| /* Set of hash utility functions to help maintaining the invariant that |
| if a==b then hash(a)==hash(b) |
| |
| All the utility functions (_Py_Hash*()) return "-1" to signify an error. |
| */ |
| #include "Python.h" |
| |
| #ifdef __APPLE__ |
| # include <libkern/OSByteOrder.h> |
| #elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H) |
| # include <endian.h> |
| #elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H) |
| # include <sys/endian.h> |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| _Py_HashSecret_t _Py_HashSecret; |
| |
| #if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL |
| extern PyHash_FuncDef PyHash_Func; |
| #else |
| static PyHash_FuncDef PyHash_Func; |
| #endif |
| |
| /* Count _Py_HashBytes() calls */ |
| #ifdef Py_HASH_STATS |
| #define Py_HASH_STATS_MAX 32 |
| static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0}; |
| #endif |
| |
| /* For numeric types, the hash of a number x is based on the reduction |
| of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that |
| hash(x) == hash(y) whenever x and y are numerically equal, even if |
| x and y have different types. |
| |
| A quick summary of the hashing strategy: |
| |
| (1) First define the 'reduction of x modulo P' for any rational |
| number x; this is a standard extension of the usual notion of |
| reduction modulo P for integers. If x == p/q (written in lowest |
| terms), the reduction is interpreted as the reduction of p times |
| the inverse of the reduction of q, all modulo P; if q is exactly |
| divisible by P then define the reduction to be infinity. So we've |
| got a well-defined map |
| |
| reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. |
| |
| (2) Now for a rational number x, define hash(x) by: |
| |
| reduce(x) if x >= 0 |
| -reduce(-x) if x < 0 |
| |
| If the result of the reduction is infinity (this is impossible for |
| integers, floats and Decimals) then use the predefined hash value |
| _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. |
| _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the |
| hashes of float and Decimal infinities and nans. |
| |
| A selling point for the above strategy is that it makes it possible |
| to compute hashes of decimal and binary floating-point numbers |
| efficiently, even if the exponent of the binary or decimal number |
| is large. The key point is that |
| |
| reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) |
| |
| provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a |
| binary or decimal float is never infinity, since the denominator is a power |
| of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, |
| for nonnegative x, |
| |
| reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS |
| |
| reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS |
| |
| and reduce(10**e) can be computed efficiently by the usual modular |
| exponentiation algorithm. For reduce(2**e) it's even better: since |
| P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication |
| by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. |
| |
| */ |
| |
| Py_hash_t |
| _Py_HashDouble(double v) |
| { |
| int e, sign; |
| double m; |
| Py_uhash_t x, y; |
| |
| if (!Py_IS_FINITE(v)) { |
| if (Py_IS_INFINITY(v)) |
| return v > 0 ? _PyHASH_INF : -_PyHASH_INF; |
| else |
| return _PyHASH_NAN; |
| } |
| |
| m = frexp(v, &e); |
| |
| sign = 1; |
| if (m < 0) { |
| sign = -1; |
| m = -m; |
| } |
| |
| /* process 28 bits at a time; this should work well both for binary |
| and hexadecimal floating point. */ |
| x = 0; |
| while (m) { |
| x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); |
| m *= 268435456.0; /* 2**28 */ |
| e -= 28; |
| y = (Py_uhash_t)m; /* pull out integer part */ |
| m -= y; |
| x += y; |
| if (x >= _PyHASH_MODULUS) |
| x -= _PyHASH_MODULUS; |
| } |
| |
| /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ |
| e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); |
| x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); |
| |
| x = x * sign; |
| if (x == (Py_uhash_t)-1) |
| x = (Py_uhash_t)-2; |
| return (Py_hash_t)x; |
| } |
| |
| Py_hash_t |
| _Py_HashPointer(void *p) |
| { |
| Py_hash_t x; |
| size_t y = (size_t)p; |
| /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid |
| excessive hash collisions for dicts and sets */ |
