, shape=[12], strides=[1], |
| lst=lst) |
| for i in range(12): |
| self.assertEqual(y[i], i) |
| del x |
| del y |
| |
| x = staticarray() |
| y = memoryview(x) |
| del y |
| del x |
| |
| x = staticarray() |
| y = ndarray(x, getbuf=PyBUF_FULL_RO) |
| z = ndarray(y, getbuf=PyBUF_FULL_RO) |
| m = memoryview(z) |
| self.assertIs(y.obj, x) |
| self.assertIs(m.obj, z) |
| self.verify(m, obj=z, |
| itemsize=1, fmt=fmt, readonly=1, |
| ndim=1, shape=[12], strides=[1], |
| lst=lst) |
| del x, y, z, m |
| |
| x = staticarray() |
| y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| m = memoryview(z) |
| self.assertIs(y.obj, x) |
| self.assertIs(z.obj, x) |
| self.assertIs(m.obj, x) |
| self.verify(m, obj=x, |
| itemsize=1, fmt=fmt, readonly=1, |
| ndim=1, shape=[12], strides=[1], |
| lst=lst) |
| del x, y, z, m |
| |
| # view.obj==NULL |
| x = staticarray(legacy_mode=True) |
| y = memoryview(x) |
| self.verify(y, obj=None, |
| itemsize=1, fmt=fmt, readonly=1, |
| ndim=1, shape=[12], strides=[1], |
| lst=lst) |
| for i in range(12): |
| self.assertEqual(y[i], i) |
| del x |
| del y |
| |
| x = staticarray(legacy_mode=True) |
| y = memoryview(x) |
| del y |
| del x |
| |
| x = staticarray(legacy_mode=True) |
| y = ndarray(x, getbuf=PyBUF_FULL_RO) |
| z = ndarray(y, getbuf=PyBUF_FULL_RO) |
| m = memoryview(z) |
| self.assertIs(y.obj, None) |
| self.assertIs(m.obj, z) |
| self.verify(m, obj=z, |
| itemsize=1, fmt=fmt, readonly=1, |
| ndim=1, shape=[12], strides=[1], |
| lst=lst) |
| del x, y, z, m |
| |
| x = staticarray(legacy_mode=True) |
| y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) |
| m = memoryview(z) |
| # Clearly setting view.obj==NULL is inferior, since it |
| # messes up the redirection chain: |
| self.assertIs(y.obj, None) |
| self.assertIs(z.obj, y) |
| self.assertIs(m.obj, y) |
| self.verify(m, obj=y, |
| itemsize=1, fmt=fmt, readonly=1, |
| ndim=1, shape=[12], strides=[1], |
| lst=lst) |
| del x, y, z, m |
| |
| def test_memoryview_getbuffer_undefined(self): |
| |
| # getbufferproc does not adhere to the new documentation |
| nd = ndarray([1,2,3], [3], flags=ND_GETBUF_FAIL|ND_GETBUF_UNDEFINED) |
| self.assertRaises(BufferError, memoryview, nd) |
| |
| def test_issue_7385(self): |
| x = ndarray([1,2,3], shape=[3], flags=ND_GETBUF_FAIL) |
| self.assertRaises(BufferError, memoryview, x) |
| |
| |
| def test_main(): |
| support.run_unittest(TestBufferProtocol) |
| |
| |
| if __name__ == "__main__": |
| test_main() |