| \section{\module{bisect} --- | 
 |          Array bisection algorithm} | 
 |  | 
 | \declaremodule{standard}{bisect} | 
 | \modulesynopsis{Array bisection algorithms for binary searching.} | 
 | \sectionauthor{Fred L. Drake, Jr.}{fdrake@acm.org} | 
 | % LaTeX produced by Fred L. Drake, Jr. <fdrake@acm.org>, with an | 
 | % example based on the PyModules FAQ entry by Aaron Watters | 
 | % <arw@pythonpros.com>. | 
 |  | 
 |  | 
 | This module provides support for maintaining a list in sorted order | 
 | without having to sort the list after each insertion.  For long lists | 
 | of items with expensive comparison operations, this can be an | 
 | improvement over the more common approach.  The module is called | 
 | \module{bisect} because it uses a basic bisection algorithm to do its | 
 | work.  The source code may be most useful as a working example of the | 
 | algorithm (the boundary conditions are already right!). | 
 |  | 
 | The following functions are provided: | 
 |  | 
 | \begin{funcdesc}{bisect_left}{list, item\optional{, lo\optional{, hi}}} | 
 |   Locate the proper insertion point for \var{item} in \var{list} to | 
 |   maintain sorted order.  The parameters \var{lo} and \var{hi} may be | 
 |   used to specify a subset of the list which should be considered; by | 
 |   default the entire list is used.  If \var{item} is already present | 
 |   in \var{list}, the insertion point will be before (to the left of) | 
 |   any existing entries.  The return value is suitable for use as the | 
 |   first parameter to \code{\var{list}.insert()}.  This assumes that | 
 |   \var{list} is already sorted. | 
 | \versionadded{2.1} | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{bisect_right}{list, item\optional{, lo\optional{, hi}}} | 
 |   Similar to \function{bisect_left()}, but returns an insertion point | 
 |   which comes after (to the right of) any existing entries of | 
 |   \var{item} in \var{list}. | 
 | \versionadded{2.1} | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{bisect}{\unspecified} | 
 |   Alias for \function{bisect_right()}. | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{insort_left}{list, item\optional{, lo\optional{, hi}}} | 
 |   Insert \var{item} in \var{list} in sorted order.  This is equivalent | 
 |   to \code{\var{list}.insert(bisect.bisect_left(\var{list}, \var{item}, | 
 |   \var{lo}, \var{hi}), \var{item})}.  This assumes that \var{list} is | 
 |   already sorted. | 
 | \versionadded{2.1} | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{insort_right}{list, item\optional{, lo\optional{, hi}}} | 
 |   Similar to \function{insort_left()}, but inserting \var{item} in | 
 |   \var{list} after any existing entries of \var{item}. | 
 | \versionadded{2.1} | 
 | \end{funcdesc} | 
 |  | 
 | \begin{funcdesc}{insort}{\unspecified} | 
 |   Alias for \function{insort_right()}. | 
 | \end{funcdesc} | 
 |  | 
 |  | 
 | \subsection{Examples} | 
 | \nodename{bisect-example} | 
 |  | 
 | The \function{bisect()} function is generally useful for categorizing | 
 | numeric data.  This example uses \function{bisect()} to look up a | 
 | letter grade for an exam total (say) based on a set of ordered numeric | 
 | breakpoints: 85 and up is an `A', 75..84 is a `B', etc. | 
 |  | 
 | \begin{verbatim} | 
 | >>> grades = "FEDCBA" | 
 | >>> breakpoints = [30, 44, 66, 75, 85] | 
 | >>> from bisect import bisect | 
 | >>> def grade(total): | 
 | ...           return grades[bisect(breakpoints, total)] | 
 | ... | 
 | >>> grade(66) | 
 | 'C' | 
 | >>> map(grade, [33, 99, 77, 44, 12, 88]) | 
 | ['E', 'A', 'B', 'D', 'F', 'A'] | 
 |  | 
 | \end{verbatim} |