| y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); |
| x = (Py_hash_t)y; |
| if (x == -1) |
| x = -2; |
| return x; |
| } |
| |
| Py_hash_t |
| _Py_HashBytes(const void *src, Py_ssize_t len) |
| { |
| Py_hash_t x; |
| /* |
| We make the hash of the empty string be 0, rather than using |
| (prefix ^ suffix), since this slightly obfuscates the hash secret |
| */ |
| if (len == 0) { |
| return 0; |
| } |
| |
| #ifdef Py_HASH_STATS |
| hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++; |
| #endif |
| |
| #if Py_HASH_CUTOFF > 0 |
| if (len < Py_HASH_CUTOFF) { |
| /* Optimize hashing of very small strings with inline DJBX33A. */ |
| Py_uhash_t hash; |
| const unsigned char *p = src; |
| hash = 5381; /* DJBX33A starts with 5381 */ |
| |
| switch(len) { |
| /* ((hash << 5) + hash) + *p == hash * 33 + *p */ |
| case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
| case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
| case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
| case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
| case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
| case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ |
| case 1: hash = ((hash << 5) + hash) + *p++; break; |
| default: |
| Py_UNREACHABLE(); |
| } |
| hash ^= len; |
| hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix; |
| x = (Py_hash_t)hash; |
| } |
| else |
| #endif /* Py_HASH_CUTOFF */ |
| x = PyHash_Func.hash(src, len); |
| |
| if (x == -1) |
| return -2; |
| return x; |
| } |
| |
| void |
| _PyHash_Fini(void) |
| { |
| #ifdef Py_HASH_STATS |
| int i; |
| Py_ssize_t total = 0; |
| const char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n"; |
| |
| fprintf(stderr, "len calls total\n"); |
| for (i = 1; i <= Py_HASH_STATS_MAX; i++) { |
| total += hashstats[i]; |
| fprintf(stderr, fmt, i, hashstats[i], total); |
| } |
| total += hashstats[0]; |
| fprintf(stderr, "> %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n", |
| hashstats[0], total); |
| #endif |
| } |
| |
| PyHash_FuncDef * |
| PyHash_GetFuncDef(void) |
| { |
| return &PyHash_Func; |
| } |
| |
| /* Optimized memcpy() for Windows */ |
| #ifdef _MSC_VER |
| # if SIZEOF_PY_UHASH_T == 4 |
| # define PY_UHASH_CPY(dst, src) do { \ |
| dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ |
| } while(0) |
| # elif SIZEOF_PY_UHASH_T == 8 |
| # define PY_UHASH_CPY(dst, src) do { \ |
| dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ |
| dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \ |
| } while(0) |
| # else |
| # error SIZEOF_PY_UHASH_T must be 4 or 8 |
| # endif /* SIZEOF_PY_UHASH_T */ |
| #else /* not Windows */ |
| # define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T) |
| #endif /* _MSC_VER */ |
| |
| |
| #if Py_HASH_ALGORITHM == Py_HASH_FNV |
| /* ************************************************************************** |
| * Modified Fowler-Noll-Vo (FNV) hash function |
| */ |
| static Py_hash_t |
| fnv(const void *src, Py_ssize_t len) |
| { |
| const unsigned char *p = src; |
| Py_uhash_t x; |
| Py_ssize_t remainder, blocks; |
| union { |
| Py_uhash_t value; |
| unsigned char bytes[SIZEOF_PY_UHASH_T]; |
| } block; |
| |
| #ifdef Py_DEBUG |
| assert(_Py_HashSecret_Initialized); |
| #endif |
| remainder = len % SIZEOF_PY_UHASH_T; |
| if (remainder == 0) { |
| /* Process at least one block byte by byte to reduce hash collisions |
| * for strings with common prefixes. */ |
| remainder = SIZEOF_PY_UHASH_T; |
| } |
| blocks = (len - remainder) / SIZEOF_PY_UHASH_T; |
| |
| x = (Py_uhash_t) _Py_HashSecret.fnv.prefix; |
| x ^= (Py_uhash_t) *p << 7; |
| while (blocks--) { |
| PY_UHASH_CPY(block.bytes, p); |
| x = (_PyHASH_MULTIPLIER * x) ^ block.value; |
| p += SIZEOF_PY_UHASH_T; |
| } |
| /* add remainder */ |
| for (; remainder > 0; remainder--) |
| x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; |
| x ^= (Py_uhash_t) len; |
| x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix; |
| if (x == -1) { |
| x = -2; |
| } |
| return x; |
| } |
| |
| static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T, |
| 16 * SIZEOF_PY_HASH_T}; |
| |
| #endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */ |
| |
| |
| /* ************************************************************************** |
| <MIT License> |
| Copyright (c) 2013 Marek Majkowski <marek@popcount.org> |
| |
| Permission is hereby granted, free of charge, to any person obtaining a copy |
| of this software and associated documentation files (the "Software"), to deal |
| in the Software without restriction, including without limitation the rights |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| copies of the Software, and to permit persons to whom the Software is |
| furnished to do so, subject to the following conditions: |
| |
| The above copyright notice and this permission notice shall be included in |
| all copies or substantial portions of the Software. |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| THE SOFTWARE. |
| </MIT License> |
| |
| Original location: |
| https://github.com/majek/csiphash/ |
| |
| Solution inspired by code from: |
| Samuel Neves (supercop/crypto_auth/siphash24/little) |
| djb (supercop/crypto_auth/siphash24/little2) |
| Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c) |
| |
| Modified for Python by Christian Heimes: |
| - C89 / MSVC compatibility |
| - _rotl64() on Windows |
| - letoh64() fallback |
| */ |
| |
| /* byte swap little endian to host endian |
| * Endian conversion not only ensures that the hash function returns the same |
| * value on all platforms. It is also required to for a good dispersion of |
| * the hash values' least significant bits. |
| */ |
| #if PY_LITTLE_ENDIAN |
| # define _le64toh(x) ((uint64_t)(x)) |
| #elif defined(__APPLE__) |
| # define _le64toh(x) OSSwapLittleToHostInt64(x) |
| #elif defined(HAVE_LETOH64) |
| # define _le64toh(x) le64toh(x) |
| #else |
| # define _le64toh(x) (((uint64_t)(x) << 56) | \ |
| (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \ |
| (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \ |
| (((uint64_t)(x) << 8) & 0xff00000000ULL) | \ |
| (((uint64_t)(x) >> 8) & 0xff000000ULL) | \ |
| (((uint64_t)(x) >> 24) & 0xff0000ULL) | \ |
| (((uint64_t)(x) >> 40) & 0xff00ULL) | \ |
| ((uint64_t)(x) >> 56)) |
| #endif |
| |
| |
| #ifdef _MSC_VER |
| # define ROTATE(x, b) _rotl64(x, b) |
| #else |
| # define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) ) |
| #endif |
| |
| #define HALF_ROUND(a,b,c,d,s,t) \ |
| a += b; c += d; \ |
| b = ROTATE(b, s) ^ a; \ |
| d = ROTATE(d, t) ^ c; \ |
| a = ROTATE(a, 32); |
| |
| #define DOUBLE_ROUND(v0,v1,v2,v3) \ |
| HALF_ROUND(v0,v1,v2,v3,13,16); \ |
| HALF_ROUND(v2,v1,v0,v3,17,21); \ |
| HALF_ROUND(v0,v1,v2,v3,13,16); \ |
| HALF_ROUND(v2,v1,v0,v3,17,21); |
| |
| |
| static uint64_t |
| siphash24(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) { |
| uint64_t b = (uint64_t)src_sz << 56; |
| const uint64_t *in = (uint64_t*)src; |
| |
| uint64_t v0 = k0 ^ 0x736f6d6570736575ULL; |
| uint64_t v1 = k1 ^ 0x646f72616e646f6dULL; |
| uint64_t v2 = k0 ^ 0x6c7967656e657261ULL; |
| uint64_t v3 = k1 ^ 0x7465646279746573ULL; |
| |
| uint64_t t; |
| uint8_t *pt; |
| uint8_t *m; |
| |
| while (src_sz >= 8) { |
| uint64_t mi = _le64toh(*in); |
| in += 1; |
| src_sz -= 8; |
| v3 ^= mi; |
| DOUBLE_ROUND(v0,v1,v2,v3); |
| v0 ^= mi; |
| } |
| |
| t = 0; |
| pt = (uint8_t *)&t; |
| m = (uint8_t *)in; |
| switch (src_sz) { |
| case 7: pt[6] = m[6]; /* fall through */ |
| case 6: pt[5] = m[5]; /* fall through */ |
| case 5: pt[4] = m[4]; /* fall through */ |
| case 4: memcpy(pt, m, sizeof(uint32_t)); break; |
| case 3: pt[2] = m[2]; /* fall through */ |
| case 2: pt[1] = m[1]; /* fall through */ |
| case 1: pt[0] = m[0]; /* fall through */ |
| } |
| b |= _le64toh(t); |
| |
| v3 ^= b; |
| DOUBLE_ROUND(v0,v1,v2,v3); |
| v0 ^= b; |
| v2 ^= 0xff; |
| DOUBLE_ROUND(v0,v1,v2,v3); |
| DOUBLE_ROUND(v0,v1,v2,v3); |
| |
| /* modified */ |
| t = (v0 ^ v1) ^ (v2 ^ v3); |
| return t; |
| } |
| |
| static Py_hash_t |
| pysiphash(const void *src, Py_ssize_t src_sz) { |
| return (Py_hash_t)siphash24( |
| _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1), |
| src, src_sz); |
| } |
| |
| uint64_t |
| _Py_KeyedHash(uint64_t key, const void *src, Py_ssize_t src_sz) |
| { |
| return siphash24(key, 0, src, src_sz); |
| } |
| |
| |
| #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 |
| static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash24", 64, 128}; |
| #endif |
| |
| #ifdef __cplusplus |
| } |
| #endif |